University of Oulu

Face liveness detection by rPPG features and contextual patch-based CNN

Saved in:
Author: Lin, Bofan1
Organizations: 1University of Oulu, Faculty of Information Technology and Electrical Engineering, Department of Computer Science and Engineering, Computer Science and Engineering
Format: ebook
Version: published version
Access: open
Online Access: PDF Full Text (PDF, 1.9 MB)
Pages: 49
Persistent link: http://urn.fi/URN:NBN:fi:oulu-201906052450
Language: English
Published: Oulu : B. Lin, 2019
Publish Date: 2019-06-12
Thesis type: Master's thesis (tech)
Tutor: Zhao, Guoying
Reviewer: Zhao, Guoying
Li, Xiaobai
Description:

Abstract

Face anti-spoofing plays a vital role in security systems including face payment systems and face recognition systems. Previous studies showed that live faces and presentation attacks have significant differences in both remote photoplethysmography (rPPG) and texture information. We propose a generalized method exploiting both rPPG and texture features for face anti-spoofing task. First, we design multi-scale long-term statistical spectral (MS-LTSS) features with variant granularities for the representation of rPPG information. Second, a contextual patch-based convolutional neural network (CP-CNN) is used for extracting global-local and multi-level deep texture features simultaneously. Finally, weight summation strategy is employed for decision level fusion of the two types of features, which allow the proposed system to be generalized for detecting not only print attack and replay attack, but also mask attack. Comprehensive experiments were conducted on five databases, namely 3DMAD, HKBU-Mars V1, MSU-MFSD, CASIA-FASD, and OULU-NPU, to show the superior results of the proposed method compared with state-of-the-art methods.

Tiivistelmä

Kasvojen anti-spoofingilla on keskeinen rooli turvajärjestelmissä, mukaan lukien kasvojen maksujärjestelmät ja kasvojentunnistusjärjestelmät. Aiemmat tutkimukset osoittivat, että elävillä kasvoilla ja esityshyökkäyksillä on merkittäviä eroja sekä etävalopölymografiassa (rPPG) että tekstuuri-informaatiossa, ehdotamme yleistettyä menetelmää, jossa hyödynnetään sekä rPPG: tä että tekstuuriominaisuuksia kasvojen anti-spoofing -tehtävässä. Ensinnäkin rPPG-informaation esittämiseksi on suunniteltu monivaiheisia pitkän aikavälin tilastollisia spektrisiä (MS-LTSS) ominaisuuksia, joissa on muunneltavissa olevat granulariteetit. Toiseksi, kontekstuaalista patch-pohjaista konvoluutioverkkoa (CP-CNN) käytetään globaalin paikallisen ja monitasoisen syvään tekstuuriominaisuuksiin samanaikaisesti. Lopuksi, painoarvostusstrategiaa käytetään päätöksentekotason fuusioon, joka auttaa yleistämään menetelmää paitsi hyökkäys- ja toistoiskuille, mutta myös peittää hyökkäyksen. Kattavat kokeet suoritettiin viidellä tietokannalla, nimittäin 3DMAD, HKBU-Mars V1, MSU-MFSD, CASIA-FASD ja OULU-NPU, ehdotetun menetelmän parempien tulosten osoittamiseksi verrattuna uusimpiin menetelmiin.

see all

Subjects:
Copyright information: © Bofan Lin, 2019. This publication is copyrighted. You may download, display and print it for your own personal use. Commercial use is prohibited.