University of Oulu

Automatic quality assessment in mammography screening : a deep learning based segmentation method

Saved in:
Author: Al-Rubaye, Mustafa1
Organizations: 1University of Oulu, Faculty of Medicine, Health Sciences
Format: ebook
Version: published version
Access: open
Online Access: PDF Full Text (PDF, 5.3 MB)
Pages: 34
Persistent link: http://urn.fi/URN:NBN:fi:oulu-202106178375
Language: English
Published: Oulu : M. Al-Rubaye, 2021
Publish Date: 2021-06-21
Thesis type: Bachelor's thesis
Description:

Abstract

Mammography is an imaging method used as a main tool to detect breast cancer at early stages. Images (mammograms) are examined by radiologists, who aim to identify cancerous findings. However, in order to do that, the mammograms need to be of diagnostic quality, which can sometimes be insufficient, and thus the quality of diagnosis also suffers.

Radiology technicians (radiographers) are trained to take mammography images, but not in every healthcare center a strict quality control process is established, which may substantially affect the patients. The most common defects in mammograms are positioning defects, which are seen in the images as skin-foldings or non-imaged parts of the breast.

The major issue at a process level is that the described positioning issues are noticed late, already at the diagnostic phase. If a radiologist decides that the mammogram is a non-diagnostic quality, the patient needs to revisit the imaging center. If quality control could be automated and standardized, unnecessary patient recalls could be avoided, thus, reducing the costs of the mammographic process. To date, there is a lack of automatic general quality control tools for mammography screening. Looking at the recent advances in artificial intelligence, it may be possible to automate this process.

The goal of this thesis was to develop an automatic system for quality assessment of mammograms. The author used Deep learning to develop an automatic framework for automatic segmentation of defects in mammograms using a dataset of 512 mammographic images extracted from the Oulu University Hospital archive. The second stage of the developed method performed quality assessment by analyzing the presence and location of different tissues in the images from the predicted segmentations.

The developed segmentation model yielded a Dice coefficient over 0.90 for the whole breast, breast, and pectoral muscle, and over 0.60 for skin-foldings and nipple.

The developed method is the first to tackle automatic segmentation of all major positioning issues in mammography. Ultimately, the developed technology has a potential to improve the mammography workflows and, eventually, patient outcomes.

Automaattinen laadunarviointi mammografian kuvauksessa : syväoppimispohjainen segmentointimenetelmä

Tiivistelmä

Mammografiaa on kuvantamismenetelmä, jota käytetään päävälineenä rintasyövän havaitsemiseksi varhaisessa vaiheessa. Radiologien on tutkittava mammogrammit ja päätettävä sitten, onko pahanlaatusia löydöksiä, ja tätä varten mammografiakuvien on oltava diagnostisesti laadukkaita.

Ammattilaiset koulutetaan mammografiakuvien ottamiseksi, mutta ei kaikissa terveyskeskuksissa on otettu käyttöön tiukka laadunvalvontaprosessi, joka voi vaikuttaa merkittävästi potilaisiin. Kuvissa voi olla virheitä, jotka tekevät kuvista ei-diagnostisen laadukkaan mammogrammin, ja ne voivat vaikuttaa diagnostiikkatuloksiin. Yksi näistä vioista ovat paikannusvirheet, joissa näkyvät kuvissa ihon taitoksina ja jotkut rinnan osat eivät näy.

Suurin ongelma prosessitasolla on, että kuvatut paikannusvirheet havaitaan myöhässä, jo diagnoosivaiheessa. Jos radiologit päättävät, että mammografiakuva ei ole diagnostisesti laadukas, potilaan on palattava kuvantamiskeskukseen ja tutkittava uudelleen, mikä voi lisätä kustannuksia ja työmäärää. Jos laadunvalvonta voidaan automatisoida ja standardoida, voidaan välttää tarpeetonta potilaan palauttamista ja vähentää siten mammografiaprosessin kustannuksia. Tähän mennessä mammografiaseulonnassa ei ole automaattista yleistä laadunvalvontaa. Kun tarkastellaan tekoälyn viimeaikaisia edistystä, tämän prosessin automatisointi voi olla mahdollista.

Tämän projektin tarkoituksena oli todistaa diagnostisten ja ei-diagnostisten laatumammogrammien automaattisen erottamisen toteutettavuus. Kirjoittaja käytti syvää oppimista automatisoidun kehyksen luomisessa käyttämällä 512 mammografiakuvaa, jotka otettiin Oulun yliopistollisen sairaalan arkistosta. Automaattisen menetelmän ensimmäisessä vaiheessa suoritettiin rintakudosten ja ihon taittumien segmentointi. Toisessa vaiheessa suoritettiin laadunarviointi analysoimalla eri kudosten läsnäolo ja sijainti kuvissa.

Kehitetyllä segmentointimallilla saavutettiin merkittäviä tuloksia, kun koko rinnan ja rintalihasten segmentoinnin onnistumisen hyvyttä mittaava Dice-kerroin oli yli 0,90, ja ihon taittumiselle ja nännille yli 0,60.

Kehitetty menetelmä on ensimmäinen, joka käsittelee mammografian kaikkien tärkeimpien paikannusvirheiden automaattista segmentointia. Sillä on potentiaalia myötävaikuttaa mammografian työnkulkujen ja potilastulosten parantamiseen.

see all

Subjects:
Copyright information: © Mustafa Al-Rubaye, 2021. This publication is copyrighted. You may download, display and print it for your own personal use. Commercial use is prohibited.