University of Oulu

Comparative evaluation of the applicability of self-organized operational neural networks to remote photoplethysmography

Saved in:
Author: Bogdanoff, Tuukka1
Organizations: 1University of Oulu, Faculty of Information Technology and Electrical Engineering, Computer Science
Format: ebook
Version: published version
Access: open
Online Access: PDF Full Text (PDF, 20.4 MB)
Pages: 88
Persistent link: http://urn.fi/URN:NBN:fi:oulu-202311153231
Language: English
Published: Oulu : T. Bogdanoff, 2023
Publish Date: 2023-11-16
Thesis type: Master's thesis (tech)
Tutor: Bordallo Lopez, Miguel
Li, Xiaobai
Reviewer: Bordallo Lopez, Miguel
Description:

Abstract

Photoplethysmography (PPG) is a widely applied means of obtaining blood volume pulse (BVP) information from subjects which can be used for monitoring numerous physiological signs such as heart rate and respiration. Following observations that blood volume information can also be retrieved from videos recorded of the human face, several approaches for the remote extraction of PPG signals have been proposed in literature. These methods are collectively referred to as remote photoplethysmography (rPPG). The current state of the art of rPPG approaches is represented by deep convolutional neural network (CNN) models, which have been successfully applied in a wide range of computer vision tasks.

A novel technology called operational neural networks (ONNs) has recently been proposed in literature as an extension of convolutional neural networks. ONNs attempt to overcome the limitations of conventional CNN models which are primarily caused by exclusively employing the linear neuron model. In addition, to address certain drawbacks of ONNs, a technology called self- organized operational neural networks (Self-ONNs) have recently been proposed as an extension of ONNs.

This thesis presents a novel method for rPPG extraction based on self-organized operational neural networks. To comprehensively evaluate the applicability of Self-ONNs as an approach for rPPG extraction, three Self-ONN models with varying number of layers are implemented and evaluated on test data from three data sets representing different distributions. The performance of the proposed models are compared against corresponding CNN architectures as well as a typical unsupervised rPPG pipeline. The performance of the methods is evaluated based on heart rate estimations calculated from the extracted rPPG signals.

In the presented experimental setup, Self-ONN models did not result in improved heart rate estimation performance over parameter-equivalent CNN alternatives. However, every Self-ONN model showed superior ability to fit the train target, which both shows promise for the applicability of Self-ONNs as well as suggests inherent problems in the training setup. Additionally, when taking into account the required computational resources in addition to raw HR estimation performance, certain Self-ONN models showcased improved efficiency over CNN alternatives. As such, the experiments nonetheless present a promising proof of concept which can serve as grounds for future research.

Vertaileva arviointi itseorganisoituvien operationaalisten neuroverkkojen soveltuvuudesta etäfotopletysmografiaan

Tiivistelmä

Fotopletysmografia on laajasti sovellettu menetelmä veritilavuuspulssi-informaation saamiseksi kohteista, jota voidaan käyttää useiden fysiologisten arvojen, kuten sydämensykkeen ja hengityksen, seurannassa. Seuraten havainnoista, että veritilavuusinformaatiota on mahdollista palauttaa myös ihmiskasvoista kuvatuista videoista, useita menetelmiä fotopletysmografiasignaalien erottamiseksi etänä on esitetty kirjallisuudessa. Yhteisnimitys näille menetelmille on etäfotopletysmografia (remote photoplethysmography, rPPG). Syvät konvolutionaaliset neuroverkkomallit (convolutional neural networks, CNNs), joita on onnistuneesti sovellettu laajaan valikoimaan tietokonenäön tehtäviä, edustavat nykyistä rPPG-lähestymistapojen huippua.

Uusi teknologia nimeltään operationaaliset neuroverkot (operational neural networks, ONNs) on hiljattain esitetty kirjallisuudessa konvolutionaalisten neuroverkkojen laajennukseksi. ONN:t pyrkivät eroon tavanomaisten CNN-mallien rajoitteista, jotka johtuvat pääasiassa lineaarisen neuronimallin yksinomaisesta käytöstä. Lisäksi tietyistä ONN-mallien heikkouksista eroon pääsemiseksi, teknologia nimeltään itseorganisoituvat operationaaliset neuroverkot (self-organized operational neural networks, Self-ONNs) on hiljattain esitetty lajeennuksena ONN:ille.

Tämä tutkielma esittelee uudenlaisen menetelmän rPPG-erotukselle pohjautuen itseorganisoituviin operationaalisiin neuroverkkoihin. Self-ONN:ien soveltuvuuden rPPG-erotukseen perusteelliseksi arvioimiseksi kolme Self-ONN -mallia vaihtelevalla määrällä kerroksia toteutetaan ja arvioidaan testidatalla kolmesta eri datajoukosta, jotka edustavat eri jakaumia. Esitettyjen mallien suorituskykyä verrataan vastaaviin CNN-arkkitehtuureihin sekä tyypilliseen ohjaamattomaan rPPG-liukuhihnaan. Menetelmien suorituskykyä arvioidaan perustuen rPPG-signaaleista laskettuihin sydämensykearvioihin.

Esitellyssä kokeellisessa asetelmassa Self-ONN:t eivät johtaneet parempiin sykearvioihin verrattuna parametrivastaaviin CNN-vaihtoehtoihin. Self-ONN:t kuitenkin osoittivat ylivertaista kykyä sovittaa opetuskohteen, mikä sekä on lupaavaa Self-ONN:ien soveltuvuuden kannalta että viittaa luontaisiin ongelmiin opetusasetelmassa. Lisäksi, kun huomioon otetaan vaaditut laskentaresurssit raa’an sykkeen arvioinnin suorituskyvyn lisäksi, tietyt Self-ONN -mallit osoittivat parempaa tehokkuutta CNN-vaihtoehtoihin verrattuna. Näin ollen kokeet joka tapauksessa tarjoavat lupaavan konseptitodistuksen, joka voi toimia perustana tulevalle tutkimukselle.

see all

Subjects:
Copyright information: © Tuukka Bogdanoff, 2023. This publication is copyrighted. You may download, display and print it for your own personal use. Commercial use is prohibited.