University of Oulu

M. U. Lokumarambage, V. S. S. Gowrisetty, H. Rezaei, T. Sivalingam, N. Rajatheva and A. Fernando, "Wireless End-to-End Image Transmission System Using Semantic Communications," in IEEE Access, vol. 11, pp. 37149-37163, 2023, doi: https://doi.org/10.1109/ACCESS.2023.3266656

Wireless end-to-end image transmission system using semantic communications

Saved in:
Author: Lokumarambage, Maheshi U.1; Gowrisetty, Vishnu Sai Sankeerth1; Rezaei, Hossein2;
Organizations: 1Department of Computer and Information Sciences, University of Strathclyde, Glasgow, U.K
2Centre for Wireless Communications (CWC), University of Oulu, Oulu, Finland
Format: article
Version: published version
Access: open
Online Access: PDF Full Text (PDF, 2.2 MB)
Persistent link: http://urn.fi/urn:nbn:fi-fe20230908122016
Language: English
Published: Institute of Electrical and Electronics Engineers, 2023
Publish Date: 2023-09-08
Description:

Abstract

Semantic communication is considered the future of mobile communication, which aims to transmit data beyond Shannon’s theorem of communications by transmitting the semantic meaning of the data rather than the bit-by-bit reconstruction of the data at the receiver’s end. The semantic communication paradigm aims to bridge the gap of limited bandwidth problems in modern high-volume multimedia application content transmission. Integrating AI technologies with the 6G communications networks paved the way to develop semantic communication-based end-to-end communication systems. In this study, we have implemented a semantic communication-based end-to-end image transmission system, and we discuss potential design considerations in developing semantic communication systems in conjunction with physical channel characteristics. A Pre-trained GAN network is used at the receiver as the transmission task to reconstruct the realistic image based on the Semantic segmented image at the receiver input. The semantic segmentation task at the transmitter (encoder) and the GAN network at the receiver (decoder) is trained on a common knowledge base, the COCO-Stuff dataset. The research shows that the resource gain in the form of bandwidth saving is immense when transmitting the semantic segmentation map through the physical channel instead of the ground truth image in contrast to conventional communication systems. Furthermore, the research studies the effect of physical channel distortions and quantization noise on semantic communication-based multimedia content transmission.

see all

Series: IEEE access
ISSN: 2169-3536
ISSN-E: 2169-3536
ISSN-L: 2169-3536
Volume: 11
Pages: 37149 - 37163
DOI: 10.1109/ACCESS.2023.3266656
OADOI: https://oadoi.org/10.1109/ACCESS.2023.3266656
Type of Publication: A1 Journal article – refereed
Field of Science: 213 Electronic, automation and communications engineering, electronics
Subjects:
Funding: This work was supported by the Academy of Finland, 6G Flagship Program under Grant 346208.
Academy of Finland Grant Number: 346208
Detailed Information: 346208 (Academy of Finland Funding decision)
Copyright information: © The Author(s) 2023. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0.
  https://creativecommons.org/licenses/by-nc-nd/4.0/