University of Oulu

Design and demonstration of digital pre-distortion using software defined radio

Saved in:
Author: Islam, Muhammad1
Organizations: 1University of Oulu, Faculty of Information Technology and Electrical Engineering, Communications Engineering
Format: ebook
Version: published version
Access: open
Online Access: PDF Full Text (PDF, 2.6 MB)
Pages: 57
Persistent link: http://urn.fi/URN:NBN:fi:oulu-201905141774
Language: English
Published: Oulu : M. Islam, 2019
Publish Date: 2019-05-20
Thesis type: Master's thesis (tech)
Tutor: Pärssinen, Aarno
Reviewer: Juntti, Markku
Pärssinen, Aarno
Description:

Abstract

High data rates for large number of users set tight requirements for signal quality measured in terms of error vector magnitude (EVM). In radio transmitters, nonlinear distortion dominated by power amplifiers (PAs) often limits the achievable EVM. However, the linearity can be improved by linearization techniques. Digital pre-distortion (DPD) is one of these widely used linearization techniques for an effective distortion reduction over a wide bandwidth. In DPD, the nonlinearity of the transmitter is pre-compensated in the digital domain to achieve linear output. Moreover, DPD is used to enable PAs to operate in the power-efficient region with a decent linearity.

As we are moving towards millimetre-wave frequencies to enable the wideband communications, the design of the DPD algorithm must be optimized in terms of performance and power consumption. Moreover, continuous development of wireless infrastructure motivates to make research on programmable and reconfigurable platforms in order to decrease the demonstration cost and time, especially for the demonstration purposes. This thesis illustrates and presents how software defined radio (SDR) platforms can be used to demonstrate DPD.

Universal software defined peripheral (USRP) X300 is a commercial software defined radio (SDR) platform. The chosen model, X300, has two independent channels equipped with individual transceiver cards. SIMULINK is used to communicate with the device and the two channels of X300 are used as transmitter and receiver simultaneously in full-duplex mode. Hence, a single USRP device is acting as an operational transmitter and feedback receiver, simultaneously. The implemented USRP design consists of SIMULINK based transceiver design and lookup table based DPD in which the coefficients are calculated in MATLAB offline. An external PA, i.e. ZFL-2000+ together with a directional coupler and attenuator are connected between the TX/RX port and RX2 port to measure the nonlinearity. The nonlinearity transceiver is measured with and without the external PA. The experimental results show decent performance for linearization by using the USRP platform. However, the results differ widely due to the used USRP transceiver parameterization and PA operational point. The 16 QAM test signal with 500 kHz bandwidth is fed to the USRP transmit chain. As an example, the DPD algorithm improves the EVM from 7.6% to 2.1% and also the ACPR is reduced around 10 dB with the 16 QAM input signal where approximately + 2.2 dBm input power applied to the external PA.

see all

Subjects:
Copyright information: © Muhammad Islam, 2019. This publication is copyrighted. You may download, display and print it for your own personal use. Commercial use is prohibited.