University of Oulu

Palosaari, J.; Juuti, J.; Jantunen, H. Piezoelectric Energy Harvesting from Rotational Motion to Power Industrial Maintenance Sensors. Sensors 2022, 22, 7449.

Piezoelectric energy harvesting from rotational motion to power industrial maintenance sensors

Saved in:
Author: Palosaari, Jaakko1; Juuti, Jari1; Jantunen, Heli1
Organizations: 1Unit of Microelectronics, University of Oulu, 90014 Oulu, Finland
Format: article
Version: published version
Access: open
Online Access: PDF Full Text (PDF, 8 MB)
Persistent link:
Language: English
Published: Multidisciplinary Digital Publishing Institute, 2022
Publish Date: 2023-06-28


In industry, forecasting machinery failures could save significant time and money if any maintenance breaks are predictable. The aim of this work was to develop an energy harvesting system which could, in theory, power condition monitoring sensors in heavy machinery. In this study, piezoelectric-cantilever-type energy harvesters were attached to a motor and spun around with different rotational speeds. A mass was placed on the tip of the cantilevers, which were mounted pointing inward toward the center axis of the motor. Pointing a cantilever tip inward and increasing the distance from the center axis of the motor decreased the natural resonance frequency significantly and thus enabled higher harvested energy levels with lower rotational frequencies. Motion of the cantilever was also controlled by altering the movement space of the tip mass. This created another possibility to control the cantilever dynamics and prevent overstressing of the piezoelectric material. Restricting the movement of the tip mass can also be used to harvest energy over a wider frequency range and prevent the harvester from getting trapped into a stagnant position. The highest calculated raw power of 579.2 µW at 7.4 Hz rotational frequency was measured from a cantilever with outer dimensions of 25 mm × 100 mm. Results suggest that an energy harvesting system with multiple cantilevers could be designed to replace batteries in condition sensors monitoring revolving machinery.

see all

Series: Sensors
ISSN: 1424-8220
ISSN-E: 1424-8220
ISSN-L: 1424-8220
Volume: 22
Issue: 19
Article number: 7449
DOI: 10.3390/s22197449
Type of Publication: A1 Journal article – refereed
Field of Science: 213 Electronic, automation and communications engineering, electronics
Funding: This research and APC was funded by Business Finland’s Smart Energy Finland Program and by the Finnish ENOMA research and development consortium: (accessed on 1 September 2022).
Copyright information: © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (