University of Oulu

Full duplex device-to-device communication in cellular networks

Saved in:
Author: Ali, Samad1
Organizations: 1University of Oulu, Faculty of Information Technology and Electrical Engineering, Department of Communications Engineering, Communications Engineering
Format: ebook
Version: published version
Access: open
Online Access: PDF Full Text (PDF, 6.7 MB)
Pages: 47
Persistent link:
Language: English
Published: Oulu : S. Ali, 2014
Publish Date: 2014-11-18
Thesis type: Master's thesis (tech)
Tutor: Rajatheva, Rajatheva
Reviewer: Rajatheva, Rajatheva
Pirinen, Pekka
To address the problem of radio spectrum congestion due to increasing demand for wireless communications services, cellular communication systems are going towards small cells with small transmit powers. At the same time, in-band fullduplex (FD) radio design has gained considerable attention due to achievements in signal processing that can make design of full-duplex radios possible for systems with small transmit power. In theory full-duplex radios can double the spectral efficiency of the system. However existing radios still do not provide enough self-interference (SI) cancelation to be used in large transmit power systems. Meanwhile device-to-device communication (D2D) is seen as a promising idea to increase the performance of wireless networks. In D2D, users in vicinity communicate directly without going through base station. So far, very limited work has been carried out to study the applicability of available full-duplex radios in D2D. In this thesis, we investigate full-duplex D2D and amount of self-interference cancelation required in D2D in cellular systems. While D2D users share the same radio resources with cellular users, both cellular and D2D pair will receive interference. Resource allocation and interference management become crucial in D2D communication. Both uplink and downlink resource sharing are considered. In uplink resource sharing, to handle the interference on the base station power control is used in D2D transmitter. To deal with the interference at D2D receivers from cellular user’s uplink transmission, interference-limited-area (ILA) method is used to select users with negligible interference on them. When D2D pair is using downlink resources of cellular users, users receive interference from D2D transmissions. Limiting this interference is also done using ILA method. On the other hand, for the purpose of resource sharing, the user with smallest downlink transmit power is selected to minimize the interference on D2D receivers. Half-duplex (HD) and full-duplex D2D scenarios are considered in both uplink and downlink resource sharing. Simulations show that how much of self-interference cancelation is required in different scenarios. Effects of the numbers of the selected users for resource sharing, distance between D2D users and also inter-cell interference is studied. It can be concluded that using available full-duplex radios in D2D communication can almost reach the theoretical doubling of throughput in full-duplex mode compared to half-duplex mode.
see all

Copyright information: © Samad Ali, 2014. This publication is copyrighted. You may download, display and print it for your own personal use. Commercial use is prohibited.