University of Oulu

Arto J. Hautala, Babooshka Shavazipour, Bekir Afsar, Mikko P. Tulppo, Kaisa Miettinen, Machine learning models in predicting health care costs in patients with a recent acute coronary syndrome: A prospective pilot study, Cardiovascular Digital Health Journal, Volume 4, Issue 4, 2023, Pages 137-142, ISSN 2666-6936,

Machine learning models in predicting health care costs in patients with a recent acute coronary syndrome : a prospective pilot study

Saved in:
Author: Hautala, Arto J.1; Shavazipour, Babooshka2; Afsar, Bekir2;
Organizations: 1Faculty of Sport and Health Sciences, University of Jyvaskyla, Jyvaskyla, Finland
2Faculty of Information Technology, University of Jyvaskyla, Jyvaskyla, Finland
3Research Unit of Biomedicine and Internal Medicine, Medical Research Center Oulu, Oulu University Hospital, University of Oulu, Oulu, Finland
Format: article
Version: published version
Access: open
Online Access: PDF Full Text (PDF, 0.3 MB)
Persistent link:
Language: English
Published: Elsevier, 2023
Publish Date: 2023-10-17


Background: Health care budgets are limited, requiring the optimal use of resources. Machine learning (ML) methods may have an enormous potential for effective use of health care resources.

Objective: We assessed the applicability of selected ML tools to evaluate the contribution of known risk markers for prognosis of coronary artery disease to predict health care costs for all reasons in patients with a recent acute coronary syndrome (n = 65, aged 65 ± 9 years) for 1-year follow-up.

Methods: Risk markers were assessed at baseline, and health care costs were collected from electronic health registries. The Cross-decomposition algorithms were used to rank the considered risk markers based on their impacts on variances. Then regression analysis was performed to predict costs by entering the first top-ranking risk marker and adding the next-best markers, one by one, to build up altogether 13 predictive models.

Results: The average annual health care costs were €2601 ± €5378 per patient. The Depression Scale showed the highest predictive value (r = 0.395), accounting for 16% of the costs (P = .001). When the next 2 ranked markers (LDL cholesterol, r = 0.230; and left ventricular ejection fraction, r = -0.227, respectively) were added to the model, the predictive value was 24% for the costs (P = .001).

Conclusion: Higher depression score is the primary variable forecasting health care costs in 1-year follow-up among acute coronary syndrome patients. The ML tools may help decision-making when planning optimal utilization of treatment strategies.

see all

Series: Cardiovascular digital health journal
ISSN: 2666-6936
ISSN-E: 2666-6936
ISSN-L: 2666-6936
Volume: 4
Issue: 4
Pages: 137 - 142
DOI: 10.1016/j.cvdhj.2023.05.001
Type of Publication: A1 Journal article – refereed
Field of Science: 3121 General medicine, internal medicine and other clinical medicine
512 Business and management
Funding: This study was partly funded by the Academy of Finland, Finland (grant no. 322221).
Copyright information: © 2023 Heart Rhythm Society. This is an open access article under the CC BY license (