University of Oulu

Efficient implementation of channel estimation algorithm for beamforming

Saved in:
Author: Afflekt, Arttu1
Organizations: 1Elektroniikan ja tietoliikennetekniikan maisteriohjelma
Format: ebook
Version: published version
Access: open
Online Access: PDF Full Text (PDF, 2.1 MB)
Pages: 66
Persistent link: http://urn.fi/URN:NBN:fi:oulu-202006212615
Language: English
Published: Oulu : A. Afflekt, 2020
Publish Date: 2020-06-26
Thesis type: Master's thesis
Tutor: Silven, Olli
Reviewer: Silven, Olli
Hänninen, Tuomo
Description:

Abstract

The future 5G mobile network technology is expected to offer significantly better performance than its predecessors. Improved data rates in conjunction with low latency is believed to enable technological revolutions such as self-driving cars. To achieve faster data rates, MIMO systems can be utilized. These systems enable the use of spatial filtering technique known as beamforming. Beamforming that is based on the preacquired channel matrix is computationally very demanding causing challenges in achieving low latency. By acquiring the channel matrix as efficiently as possible, we can facilitate this challenge.

In this thesis we examined the implementation of channel estimation algorithm for beamforming with a digital signal processor specialized in vector computation. We present implementations for different antenna configurations based on three different approaches. The results show that the best performance is achieved by applying the algorithm according to the limitations given by the system and the processor architecture. Although the exploitation of the parallel architecture was proved to be challenging, the implementation of the algorithm would have benefitted from the greater amount of parallelism. The current parallel resources will be a challenge especially in the future as the size of antenna configurations is expected to grow.

Keilanmuodostuksen tarvitseman kanavaestimointialgoritmin tehokas toteutus

Tiivistelmä

Tulevan viidennen sukupolven mobiiliverkkoteknologian odotetaan tarjoavan merkittävästi edeltäjäänsä parempaa suorituskykyä. Tämän suorituskyvyn tarjoamat suuret datanopeudet yhdistettynä pieneen latenssiin uskotaan mahdollistavan esimerkiksi itsestään ajavat autot. Suurempien datanopeuksien saavuttamiseksi voidaan hyödyntää monitiekanavassa käytettävää MIMO-systeemiä, joka mahdollistaa keilanmuodostuksena tunnetun spatiaalisen suodatusmenetelmän käytön. Etukäteen hankittuun kanavatilatietoon perustuva keilanmuodostus on laskennallisesti erittäin kallista. Tämä aiheuttaa haasteita verkon pienen latenssivaatimuksen saavuttamisessa.

Tässä työssä tutkittiin keilanmuodostukselle tarkoitetun kanavaestimointialgoritmin tehokasta toteutusta hyödyntäen vektorilaskentaan erikoistunutta prosessoriarkkitehtuuria. Työssä esitellään kolmea eri lähestymistapaa hyödyntävät toteutukset eri kokoisille antennikonfiguraatioille. Tuloksista nähdään, että paras suorituskyky saavutetaan sovittamalla algoritmi järjestelmän ja arkkitehtuurin asettamien rajoitusten mukaisesti. Vaikka rinnakkaisarkkitehtuurin hyödyntäminen asetti omat haasteensa, olisi algoritmin toteutus hyötynyt suuremmasta rinnakkaisuuden määrästä. Nykyinen rinnakkaisuuden määrä tulee olemaan haaste erityisesti tulevaisuudessa, sillä antennikonfiguraatioiden koon odotetaan kasvavan.

see all

Subjects:
Copyright information: © Arttu Afflekt, 2020. This publication is copyrighted. You may download, display and print it for your own personal use. Commercial use is prohibited.