University of Oulu

Latency and accuracy optimized mobile face detection

Saved in:
Author: Tuokkola, Tuomas1
Organizations: 1University of Oulu, Faculty of Information Technology and Electrical Engineering, Computer Science
Format: ebook
Version: published version
Access: open
Online Access: PDF Full Text (PDF, 18.6 MB)
Pages: 69
Persistent link: http://urn.fi/URN:NBN:fi:oulu-202012183425
Language: English
Published: Oulu : T. Tuokkola, 2020
Publish Date: 2020-12-18
Thesis type: Master's thesis
Tutor: Silven, Olli
Reviewer: Silven, Olli
Hannuksela, Jari
Description:

Abstract

Face detection is a preprocessing step in many computer vision applications. Important factors are accuracy, inference duration, and energy efficiency of the detection framework. Computationally light detectors that execute in real-time are a requirement for many application areas, such as face tracking and recognition. Typical operating platforms in everyday use are smartphones and embedded devices, which have limited computation capacity.

The capability of face detectors is comparable to the ability of a human in easy detection tasks. When the conditions change, the challenges become different. Current challenges in face detection include atypically posed and tiny faces. Partially occluded faces and dim or bright environments pose challenges for detection systems. State-of-the-art performance in face detection research employs deep learning methods called neural networks, which loosely imitate the mammalian brain system. The most relevant technologies are convolutional neural networks, which are designed for local feature description.

In this thesis, the main computational optimization approach is neural network quantization. The network models were delegated to digital signal processors and graphics processing units. Quantization was shown to reduce the latency of computation substantially. The most energy-efficient inference was achieved through digital signal processor delegation. Multithreading was used for inference acceleration. It reduced the amount of energy consumption per algorithm run.

Latenssi- ja tarkkuusoptimoitu kasvontunnistus mobiililaitteilla

Tiivistelmä

Kasvojen ilmaisu on esikäsittelyvaihe monelle konenäön sovellukselle. Tärkeitä kasvoilmaisimen ominaisuuksia ovat tarkkuus, energiatehokkuus ja suoritusnopeus. Monet sovellukset vaativat laskennallisesti kevyitä ilmaisimia, jotka toimivat reaaliajassa. Esimerkkejä sovelluksista ovat kasvojen seuranta- ja tunnistusjärjestelmät. Yleisiä käyttöalustoja ovat älypuhelimet ja sulautetut järjestelmät, joiden laskentakapasiteetti on rajallinen.

Kasvonilmaisimien tarkkuus vastaa ihmisen kykyä helpoissa ilmaisuissa. Nykyiset ongelmat kasvojen ilmaisussa liittyvät epätyypillisiin asentoihin ja erityisen pieniin kasvokokoihin. Myös kasvojen osittainen peittyminen, ja pimeät ja kirkkaat ympäristöt, vaikeuttavat ilmaisua. Neuroverkkoja käytetään tekoälyjärjestelmissä, joiden lähtökohtana on ollut mallintaa nisäkkäiden aivojen toimintaa. Konvoluutiopohjaiset neuroverkot ovat erikoistuneet paikallisten piirteiden analysointiin.

Tässä opinnäytetyössä käytetty laskennallisen optimoinnin menetelmä on neuroverkkojen kvantisointi. Neuroverkkojen ajo delegoitiin digitaalisille signaalinkäsittely- ja grafiikkasuorittimille. Kvantisoinnin osoitettiin vähentävän laskenta-aikaa huomattavasti ja suurin energiatehokkuus saavutettiin digitaalisen signaaliprosessorin avulla. Suoritusnopeutta lisättiin monisäikeistyksellä, jonka havaittiin vähentävän energiankulutusta.

see all

Subjects:
Copyright information: © Tuomas Tuokkola, 2020. This publication is copyrighted. You may download, display and print it for your own personal use. Commercial use is prohibited.