Permutaatioryhmien radoista |
|
Author: | Suokas, Tero1 |
Organizations: |
1University of Oulu, Faculty of Science, Mathematics |
Format: | ebook |
Version: | published version |
Access: | open |
Online Access: | PDF Full Text (PDF, 0.5 MB) |
Pages: | 44 |
Persistent link: | http://urn.fi/URN:NBN:fi:oulu-201503141171 |
Language: | Finnish |
Published: |
Oulu :
T. Suokas,
2015
|
Publish Date: | 2015-03-16 |
Thesis type: | Master's thesis |
Tutor: |
Niemenmaa, Markku |
Reviewer: |
Myllylä, Kari Niemenmaa, Markku |
Description: |
Tässä työssä johdatetaan lukija permutaatioiden maailmaan. Tarkoituksena on esitellä lukijalle permutaatioiden sekä niiden muodostaman ryhmän ominaisuuksia ja käyttömahdollisuuksia. Lopussa syvennytään tutkimaan permutaatioryhmien ratoja ja lasketaan niiden avulla joitakin esimerkkejä. Tutkielmassa on käytetty lähteinä pääasiassa I. N. Hersteinin kirjaa Abstract Algebra sekä Joseph J. Rotmanin teosta A First Course in Abstract Algebra. Tutkielman rakenne ja tulosten esitysjärjestys noudattaa pitkälti Markku Niemenmaan kurssin Algebra II luentomonistetta ja muistiinpanoja.
Työn alkuosa kertaa ryhmäteorian perustuloksia. Sen jälkeen tutustutaan permutaatioihin, permutaatioryhmiin sekä permutaatioiden merkitsemistä helpottaviin sykleihin. Ohessa tarkastellaan myös Arthur Cayleyn teoreemaa, jonka mukaan jokainen ryhmä on isomorfinen jonkin permutaatioryhmän kanssa.
Neljännessä luvussa tutkitaan permutaatioiden konjugointia ja niiden muodostamia konjugointiluokkia. Luku 5 aloitetaan määrittelemällä permutaatioille parillisuus ja myöhemmin nähdään, että parilliset permutaatiot muodostavat ryhmän, jota kutsutaan alternoivaksi ryhmäksi. Tämän jälkeen esitetään vaiheittain todistus alternoivan ryhmä yksinkertaisuudelle. Tulos on mielenkiintoinen, koska viime vuosituhannella matemaatikot ympäri maailman yhdessä luokittelivat kaikki äärelliset yksinkertaiset ryhmät, joista yksi tapaus on siis alternoivat ryhmät.
Tutkielman kuudennessa luvussa tarkastellaan permutaatioryhmien ratoja ja osoitetaan erittäin hyödyllinen ei-Burnsiden lemma, jota voidaan käyttää avuksi laskettaessa ratojen lukumääriä. Viimeinen luku käsittelee esimerkkejä ja sovelluksia permutaatioryhmien ratojen ja erityisesti ei-Burnsiden lemman käytöstä.
see all
|
Subjects: | |
Copyright information: |
© Tero Suokas, 2015. This publication is copyrighted. You may download, display and print it for your own personal use. Commercial use is prohibited. |