University of Oulu

Muhammad, U., & Oussalah, M. (2023). Face anti‐spoofing from the perspective of data sampling. Electronics Letters, 59(1).

Face anti-spoofing from the perspective of data sampling

Saved in:
Author: Muhammad, Usman1; Oussalah, Mourad2
Organizations: 1University of Oulu, Center for Machine Vision and Signal Analysis (CMVS), Oulu, Finland
2University of Oulu Faculty of Information Technology and Electrical Engineering, Center for Machine Vision and Signal Analysis (CMVS), Oulu, Finland
Format: article
Version: published version
Access: open
Online Access: PDF Full Text (PDF, 0.6 MB)
Persistent link:
Language: English
Published: Institution of Engineering and Technology, 2023
Publish Date: 2023-03-31


Without deploying face anti-spoofing countermeasures, face recognition systems can be spoofed by presenting a printed photo, a video, or a silicon mask of a genuine user. Thus, face presentation attack detection (PAD) plays a vital role in providing secure facial access to digital devices. Most existing video-based PAD countermeasures lack the ability to cope with long-range temporal variations in videos. Moreover, the key-frame sampling prior to the feature extraction step has not been widely studied in the face anti-spoofing domain. To mitigate these issues, this paper provides a data sampling approach by proposing a video processing scheme that models the long-range temporal variations based on Gaussian weighting function (GWF). Specifically, the proposed scheme encodes the consecutive t frames of video sequences into a single RGB image based on a Gaussian-weighted summation of the t frames. Using simply the data sampling scheme alone, it is demonstrated here that state-of-the-art performance can be achieved without any bells and whistles in both intra-database and inter-database testing scenarios for the three public benchmark datasets; namely, replay-Attack, MSU-MFSD, and CASIA-FASD. In particular, the proposed scheme provides a much lower error (from 15.2% to 7.6% on CASIA-FASD and 5.9% to 4.9% on replay-attack) compared to baselines in cross-database scenarios.

see all

Series: Electronics letters
ISSN: 0013-5194
ISSN-E: 1350-911X
ISSN-L: 0013-5194
Volume: 59
Issue: 1
DOI: 10.1049/ell2.12692
Type of Publication: A1 Journal article – refereed
Field of Science: 113 Computer and information sciences
Funding: This work is supported by the Center for Machine Vision and Signal Analysis (CMVS) and the authors are grateful to the Academy of Finland Profi5 DigiHealth project.
Copyright information: © 2022 The Authors. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.