CARIES RISK DETERMINATION
AND COST-EFFECTIVENESS
OF TARGETED PREVENTION
IN ADOLESCENTS

MAARIT
RAITIO

Institute of Dentistry,
University of Oulu

OULU 2002
CARIES RISK DETERMINATION AND COST-EFFECTIVENESS OF TARGETED PREVENTION IN ADOLESCENTS

Academic Dissertation to be presented with the assent of the Faculty of Medicine, University of Oulu, for public discussion in the Auditorium of the Institute of Dentistry, on April 5th, 2002, at 12 noon.
Raitio, Maarit, Caries risk determination and cost-effectiveness of targeted prevention in adolescents
Institute of Dentistry, University of Oulu, P.O.Box 5281, FIN-90014 University of Oulu, Finland
Oulu, Finland
2002

Abstract

The aim of this study was to assess a series of caries risk indicators to find a suitable model for screening adolescents for risk cases, and to evaluate the long-term efficacy and cost-effectiveness of an one-year intervention programme provided for the resulting risk groups.

To reduce the spread of infectious diseases at 20 day-care centres, risk factors for the occurrence of salivary mutans streptococci were surveyed in 345 children before and after 8 months of intervention, i.e. withdrawal of tooth brushing in 10 centres. Dental health habits were evaluated by means of questionnaires. Four clinical and six salivary tests were related to 11-month caries increment in 181 adolescents. The 109 high-risk subjects presenting four or more risk factors were provided either with chlorhexidine or fluoride treatment, the low-risk group receiving basic prevention. An age and sex-matched control group was chosen. Life-long data on all 390 subjects were collected from their dental records. Survival analysis was applied, taking as the starting point the time of tooth eruption and as the event the first filling due to caries. The costs of the intervention and the number of fillings were compared between the groups.

The dental health of the risk groups tended to approach the average level for the control group. One tooth surface per subject was saved from filling. The costs of fillings for the control group were twice as great as those for the risk groups at the end of the intervention, but only slightly more after the five-year follow-up period.

The model (DFS, Candida and sucrase) offers additive information for finding adolescents at risk of caries, and for targeting preventive measures at the individual level and for the motivation of patients. The results stress the importance of dental age and of providing preventive procedures at the time of tooth eruption. The present risk-based strategy proved to be of moderate benefit to dental health by comparison with the costs of normal preventive and restorative care and cannot be recommended as such for a target population with a high risk of caries.

Keywords: risk assessment, dental caries, prevention, economic assessment
To my family
Acknowledgements

This thesis marks the conclusion of work started through cooperation between the Institute of Dentistry, University of Turku, and Health Centre of Oulu in 1988–1994, and completed at the Department of Preventive Dentistry and Cariology, University of Oulu. I wish to thank all my supervisors, who are mentioned here in chronological order:

I wish to extend my sincere gratitude to my highly respected mentor, Emeritus Professor Arje Scheinin, D.D.S., Ph.D., Institute of Dentistry, University of Turku, who advised me from the start on the strength of his high degree of scientific knowledge and experience. The opportunity to work with him was a great honour and challenge for me. He helped me to adapt to the process of scientific work and was sympathetic towards the difficulties experienced by a practical dentist in charge of preventive dentistry who then reverts to examining this process from a scientific viewpoint. I would also like to express my warm and sincere thanks to my co-author Docent Kaisu Pienihäkkinen, D.D.S., Ph.D., of the Institute of Dentistry, University of Turku, for her fruitful counselling and advice, and for all her help and friendly support from the very start of this work.

I wish to express my deepest respect and gratitude to Professor Markku Larmas, D.D.S., Ph.D., Head of the Department of Preventive Dentistry and Cariology, University of Oulu, the supervisor of this thesis, who advised me on the basis of his scientific experience and provided the conditions and facilities necessary for completing the work. Without his contribution this dissertation would never have been accomplished. I am grateful for his instructions and patient guidance throughout this work. I also owe my sincere gratitude and warm thanks to my second supervisor Dr. Jorma Virtanen, D.D.S., Ph.D., of the Department of Preventive Dentistry and Cariology, University of Oulu, for his supportive co-operation throughout the work. His constructive criticism and valuable advice helped me greatly at all stages. The thesis became distinctly easier to finish with his friendly helpfulness and confidence in my ability to carry this project through.

I would like to extend my most sincere gratitude to Professor Matti Uhari, M.D., Ph.D., of the Department of Pediatrics, University of Oulu, for supervising my contribution to the study “Prevention of infections at day care centres”. His scientific knowledge and experience and personal guidance did much to make that part of the work possible. Sincere gratitude and warmest thanks also go to my co-author Docent Merja
Möttönen, M.D., Ph.D., of the Department of Pediatrics, University of Oulu, for her friendly help and co-operation.

I am very grateful to the official reviewers of this work, Professor Jukka Meurman D.D.S., M.D., Ph.D., and Docent Miira Vehkalahti, D.D.S., Ph.D., Institute of Dentistry, University of Helsinki. I owe them my sincere thanks for their valuable comments and constructive criticism, which developed and improved the content of the thesis. Special thanks are expressed to Mr. Malcolm Hicks, M.A., for correcting the English language of the thesis and for linguistic discussions concerning it. My special thanks go to Docent Pentti Nieminen, Ph.D., and Mrs. Aini Bloigu, M.Sc., for their great help with the statistical analysis during the first years of the research, and to Jari Päkkilä, M.Sc., for similar contributions at its later stages. All three are statisticians at the University of Oulu.

Mrs. Sinikka Vuoti of Oulu University and Mr. Osmo Kurkela M.Sc, Ms. Katri Myllyniemi D.D.S. are gratefully acknowledged for their technical help at the very beginning of this research. The personnel of the Laboratory of Bacteriology are acknowledged for their friendly and helpful co-operation, and the librarians at the Institute of Dentistry for their assistance in searching for the relevant literature.

I would like to express my gratitude to all my co-workers and colleagues at the Oulu Municipal Health Centre for their support, and especially its former head, Mrs. Hertta Wiren, M.D. Without the permission given by the Social Welfare and Health committee of Oulu, this research could not have been carried out. I also would like to express my warmest thanks to Mrs. Riitta-Liisa Alaraasakka, chief hygienist, for her friendly and helpful attitude towards my work, and my very special thanks go to Mrs. Aila Kallinen, the dental assistant who conducted the salivary tests during the clinical examinations. I would also like to express my warmest thanks to the hygienists at the health centre clinics in Oulu, who were responsible for the preventive procedures during the study.

I wish to express my respectful gratitude to my mother for her support throughout the study period, and warmly thank my son Juho for his outstanding expert help with computer problems from the very beginning of the work and onwards, and to my daughter Anina for her help and understanding over the years.

Grants from the Finnish Dental Organizations, the Emil Aaltonen Foundation and Orion Diagnostica, Espoo, Finland, are gratefully acknowledged.
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHX</td>
<td>chlorhexidine</td>
</tr>
<tr>
<td>CE</td>
<td>cost-effect</td>
</tr>
<tr>
<td>CEA</td>
<td>cost-effectiveness analysis</td>
</tr>
<tr>
<td>DCC</td>
<td>day-care–centre</td>
</tr>
<tr>
<td>DFS</td>
<td>decayed filled permanent tooth surfaces index</td>
</tr>
<tr>
<td>∆DFS</td>
<td>caries increment that was calculated as the difference between two examinations, DFS1 and DFS2</td>
</tr>
<tr>
<td>DMF</td>
<td>decayed, missed, filled permanent tooth index</td>
</tr>
<tr>
<td>dmf</td>
<td>decayed, missed, filled deciduous tooth index</td>
</tr>
<tr>
<td>DMFT</td>
<td>decayed, missed, filled permanent teeth</td>
</tr>
<tr>
<td>dmt</td>
<td>decayed, missed, filled deciduous teeth</td>
</tr>
<tr>
<td>DMFS</td>
<td>decayed, missed, filled permanent tooth surface</td>
</tr>
<tr>
<td>dmfs</td>
<td>decayed, missed, filled deciduous tooth surface</td>
</tr>
<tr>
<td>DS</td>
<td>decayed permanent tooth surface</td>
</tr>
<tr>
<td>DT</td>
<td>decayed permanent tooth</td>
</tr>
<tr>
<td>€</td>
<td>Euro = 5.94573 FIM (Finnish Mark)</td>
</tr>
<tr>
<td>F</td>
<td>fluoride</td>
</tr>
<tr>
<td>LB</td>
<td>lactobacilli</td>
</tr>
<tr>
<td>LR</td>
<td>low risk</td>
</tr>
<tr>
<td>ms</td>
<td>mutans streptococci</td>
</tr>
<tr>
<td>OR</td>
<td>Odds ratio</td>
</tr>
<tr>
<td>Ref</td>
<td>reference (= control)</td>
</tr>
<tr>
<td>RR</td>
<td>relative risk</td>
</tr>
<tr>
<td>SM</td>
<td>Streptococcus mutans</td>
</tr>
<tr>
<td>Sucrase</td>
<td>sucrase-enzym-activity</td>
</tr>
</tbody>
</table>
List of original publications

This thesis is based on the following publications, which are referred to in the text by their Roman numerals.

Contents

Abstract
Acknowledgements
Abbreviations
List of original publications
Contents

1 Introduction... 17
2 Review of the literature... 19
 2.1 Aetiology of caries.. 19
 2.2 Occurrence of caries... 20
 2.2.1 Occurrence of caries by type of tooth and surface........ 20
 2.2.2 Decline of caries... 21
 2.2.3 Polarisation of caries .. 22
 2.2.4 Reasons for the decline and polarisation of caries 22
 2.3 Risk of caries... 23
 2.3.1 Identifying individuals at risk... 24
 2.3.2 Risk assessment and caries prediction 25
 2.3.3 Evaluating the risk... 26
 2.4 Risk strategies... 27
 2.4.1 Population strategy ... 27
 2.4.2 High-risk strategy ... 27
 2.5 Measures for assessing caries risk... 28
 2.5.1 Past caries experience .. 28
 2.5.2 Salivary tests... 28
 2.5.3 Dietary, hygiene and socio-demographic factors 31
 2.6 Targeting preventive treatment... 32
 2.7 Preventive methods... 33
 2.7.1 Remineralisation therapy.. 33
 2.7.1.1 Fluoride in caries prevention 33
 2.7.2 Antimicrobial therapy.. 36
 2.7.2.1 Chlorhexidine in caries prevention 36
 2.7.3 Counselling for diet and oral hygiene............................ 37
2.7.4 Sugar substitutes .. 38
2.7.5 Sealants ... 40
2.8 Economic evaluation .. 40
 2.8.1 Cost-effectiveness analyses ... 41
3 Aim of the present research .. 43
 3.1 Hypotheses .. 43
4 Materials and methods .. 44
 4.1 Subjects (papers I, II, III) ... 44
 4.2 Risk groups (IV, V) .. 44
 4.3 Description of the study (I, II, III, IV, V) .. 45
 4.4 Methods .. 47
 4.4.1 Evaluating the occurrence of mutans streptococci in children at day-care centres ... 47
 4.4.2 Clinical evaluation (II, III) ... 47
 4.4.3 Salivary tests (II, III) ... 48
 4.4.4 Evaluation of preventive treatment (IV) ... 49
 4.4.5 Economic evaluation (V) .. 50
 4.4.5.1 Costs of the intervention .. 50
 4.4.5.2 Costs of basic prevention .. 51
 4.4.5.3 Costs of fillings at estimated prices ... 51
 4.4.5.4 Cost-effectiveness of the intervention (V) .. 51
 4.5 Statistical evaluation .. 52
 4.5.1 Analysis of mutans streptococci (ms) affecting the occurrence of caries in the children at day-care centres (I) ... 52
 4.5.2 Analyses of single indicators in relation to caries increment (II) 52
 4.5.3 Multi-factorial modeling (III) ... 52
 4.5.4 Analysis of dental health in the study groups (IV) ... 53
5 Results .. 54
 5.1 Evaluation of the occurrence of mutans streptococci in children at day-care centres .. 54
 5.2 Baseline observations (II) .. 54
 5.3 Follow-up observations (II, III) ... 56
 5.4 Evaluating the efficacy of the one-year intervention (IV) .. 57
 5.5 Cost-effectiveness of the preventive methods (V) ... 59
 5.6 Price of fillings in the test groups and the reference group .. 59
6 Discussion .. 61
 6.1 Background ... 61
 6.2 Subjects and risk groups .. 62
 6.3 Risk indicators as single tests ... 62
 6.4 Multifactorial modeling ... 65
 6.5 Efficacy of intensive prevention ... 66
 6.6 Cost-effectiveness of the intervention .. 67
7 Conclusions .. 70
References
1 Introduction

Dentists have been emphasizing preventive measures and health promoting education programmes in schoolchildren for decades, which probably has contributed to the decline in caries, so that in many countries, including Finland, the goals of the World Health Organisation have been achieved even faster than expected. Though the reduction in caries and polarisation of its occurrence, are indisputably a fact in industrial countries all over the world, there still exists a minority in young population who account for most of the demand for dental treatment (Petersson & Bratthall 1996).

Caries is an infectious disease, and the prevention of infection in early childhood and also later is important with respect to its future progression in the individual. The multicausality of caries makes the problem of prevention complicated. It has been deemed important in caries prevention to intervene in the main causal factors. Different methods have been studied and adopted for common use in preventive dentistry in recent decades in order to reduce caries, and as a result of research in the areas of remineralization therapy and caries risk assessment, tools for improved diagnosis and treatment or prevention of early caries lesions will be available in the future in order to achieve adequate control over dental health.

Two main strategies exist for targeting preventive methods, the population strategy, which means that the effort is focused at the whole population in order to reduce exposure to a common disease to a more healthy level, e.g. the fluoridation of water supplies to reduce caries, and the risk strategy, in which prevention is focused on a selected group or number of individuals at risk (Rose 1985). Public dental services in the Nordic countries have traditionally been based on population strategies, and prevention programmes have been offered to the total population or to defined subgroups. Administrative strategies for the promotion of dental health in children and adolescents have shown to be adopted in the Finnish public dental health care system that demand a lot of auxiliary personnel and additional time, but in spite of this, the available methods of prevention have not been focused accurately enough on schoolchildren in Finland (Kärkkäinen 1997).

The cost of caries prevention could be greatly reduced and their efficiency increased if practitioners or public health administrators were able to identify in advance those subjects who run the greatest risk of developing caries. Consequently, reliable methods
for identifying caries-prone children should be available for practical implementation. It is also of great importance to choose the right preventive methods for targeting at the risk subjects or groups in order to achieve the best possible economic benefit for health promotion.

It has been suggested that oral health treatment policy should be revised and dental health-care staff should be educated towards more evidence-based knowledge and flexible attitudes (Sheiham 1984). A new approach to caries prevention is needed as far as more cost-effective use of resources and methods is concerned. Staff resources in health care centres should be directed in an appropriate way and be used more effectively to produce the greatest possible improvement in dental health without over-treatment. For decision-makers in the administrative and practical field of dentistry, it is important to choose the most effective methods with acceptable low costs. For this purpose longitudinal studies on cost-effectiveness studies should increasingly be conducted on preventive programmes.
2 Review of the literature

2.1 Aetiology of caries

Caries can be viewed as an infectious disease and mutans streptococci are considered to be important bacteria for its development (Emilson & Krasse 1985, Loesche 1986), although no single type of micro-organism has been identified as the primary cause of either enamel, root or crown caries (Nyvad & Kilian 1987). The bacteria attach to the first primary teeth to erupt, especially to the fissures of the molars in 2–3-year-old children (Alaluusua & Renkonen 1983). The time of contamination is of a certain importance, as the later a child is infected, the less caries lesions develop in early childhood and later on (Alaluusua & Renkonen 1983, Köhler et al. 1988). Mutans streptococci are transmittable from the primary dentition to the permanent dentition (Gibbons 1984, Alaluusua et al. 1987), and also between individuals (Köhler & Bratthall 1978, Rogers 1981).

The transmission occurs through contamination of the saliva (Rogers 1981) so that mothers are considered to transfer the infection to their child (Köhler & Bratthall 1978, Aaltonen et al. 1990). It has been found that 20–50% of mothers in the Scandinavian countries have high counts of salivary mutans streptococci (Berkowitz & Jones 1985, Paunio et al. 1988). Habitual xylitol consumption by mothers has been shown to lead to a significant reduction in mother-child mutans bacteria transmission when assessed in two-year-old children (Söderling et al. 2000).

Carious lesions increase the counts of mutans streptococci, while reductions can be achieved by restriction of sucrose-sweetened products (Rugg-Gunn & Edgar 1984, Birkhed et al. 1990) and the use of xylitol (Isokangas et al. 1989, Söderling et al. 2000), together with anti-microbial preventive procedures (Loesche et al. 1989, Tenovuo 1992). Dietary habits and dental caries have shown to be of importance for caries development (Kleemola-Kujala & Räsänen 1979, Birkhed 1990), but the frequency of brushing the teeth was more related to caries than were dietary factors in some studies (Schröder & Granath 1983, Stecksén-Blicks 1985a, Stecksén- Blicks & Holm 1995).

The frequency of consumption of sugar-containing products relates to caries, and the ingestion of fermentable carbohydrates is associated with its prevalence (Rugg-Gunn & Edgar 1984, Holbrook et al. 1995, Gibson & Williams 1999). Significant correlations between sugar consumption and caries increment have also been observed by Rugg-Gunn
& Edgar (1984), while a clear correlation was observed between the occurrence of "rampant" caries in young children and the use of sweetened dummies and prolonged use of "dinky feeders" containing sugar (Walker 1987). Social and demographic factors such as race, knowledge, schooling and financial status have all been linked with the occurrence of caries (Hunt 1990, Powell 1998, Gibson & Williams 1999). In addition, the time needed for the development of caries is also an important consideration (Alaluusua & Renkonen 1983, Köhler et al. 1988).

2.2 Occurrence of caries

Klein et al. (1938) introduced the DMF index as a measure of cumulative caries experience in the permanent dentition of children. Since then caries occurrence has been described in terms of the numbers decayed, missing and filled teeth (DMFT) or tooth surfaces (DMFS), and correspondingly in the primary teeth below the age of six years (dmft) or (dmfs). One of the drawbacks is that these indices, which are still widely used as measures of the outcome of dental programmes, ignore changes in the quality of the teeth (Birch 1986). In the past three decades some authors have expressed criticism of their use (Spencer 1997) in the sense that the application of the traditional DMF index to the skewed data on caries that frequently emerge nowadays is one of the factors contributing to the underestimation of the prevalence of caries and the overestimation of the temporal change. Thus it places limitations on the population strategy to be used in caries prevention, and contributes to a lack of discrimination between individuals with differences in caries activity.

Caries occurrence in a population can be described in terms of mean values for the caries indices by percentages of subjects with past and present caries (DMFT > 0) or current caries (DT > 0), and in terms of the frequency distribution of such subjects (Varsio 1999). A modified form of the DMF index is known as the caries increment or correspondingly dmf for primary teeth. This refers to the number of new caries lesions within a specified time interval, either for an individual or averaged over a population (Nikiforuk 1985).

The occurrence of caries in children and in adolescents is related to social factors, those in the highest social class experiencing the lowest caries in both high and low-fluoride areas (Hausen et al. 1981). Although high-caries individuals in the present decade have fewer caries lesions than did high-caries subjects two decades ago, caries in industrialized countries has not decreased as much as the figures show (Fejerskov 1997).

2.2.1 Occurrence of caries by type of tooth and surface

The number of teeth and surfaces at risk varies with age (Hausen et al. 1983, Nordblad & Larmas 1985a, Vehkalahti et al. 1991, Virtanen 1997), as also does the maturation age of tooth (Nordblad & Larmas 1985b). Nowadays the eruption of teeth occurs at an earlier chronological age than earlier (Helm 1969, Virtanen 1994, Eskeli et al. 1999). Most
caries attacks on fissures occur during the first three years after eruption, and the survival of the first and second permanent molars immediately after eruption and filling increments in the upper incisors are good indicators of dental health. A distinction should be made between chronological and dental age, however. The post-eruptive filling placement curves for individual teeth, obtained using the survival analysis method, evidently follow the pattern of caries attack. (Virtanen 1997)

The occlusal surfaces of permanent teeth are those most frequently attacked by caries (Nordblad & Larmas 1985b, Vehkalahti et al. 1990, Li et al. 1993, Virtanen & Larmas 1995), and more caries lesions have been demonstrated in pits and fissures of posterior teeth than on other surfaces (Dummer et al. 1990, Kingman 1993). The highest caries experience of all has been found in permanent molars (Nordblad & Larmas 1985b, Greenwell et al. 1990, Vehkalahti et al. 1990), whereas caries is seldom seen in teeth, such as canines, lower incisors and premolars (Nordblad 1986, Greenwell et al. 1990, Vehkalahti et al 1990, Virtanen & Larmas 1995). The risk of occlusal caries is highest during and after tooth eruption (Härkänen et al. 2002), between 6 and 9 years of age for the first permanent molars, and after the age of 13 for the second permanent molars (Nordblad 1986, Ripa et al. 1988, Vehkalahti et al. 1991, Larmas et al. 1995). Approximal surfaces of permanent molars have been found to become carious after 12 years of age (Nordblad 1986, Ripa et al. 1988, Virtanen & Larmas 1995), and a correlation has been shown between past caries on approximal surfaces and the developing of new approximal caries lesions (Mejàre et al. 2001). Fifteen is an important age because of newly erupted second molars and the increasing role of approximal decay in the dentition (Vehkalahti et al. 1990).

2.2.2 Decline of caries

There is general agreement that a marked reduction in caries prevalence among children and young adults has occurred in most of the developed countries in recent decades (Petersson & Bratthall 1996), the reduction being especially marked in the Nordic countries (von der Fehr 1994). In Finland caries experience has been declining since the 1970’s at both a national and provincial level (Nordblad et al. 1993). The proportion of 12-year-olds in the city of Espoo with $DT = 0$ increased from 52% to 73% during the period 1980–1988, and the proportion of 16-year-olds with $DT = 0$ from 33% to 62% (Luoma & Rönnberg 1991). Meanwhile, the mean DMFT index for 15-year-olds in Helsinki declined from 12.1 in 1976 to 5.1 in 1986, and their DT index from 3.0 to 1.4 (Vehkalahti et al. 1990). In the study of Vehkalahti et al. (1997) data on children’s dental state from 1976 to 1993, were evaluated. During the 17 years, mean dmft for 5-year-olds decreased from 4.6 to 0.8 and mean dt + DT from 0.9 to 0.6. In 1993, 78% had their dmft = 0, whereas 8% of the patients accounted for 76% of all decayed teeth. For 15-year-olds the decrease was even greater, their DMFT fell from 12.1 to 3.0 and their DT from 3.1 to 0.8. However, only 26% had their DMFT = 0 in 1993, with 55% of all dt + DT occurring in 10% of the patients. The prevalence of caries among 3-, 6-, 12- and 19-years-olds in Sweden was followed during the period 1985–1994 through country council report to the National Board of Health and Welfare. The proportion of caries-free 3- and
6-year-olds increased. In 1994, 91% of the 3-year-olds and 64% of the 6-year-olds were free of caries in the deciduous dentition. DFT for 12-year-olds sank from 3.1 to 1.5 during 1985–1994. For 19-year-olds, DFT changed from 8.5 to 5.2, while the proportion of individuals who were caries-free on approximal surfaces increased from 3.4 in 1985 to 1.6 in 1994. The proportion of severely carious individuals decreased greatly during the 10-year period studied. (Sundberg 1996)

Some studies indicate a halt or slowing down in the progress of caries reduction (Speechley & Johnston 1996, Poulsen & Scheutz 1999) and it has also been shown that the decline in caries in deciduous teeth has stopped or even reversed slightly in recent years (Truin et al. 1993, Pitts & Palmer 1994).

The decrease in caries index (DMFT) of 12-year olds in the Nordic countries in years between 1985 and 2000 are shown in Table 1.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Finland</td>
<td>3.1</td>
<td>2.0</td>
<td>-</td>
<td>1.2</td>
<td>1.2</td>
<td>1.1</td>
<td>-</td>
</tr>
<tr>
<td>Sweden</td>
<td>3.4</td>
<td>2.3</td>
<td>2.2</td>
<td>1.5</td>
<td>1.0</td>
<td>0.9</td>
<td>1.2</td>
</tr>
<tr>
<td>Norway</td>
<td>3.4</td>
<td>2.0</td>
<td>-</td>
<td>1.5</td>
<td>1.7</td>
<td>1.6</td>
<td>-</td>
</tr>
<tr>
<td>Denmark</td>
<td>3.4</td>
<td>-</td>
<td>1.3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

2.2.3 Polarisation of caries

Dental caries has not been eliminated in the population but continues to be a major public health problem (Bowen 1991). Despite the dramatic reduction in caries rates over the last decades and the increase in emphasis on preventive dentistry it still affects a great proportion of the population (Newbrun 1992). In many countries, especially in the Nordic countries caries has decreased in schoolchildren, while at the same time the distribution of severe caries has been accumulating in a small proportion in all age groups (Burt 1994, von der Fehr 1994, Spencer 1997, Vehkalahti et al. 1997). In Finland the increase of caries-free subjects has stabilized, accompanied by the continued presence of subjects with high caries experience, leading to a skewed distribution of caries prevalence in children and adolescents (Luoma & Rönnberg 1991, Vehkalahti et al. 1997). The recent estimates in Sweden and in Finland show that at least 60% of caries develops in only 20% of the young population (Hugoson et al. 2000, Seppä et al. 2000).

2.2.4 Reasons for the decline and polarisation of caries

The factors lying behind changes in caries prevalence in children and adolescents have been discussed at many international dental forums (Petersson & Bratthall 1996). The occurrence of caries has been declining in communities with and without organized
preventive programmes or fluoridation (Hargreaves 1987, Seppä et al. 2000). It is assumed that the reasons are related to the use of fluorides, to improvements in oral hygiene, or to a change in microbial, host and salivary factors, or to dietary changes (Marthaler 1984). It is suggested, however, that the most probable reason is related to the increased use of fluorides (Marthaler 1984, Bratthall et al. 1996), while according to Renson et al. (1985), the organized availability of dental resources and oral health education programmes may be one explanation. The decline in caries may also have been due in part to new diagnostic and treatment criteria (Nadanowsky & Sheiham 1995). More recently, it has been reported that the decline in caries seems not to be associated with professional preventive measures performed in dental clinics (Seppä et al. 1998), but there is nevertheless a good deal of agreement on the preventive effect of fluoride toothpastes in this respect (Bratthall et al. 1996). Probably the most effective caries prevention treatment available today is fluoridation of municipal water supplies and the use of fluoride toothpastes (Winston & Bhashkar 1998). According to Mandel (1996), the protective properties of fluoride dominate and host resistance wins out as an explanation for the decline in caries.

The opinions of experienced chief dental officers at the health centres in Finland suggested that the most significant factors in the decline in caries were improved socio-economic standards accompanied by the placement of a high value on dental health and the role of the National Health Act (Luoma & Widström 1997). This was thought to guarantee public oral health services for all children and adolescents from birth to 19 years of age, with dental treatment free of charge, systematic dental health programmes with fluoride mouth rinses, fluoride tablets, fluoride varnishes and sealing, and also with dental health education for groups and individuals. (Varsio 1999)

2.3 Risk of caries

Risk is the probability of an individual to develop a given disease or to experience a health status over a specified period (Kleinbaum et al. 1982). According to Hausen et al. (1994) caries risk is the probability of an individual to develop at least a certain number of caries lesions and reaching a given stage of disease progression during a specific period of time, conditional on his or her exposure status remaining stable during the time in question.

High risk can be defined as a group of people with the greatest percentage of teeth, surface or sites with evidence of disease. One could follow the clinical diagnosis model of presence or absence of the disease or determine a clinically significant cut-point, such as number of caries lesions being, for example, more than two. (Beck 1998)

Quantitative estimates of caries risk are based on observations of past caries experience which can be obtained from longitudinal studies. The most common way of doing this is to divide the number of the new diseased cases detected during the observation time by the number of caries-free subjects at the start. In follow-ups of caries incidence the development of new caries lesions (the average number of newly detected cavities or other stages of the caries process) is usually summarized in terms of mean caries increment. Estimates of cumulative incidence can be derived from the increment
figures by setting arbitrary cut-off points. For example, one might consider as newly detected cases, subjects who may develop from one to two, three or any other number of new DMF surfaces during the follow-up. (Hausen et al. 1994)

2.3.1 Identifying individuals at risk

A four-step process for identifying high-risk individuals was presented as a result of the study conducted in North Carolina (Beck 1988): The first step is to determine whether the disease is distributed randomly or whether there are identifiable factors that are associated with it. The second step is to develop a risk assessment model that would be able to distinguish efficiently between those with a high risk and those with a low risk. The third step is screening population groups for the factors contained in the risk assessment model and using the model to predict each individual's risk of developing caries. This process is called assessment. The fourth step, targeting, consists of the provision of a health promotion/disease prevention regimen or treatment procedure for the individuals at risk, usually with concomitant development of data on the cost-effectiveness of the intervention. When a disease is known to have multiple risk factors, testing the ability of one factor at a time in order to identify individuals at risk will give an incomplete picture. Thus the development of a risk assessment model becomes necessary.

The following terms and definitions have been presented in the context of caries risk

- **A risk factor**: Environmental, demographic, behavioural, or biological factor confirmed by a temporal sequence, usually in longitudinal studies, which, if present, directly increases the probability of contracting a given disease, so that its absence or removal will reduce the probability. Risk factors are part of the causal chain (Beck 1998). When the disease occurs, removal of a risk factor may not result in a cure (Kleinbaum et al. 1982).

- **Risk indicator**: The term is used to differentiate factors that have only been identified by means of prevalence data (often in cross-sectional studies) and can be defined as probable or putative risk, and used as tools for selecting individuals with a high risk of contracting a given disease (Beck 1988). Risk-indicators for caries can be used for diagnosis and screening purposes and for patient motivation (Larmas 1992, Pienihäkkinen 1987).

- **A risk predictor**: A risk marker that is a characteristic factor associated with an elevated risk of the disease in question (i.e., it predicts well) but is not thought to be part of the causal chain. Beck et al. (1998)

- **A risk model**: A multivariable model developed when it is important to identify one or more risk factors for the disease, so that likely points for intervention can be planned. Risk models should not include risk predictors.
A prediction model is a multivariate model that can be developed when we think that we understand the aetiology of the disease and are mainly interested in identifying who is at risk.

2.3.2 Risk assessment and caries prediction

Hausen et al. (1994) expressed the difference in principle between caries assessment and caries prediction as follows: “For establishing the value of potential predictors, methods applicable to the assessment of the accuracy of diagnostic tests are called for. This means that in everyday practice risk assessment rather than caries prediction is called for. The mere prediction of the future caries increment in the case of an individual, meaning how many caries lesions he or she might develop in a certain time, is not the proper way. Instead, the level of caries risk should be assessed”. When the objective is to maximize the ability of a model to identify high risk and low risk individuals, i.e. to maximize sensitivity and specificity (the proportions of people correctly classified as having or not having the disease), models allowing both indicators and risk factors need to be employed. These are called prediction models (Beck et al. 1992). “Risk estimates could be refined by follow-ups in subgroups of study populations of different exposure status, and this is what prediction of caries is about” (Hausen et al. 1994).

In view of the multifactorial nature of caries aetiology and the fact that the course of the disease is determined by the interaction of different factors of attack and resistance it is expected that multivariate approaches rather than the use of single parameters may improve the prediction of caries risk for individuals and for groups of subjects (Beck et al. 1992, Hausen et al. 1994). Multivariable prediction models are generally used when considering more than three predictors simultaneously. Longitudinal studies using multivariable regression analyses in a search for acceptable models have been implemented for this purpose (Graves et al. 1991) and have proved valuable, especially in view of the fact that the prediction of caries cannot be assessed through prevalence studies (Beck 1990). There are essentially two types of variables that can be used in the development of multivariable models: risk factors, and risk predictors.

The statistical considerations involved in developing risk models have been reviewed by Koch & Beck (1990). The methods applicable to the assessment of caries risk include various regression techniques or discriminative models (Koch & Beck 1990). Risk models should not include risk predictors (past disease, number of teeth, etc.), as these are powerful and may mask the potential risk factors (Beck 1998).

A variety of indicators, consisting of clinical, microbial, salivary and socio-economic variables, have been analysed and discussed in relation to caries prediction in children and adolescents (Powell 1998). The most extensive attempt to produce statistical models for the assessment of caries risk has been made in connection with the Caries Risk Assessment Study at the University of North Carolina (Abernathy et al. 1987, Beck et al. 1988, Disney et al. 1992). The tests and methods proposed or used for the prediction of caries in adolescents have resulted in a sensitivity of 70% to 80% at best (Powell 1998), however, in children Leverett et al. (1993) showed higher predictive values. In general, the accuracy of multivariate approaches seems to be much lower than one would expect
on the basis of the performance of the individual predictors. Age has been shown to be a significant factor in prediction models, and socio-demographic variables are also important (Powell 1998).

2.3.3 Evaluating the risk

Sensitivity (Sn) is the proportion of individuals with the disease who are correctly identified by the test. Specificity (Sp) is the proportion of individuals without the disease who are correctly identified by the test. Positive predictive value (PV+) is the proportion of individuals with a positive test result who have the disease. Negative predictive value (PV-) is the proportion of individuals with a negative test result who do not have the disease. (Petrie & Sabin 2000) If the disease is concerning individuals at risk of caries: Sensitivity is the proportion of subjects who were believed to have a high caries increment among those whose actual caries increment during the follow-up was high and specificity is the proportion of subjects who were believed to have a low-risk among the ones whose actual caries increment during the follow-up was low. False positive rate and negative rate have exactly the same information as sensitivity and specificity, but in contrast to them, they reveal proportions of misclassified subjects. (Hausen 1997)

All the above measures should always be considered as pairs. For instance it has no meaning if one knows the sensitivity but not the respective specificity. If both the sensitivity and specificity were 80 per cent, every fifth individual with a true high risk would remain undetected in a screening and thus fail to receive the intensified prevention. Correspondingly every fifth individual with low risk would be included in high-risk group and receive measures of prevention for no purpose. This would lead to a high rate of misclassifications. (Hausen et al. 1994)

Accuracy (A) is the proportion of correctly classified subjects. One should not consider it for the only measure for evaluating the predictive power of risk markers (Hausen 1997). The level of accuracy of a prediction regarding the future incidence of caries can be assessed using data from follow-up studies. It is usually quantified in terms of sensitivity, specificity, positive predictive value and negative predictive value (Kleinbaum 1982).

Odds is the ratio of the probabilities of two complementary elements, typically the probability having a disease divided by the probability of not having a disease. The odds ratio (OR) is the ratio of two odds (e.g. the odds of disease in individuals exposed and unexposed to a factor). It is often taken as an estimate for relative risk in a case-control study. Because patients are selected on the basis of their disease status, it is not possible to estimate the absolute risk of disease. The odds ratio can be calculated in the following way:

Odds ratio = Odds of being a case in the exposed group/Odds of being a case in the unexposed group

Relative risk (RR) is the ratio of the risk occurrence of a disease among exposed people to that among the unexposed. RR shows for instance, how many more times disease occurs in those with positive test than in those with negative test. The relative risk
measures the increased (or decreased) risk of disease associated with exposure to the factor of interest. A relative risk greater than one indicates that there is an increased risk in the exposed group, compared with the unexposed group. (Petrie & Sabin 2000)

2.4 Risk strategies

2.4.1 Population strategy

In general, a population strategy seeks to control common causes of caries incidence, whereas a high-risk strategy seeks to protect susceptible individuals (Fejerskov 1995). A population strategy, providing preventive treatment for all subjects, is thought to be useful in populations with high caries occurrence, because its goal is to change the distribution of the disease by controlling the determinants of caries in the whole population. The purpose is to move the risk level to the more favourable level of the distribution of the disease in the population (Rose 1985). This applies to traditional health programmes focussed at the whole population. One example is the fluoridation of water supplies, to which all subjects are exposed (Newbrun 1996). The disadvantages are that it does not confer any benefit at the individual level and the motivation of the individual for health promotion is not high. Also the motivation of the auxiliary personnel may be weak, because of the lack of instant effects at individual level. Also the pros and cons of the matter may sometimes cause discrepancies, and inconvenient problems may arise especially in industrial and commercial fields. (Rose 1985) Such strategies become questionable in most industrialized countries today, because of the skewed caries distribution in their populations.

2.4.2 High-risk strategy

According to the high-risk strategy, individuals with a high risk of caries are identified and preventive measures are taken to diminish their risk. There are three basic prerequisites for the successful application of such a strategy. First, the occurrence of caries in the target population must be low enough justifying the effort and expense of identifying individuals who are believed to develop a high number of caries lesions. Secondly, accurate, acceptable and feasible measures for identifying the subjects with the highest risk of developing new caries lesions must be available. Thirdly, interventions that aim at bringing down the increased risk of caries in a high-risk group should be based on methods that are effective and feasible. (Hausen 1997)
2.5 Measures for assessing caries risk

2.5.1 Past caries experience

Past caries experience is probably the factor that is most commonly used to assess caries risk (Demers et al. 1990), although its sensitivity in adolescents has seldom been more than 60%. It has usually been the most reliable single predictor of future caries development (Alaluusua et al. 1990, Russell et al. 1991, Scheinin et al. 1992), but is not acceptable enough as a single test at either the group or the individual level (Wilson & Ashley 1989, Russell et al. 1991). However, it is the most useful tool for dentists in daily praxis (Alanen et al. 1994).

2.5.2 Salivary tests

The salivary tests used for clinical purposes are un-stimulated and stimulated saliva flow rates, buffering capacity and the growth of colony-forming micro-organisms, i.e. mutans streptococci, lactobacilli and yeasts/Candida. In addition methods for determining sucrase activity have been reported (Hämäläinen et al. 1988).

Salivary and microbiological dip-slide tests are useful for diagnostic assessment and as tools for patient motivation (Larmas 1975, Helminen et al. 1981, Wikner & Nedlich 1985, Murtomaa et al. 1987). By comparison with conventional agar plate techniques, dip-slide tests and strip tests have been shown to be reliable methods for determining salivary levels of lactobacilli and mutans streptococci (Alaluusua et al. 1984, Jensen & Bratthall 1989, Davenport et al. 1992).

No measure of salivary factors as such can lead to a reliable diagnosis of caries, but a lack of one or more factors will predispose individuals to high caries activity (Larmas 1992). The salivary tests, alone or in combination, are easy to perform in everyday dental practice, but they have rather seldom been used in health centre clinics in Finland (Vehkalahti et al. 1992, Kärkkäinen 1997, Helminen et al. 1999), perhaps because of the high commercial price and the lack of time for the staff to perform the tests. Further, single-point salivary measures have a large individual variation and are therefore in that sense not reliable enough in caries prediction (Tukia-Kulmala & Tenovuo 1993). Hausen et al. (1994), indicated in their study that salivary tests have a weak or only moderate ability to predict future caries. Salivary tests are recommended for detecting high-risk patients and for motivating patients to change their attitudes and adopt more precise patterns of home care. The assessment of micro-organisms in saliva is based on the assumption that there is an association between types and numbers of bacteria and dental caries (Russell et al. 1991).

The two most commonly measured salivary factors are flow rate and buffer capacity (Wilson & Ashley 1989). It is well known that severe reduction of the saliva flow rate can favor the progression of caries. Poor salivary buffering capacity and low salivary flow, are also known to be host factors closely related to high lactobacillus counts (Parvinen & Larmas 1981).
Mutans streptococci (ms). Determination of the level of salivary mutans streptococci has been used for the assessment of caries risk and an association has been shown between the number of caries lesions and the level of mutans streptococci in saliva and plaque in both children and adults (Klock & Krasse 1979, Beighton 1991).

It is notable, that a dramatic decline in caries has occurred in 12-year-old Icelandic schoolchildren without any apparent changes in salivary mutans levels (Bjarnason et al. 1993). The predictive value of mutans streptococci in saliva has not been shown to be any better than that of past caries experience (Wilson & Ashley 1989, Alaluusua et al. 1990, Russell et al. 1991, Disney et al. 1992), with the reported sensitivities generally below 50%. Thus, the test alone cannot be considered useful for the assessment of caries risk. It has been suggested that regular use of xylitol inhibits the formation of plaque, even though mutans streptococci is found in the saliva (Söderling et al. 1991, Trahan et al. 1992). Therefore the salivary SM test may be an unreliable indicator, if tested after pre-stimulating saliva, among those children who are regular xylitol users.

All the commercial dip-slide methods available at the present to assay the concentration of mutans streptococci in saliva are based on the fact that bacitracin inhibits the growth of all other oral streptococci except mutans on a mitis salivarius medium. Mutans streptococci colonise the SM dip-slide (Jensen & Bratthall 1989) in proportion to their amount in saliva.

According to Larmas (1992) SM tests are useful for the following purposes: for the pre-selection of patients for dental examination, demonstration of cariogenic infection, evaluation of the effectiveness of chlorhexidine or other mouth rinses as medication, providing an objective measure of the treatment, health education, and diagnosis of parents with high counts of mutans streptococci in a family before eruption of their child’s deciduous teeth.

Lactobacilli (LB). In order to make proper use of the Lactobacillus (LB) count for caries prediction, it is important to be acquainted with certain facts concerning their ecology. These organisms constitute a relatively small proportion of the total microflora found in both plaque and saliva (Crossner 1981). They probably do not play any significant role in the initiation of dental decay. Once the lesion has been established, however, the proportion of lactobacilli in the microflora is seen to increase (Klock & Krasse 1977). Their presence can be considered a consequence of the circumstances that normally lead to dental caries.

The density of the LB colonies is important, and an individual Dentocult-LB count is an important educational aid for motivation and dietary counselling among patients (Larmas 1992). For this purpose it is essential to show the test results to the patient and to explain their meaning. These can be used to control the efficacy of dietary counselling. Sometimes a high, steady lactobacillus count is found in medically compromised patients (Larmas 1992). A high salivary flow-rate will reduce high LB counts without affecting lactobacillus infection (Parvinen & Larmas 1981). Other factors independent of sucrose consumption have also been shown to affect the level of salivary lactobacilli including erupting teeth, open carious lesions, orthodontic bands, poor salivation and poor buffer capacity (Sakamaki & Bahn 1968, Parvinen & Larmas 1981, Meurman et al. 1987).
Salivary yeasts. Yeasts are aciduric and slightly acidogenic (Lilienthal 1950). The Candida (Cand) species have been found to be the most common yeasts in the mouth, and the prevalence of carriers of yeasts varies from 27% to 80% (Martin & Wilkinson 1983, Pienihäkkinen 1987). Orthodontic appliances increase the densities of yeasts in saliva (Addy et al. 1982), as also can the use of antibiotics. Yeasts have been shown to be more prevalent in the saliva and the plaque of caries-active subjects than of caries-free ones (Krasse 1954). Russell et al. (1990) found a significant correlation between the presence of yeasts and retrospective 1-year caries incidence, while Russell et al. (1991) reported a significant correlation between Candida and one-year caries increment. Pienihäkkinen (1987), in their study showed salivary yeasts (Candida species) to predict caries better than lactobacilli.

A method for estimating yeasts was presented by Nickerson (1953). A dip-slide system, Oricult-N, is available for measuring of oral yeast infection (Parvinen & Larmas 1981). Indications for its clinical use, for example are: 1. to determine the presence of yeast infection in the oral cavity, even before clinical signs 2. to confirm the hypo-salivation status of a patient, because yeast infection and the number of salivary yeasts are depending on salivary flow 3. to control the effectiveness of anti-fungal therapy (Larmas 1992).

Salivary flow rate. The stimulated salivary flow rate by chewing paraffin wax averages 1 - 2 ml/min. The saliva collection time has been suggested to be 5 minutes, after one minute of pre-stimulation by chewing paraffin wax, whereupon the stimulated flow in adult females is 8.6 ml/5 min and that for males 10. 1 ml/5 min (Larmas 1992). In children, aged from 5 to 15 years, the rate of mixed whole saliva stimulated by chewing, was shown to increase with age, and boys had consistently higher rates than girls (Crossner 1984). The most common alterations in salivary flow rate involve reduced secretion (hypo-function), which may be connected with medication, pathological changes in the salivary glands, hormonal changes, sports, diet (e.g. anorexia), sex and age (Parvinen & Larmas 1981, Crossner 1984, Meurman & Rantonen 1994). It is important to identify the individuals with reduced salivary secretion in order to control their oral health.

Buffer effect. Buffer effect is one of the best indicators of caries susceptibility, because it reveals the host response, and a low buffer effect is inactive with reduced flow rate leading to a reduced response of the host to causal factors for caries (Murray 1986). The buffer effect of the saliva has been found to correlate with the flow rate (Klock & Krasse 1977). Patients with a high buffer effect are quite resistant to the caries process, because a high host response can even compensate for active caries habits (Larmas 1992). Wikner & Moum (1986) did not find any age difference in the distribution of buffering capacity categories in 7-15 years old children.

Buffer effect can be measured easily by the Dentobuff method (Frostell 1980, Orion Diagnostica, Espoo, Finland), in which a dip-slide is coated with chemical indicators and immersed in the saliva, the resulting colour being indicative of the capacity of the saliva for buffering acids and bases.

Sucrase test. A simple test for the determination of salivary sucrase activity has been reported (Hämäläinen et al. 1988). However, this test has been of limited use in praxis. It
has been shown that strict reduction of dietary sucrose over a two-week period effectively reduced high salivary sucrase, i.e. invertase-like activity (Karjalainen et al. 1989). They also found that salivary sucrase activity reflects the amount of sucrose consumed, variations in this and the intake frequency at a group level. As sucrose consumption increases, enzyme activity also increases, especially in plaque and saliva (Mäkinen & Scheinin 1972, Birkhed et al. 1994). Sucrase activity is induced by the presence of the substrate sucrose, and frequent consumption of sucrose is connected with high salivary sucrase activities (Mäkinen & Scheinin 1972).

2.5.3 Dietary, hygiene and socio-demographic factors

Diet. There is evidence that frequent ingestion of fermentable carbohydrates is associated with the prevalence of caries (Rugg-Gunn 1984, Walker 1987, Birkhed et al. 1994, Holbrook 1995). However, there are also studies showing none or only a weak correlation between dietary habits and caries in industrialized countries (Rugg-Gunn et al. 1984). It has been demonstrated that the risk of caries increases significantly with increased amount of sugar consumption only when oral hygiene is simultaneously poor (Kleemola-Kujala & Räsänen 1982, Gibson & Williams 1999). It has been shown that poor oral hygiene usually is connected with high sucrase values (Mäkinen & Scheinin 1972, Karjalainen et al. 1989). Self-reported sucrose intake seems to be of little value for caries research, as the relationship between caries and the amount of plaque or the frequency of self-reported oral hygiene measures is uncertain (Bellini et al. 1981). Results of a systematic review (Burt & Pai 2001) showed that the relationship between sugar consumption and caries is much weaker in the modern age of fluoride exposure than it used to be.

Oral hygiene. Effect of oral hygiene measures on caries has been considered controversial in many extensively quoted reviews (Bellini et al. 1981). Similarly there has been a notable failure to demonstrate any consistent relationship between dental plaque scores and caries prevalence, probably because the two indices measure phenomena that occur over considerably different time intervals (Reich et al. 1999). In spite of the discrepancies concerning plaque and caries, dental plaque has been shown to be a risk factor for caries (Emilson & Krasse 1985), and mechanical oral hygiene provided by dental staff has proved to be effective in reducing caries (Axelsson et al. 1993). A study of oral hygiene in 3-year-old children has shown that those with clean teeth had lower caries scores than those whose teeth were not clean (Schröder & Granath 1983). Tooth brushing has been shown to reduce caries only with simultaneous use of fluoride toothpaste (Anamo et al. 1989, Bratthall et al. 1996). Regular brushing with fluoride toothpaste may have a greater impact on caries in young children than restricting sugary foods (Gibson & Williams 1999).

Socio-demographic factors. Dietary and health habits are affected by income, education and social environment (Milén 1986, Powell 1998). People of low socio-economic status have more caries lesions than do people of high socio-economic status (Hausen et al.
1981, Hunt 1990, Bolin 1997, Gibson & Williams 1999). Risk indicators for caries identified by logistic regression analysis, comprising samples of 5- and 12-year-old children from eight EU countries were social class of the family, the mother's smoking habits and the number of siblings in the case of 5-year-olds (Bolin et al. 1997). The survey of oral health habits in 11 European countries by Honkala et al. (1990), including hygiene habits, sugar snacks and the use of fluorides, indicated that about half of all adolescents consumed sweets at least daily, in contradiction to Sweden, Norway and Finland, were the use of sweets were not so high. They also showed that the Nordic countries had the highest figures for daily use of fluoride toothpaste. The frequency of tooth brushing was highest in Sweden and Switzerland, but it was consistently less frequent in boys than in girls in all the countries concerned.

In some caries prediction studies socio-demographic variables have been involved with clinical variables in relation to caries and the former have been shown to be important for caries prediction in young children and adults (Powell 1998).

2.6 Targeting preventive treatment

The numerous preventive programmes, including school-based supervised fluoride brushing and rinsing, which were increasingly established during the 1960s, combined with improved treatment coverage, have probably been the decisive factors behind the remarkable improvements in dental health in Finland and the other Nordic countries from the early 1970s onwards (Wang et al. 1998). Acceptable measures for preventing caries have been tested and targeted at both individuals and groups (Axelsson et al. 1987, Isokangas 1989, van Rijkom et al. 1996, Riordan 1997, Dennison et al. 2000, Belfrán-Aquilar et al. 2000). There has been a tendency in the Nordic countries to provide preventive care similarly for all children without any supplementary high-risk strategy (Kärkkäinen 1997, Wang et al. 1998). Poor targeting of intensified preventive measures at high-risk caries patients and over-treatment of those with a low caries risk has been reported in previous studies (Vehkalahti et al. 1992, Kärkkäinen 1997, Varsio et al. 1999).

No significant differences in the strategies for preventing caries were found between the municipal health care centres in Finland in the early 1990s, at a time when it was recommended that they should reduce prevention measures aimed at groups and extend the time between the dental check-ups in schoolchildren (Kärkkäinen 1997). It has also been shown in multivariate analysis that the time spent on preventive care varies by country and is not associated with the DMFT of the children (Wang et al. 1998).

The rapid and substantial decline in caries prevalence in some industrialized countries can in part be attributed to multiple fluoride application, but other factors must also have exerted a beneficial effect (Marthaler et al. 1996). There are several risk indicators to be considered when planning preventive procedures. These include risk ages, time of risk, risk teeth and surfaces, medical risk and social risk (Bader et al. 1986, Nordblad & Larmas 1986, Virtanen 1997, Vehkalahti et al. 1997, Meurman 1997, Powell 1998).
2.7 Preventive methods

2.7.1 Remineralisation therapy

Demineralisation and remineralisation are dynamic processes characterized by the flow of calcium and phosphate out of and back into the tooth enamel (Silverstone 1977). Normal oral bacteria adhere to the pellicle covering the enamel surface and a bacterial mass called plaque is formed. Mutans streptococci and lactobacilli in particular are involved in caries development, converting ingested sugars to weak organic acids by glycolysis (e.g. lactic, acetic and formic acids). These acids diffuse through the plaque into the tooth, leaching calcium and phosphate from the enamel and eventually causing collapse of the tooth structure and the formation of a cavity. Caries lesions do not develop all at once but usually over several months or years. (Winston & Bhaskar 1998)

After intake of sugar, the pH of the plaque decreases as the bacteria metabolize the sugar to acids and within minutes it can reach 4.0 or lower and the neutralization of plaque acids by the alkaline buffer system in the saliva can take as long as two hours (Jensen et al. 1986, Trahan 1995). It is only when the plaque acids have been neutralized that the remineralising process can take place (Winston & Bhaskar 1998). Remineralised early carious lesions are more resistant to acid attack than sound enamel (Koulourides & Cameron 1980). The maturation of teeth has been observed to last about three years after eruption, and even over 3 years between 13 and 16 years of age (Edward 1997). Since the critical period for teeth to decay is immediately after the eruption according to (Carvalho et al. 1992, Härkänen et al. 2002), preventive measures should evidently be provided at the time and instantly after tooth eruption (Virtanen et al. 1996).

2.7.1.1 Fluoride in caries prevention

Fluoride reduces the progression of caries and helps the remineralisation of initial, manifest caries (Belfrán-Aguilar et al. 2000). The substance has been studied in vitro for its remineralizing effect (ten Cate 1990), and its caries-reducing effect has been verified (Klein et al. 1985, Kalsbeek & Verrips 1990, Belfrán-Aguilar et al. 2000). Fluoride ions inhibit bacterial growth and can have a lytic effect on some cariogenic strains. The presence of fluoride can reduce the quantity of acid produced by cariogenic bacteria (Marquis 1990). Some authors have concluded that the combined use of various fluoride sources is more effective against caries than the application of just one (Marthaler 1990, Seppä et al. 1982, Axelsson et al. 1987). A variety of fluoride products have been developed for school-based preventive programs, clinical or home use over the last twenty years, such as rinses, gels, varnishes, toothpastes and tablets (Table 2).
Table 2a. Examples of vehicles and methods of fluoride use in caries prevention in Finland.

<table>
<thead>
<tr>
<th>Vehicle (systemic)</th>
<th>Product</th>
<th>Concentration</th>
<th>Dosage mgF/day/ persons weight/kg according to the instructions of STAKES 1995 and by water fluoride concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tablets</td>
<td>Fluorilette®</td>
<td>0.25 mg/tablet</td>
<td>mg/l < 0.04 mg/l</td>
</tr>
<tr>
<td></td>
<td>Natr.fluorid. 0.553 mg</td>
<td></td>
<td>mg years-old weight/kg</td>
</tr>
<tr>
<td></td>
<td>0.25</td>
<td>< 3</td>
<td>8-15</td>
</tr>
<tr>
<td></td>
<td>0.50</td>
<td>3-6</td>
<td>21-35</td>
</tr>
<tr>
<td></td>
<td>0.75</td>
<td>7-12</td>
<td>16-20</td>
</tr>
<tr>
<td></td>
<td>1.0</td>
<td>13-15</td>
<td>36-50</td>
</tr>
<tr>
<td></td>
<td>1.50</td>
<td>> 16</td>
<td>> 50</td>
</tr>
<tr>
<td>Lozenges</td>
<td>Fludent®</td>
<td>0.25 mg/tablet</td>
<td>mg/l 0.4-0.8 mg/l</td>
</tr>
<tr>
<td></td>
<td>Natr.fluorid.0.25 mg</td>
<td></td>
<td>mg years-old weight/kg</td>
</tr>
<tr>
<td></td>
<td>Xylitol 155.6 mg</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sorbitol 148.6 mg</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fludent® 0.75 mg</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>*</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* over the counter, and dosage according to the instructions of Stakes 1995.
** prescription drug

PTD (Probably Toxic Dose) = 5.0 mg F/kg LD (Letal Dose) = 15 mg/kg

Table 2b. Examples of vehicles and methods of fluoride use in caries prevention in Finland.

<table>
<thead>
<tr>
<th>Vehicle (topical)</th>
<th>Product</th>
<th>Concentration</th>
<th>Type of application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dentifrices</td>
<td>NaF, MFP, AMF</td>
<td>1 or 1.5 mg/ml</td>
<td>brushing 1-2 / day</td>
</tr>
<tr>
<td>Rinses</td>
<td>0.05% NaF solution</td>
<td>0.23 mg/ml</td>
<td>rinsing 1-2 / day</td>
</tr>
<tr>
<td></td>
<td>0.2% NaF</td>
<td>0.9 mg/ml</td>
<td>rinsing 1-2 / day</td>
</tr>
<tr>
<td></td>
<td>F-chlorhexidine solution (fluoride 0.02% / CHX 0.2%)</td>
<td>0.22 mg/ml</td>
<td>rinsing 1-2 / day / by 2 weeks</td>
</tr>
<tr>
<td>Gels</td>
<td>0.2% NaF</td>
<td>0.9 mg/ml</td>
<td>application or brushing 1-2 / day</td>
</tr>
<tr>
<td></td>
<td>1.1% NaF</td>
<td>5.0 mg/ml</td>
<td>application or brushing 2 / day</td>
</tr>
<tr>
<td></td>
<td>Elmex-gel; AMF-NaF</td>
<td>12.5 mg/ml</td>
<td>brushing 1-2 / month</td>
</tr>
<tr>
<td>Pastes</td>
<td>33.3% NaF</td>
<td>150.6 mg/ml</td>
<td>for application of sensitive teeth</td>
</tr>
<tr>
<td>Varnishes</td>
<td>Duraphat®, NaF</td>
<td>22.6 mg/ml</td>
<td>application 1-2 times a year or application 3-6 times a year</td>
</tr>
</tbody>
</table>

Fluoride toothpastes were introduced in 1955, but came into common use in most developed countries, including Finland, in the 1970s. The role of fluoride in toothpastes is important in the prevention of dental caries (Bowen 1995). Today many researchers assume that fluoride toothpastes alone are responsible for the reduction in caries observed in schoolchildren in the Western world (Jenkins 1984, Bratthall et al. 1996, Winston & Bhaskar 1998).
Fluoride tablets have been increasingly adopted in Europe in the 1970s according to country-specific preventive policies. The correct dosage concerning fluoride concentration in ppm (= mg/l) must be determined on the basis of the patient’s age and the fluoride content (optimal 1 ppm, WHO 1994) of the main water source. In Finland, fluoride tablets were provided or recommended systematically for children from the age 1/2 to 15 years during the 1970s and 1980s, but the dosage was restricted in the 1990s because of new information on questionable effects of fluoride ingestion and claims that the best remineralisation effect could be achieved with external application of fluoride directly to the enamel (Thylstrup 1990). The proportion of 0 to 6-year-old children receiving fluoride tablets in European countries ranged from 5 to 35% (Kalsbeek & Verrips 1990). The consumption of fluoride tablets was higher in Norway and Finland than elsewhere, but decreased markedly with increasing age, and there were no differences between boys and girls. The benefit of fluoride tablets as a preventive procedure among pre-school children has been confirmed in a clinical trial (Driscoll et al. 1992).

Fluoride rinsing at schools began in the 1950s. However, there is no evidence that fluoride mouth rinses would provide additional benefits for people who are regularly using fluoride toothpaste (Leverett 1989), and the school-based rinsing procedures were mostly discontinued in Finland in the 1990s, because of staffing restrictions and new information on the low effectiveness of the preventive programmes (Wei & Yiu 1993, Riordan 1997). They were replaced with more intensive health education programmes for advising groups on home dental care and encouraging individuals to brush their teeth with fluoridated toothpastes.

Fluoride varnishes were developed in the 1960s, when the aim was to provide an improved product alongside the existing topical fluoride vehicles, such as fluoride gels and mouth rinses, that would prolong contact between the fluoride and the tooth enamel. The clinical efficiency of fluoride varnishes, their clinical use, cariostatic mechanism and their safety, have been demonstrated in many connections (Belfrán-Aquilar et al. 2000). Fluoride varnishes had become widely used in the European countries by the 1980s and have continued to be popular since then. Fluoride varnishes are not intended to adhere permanently to the teeth but to remain in close contact with the enamel for several hours. As the varnish sets in contact with intra-oral moisture, careful drying is not required before application. Fluoride varnish needs to be reapplied to maintain its preventive effect, however (Seppä et al. 1984). Caries reduction has usually been greater with fluoride varnishes than with any other topical fluoride (Axelsson et al. 1987, Seppä & Pöllänen 1989). Fluoride varnish has been shown moderately cost-effective (Petersson & Westerberg 1994). Its frequent use is now common, especially in all the Nordic countries (Kalsbeek & Verrips 1990), Duraphat® varnish, being most widely used of all preventive methods in Finnish public dental clinics in the 1990s (Kärkkäinen 1997). Although many topical fluorides have been shown to have preventive effects on caries (Axelsson et al. 1987), the cariostatic effect of the Duraphat® and Fluor Protector® fluoride varnishes has been shown to be no longer detectable two years after the treatment was terminated (Seppä et al. 1984).

Applications of the Duraphat® 1-2 times a year have been accepted as normal prevention for schoolchildren at the municipal health centres of Finland, according to the latest information available on the optimal use of fluoride varnish (Seppä & Tolonen
Fluoride varnish provides additional benefits for children with high caries activity even when the intake of fluoride from other sources is optimal (Seppä et al. 1982). Applications on a more frequent basis than half-yearly were recommended in some reports (Modéer et al. 1987, Axelsson et al. 1987, Seppä & Tolonen 1990). A meta-analysis of eight randomised clinical trials out of 30 studies of Duraphat® varnish resulted in a caries reduction of 38% (Helfenstein & Steiner 1994a). More recently, a review of fluoride varnishes has concluded that their efficacy for caries prevention in school-aged children is equal to that of other topical fluoride vehicles (Belfrán-Aguilar et al. 2000). It is possible that improved oral hygiene and the use of fluoride may have a synergistic effect (Rølla & Øgaard 1991), but it has also been shown that none of the fluoride-methods altered the pre-established patterns of caries development among children (Bruun et al. 1985).

2.7.2 Antimicrobial therapy

2.7.2.1 Chlorhexidine in caries prevention

Antimicrobial preventive procedures have the effect of reducing the development of caries (Loesche et al. 1989, Tenovuo et al. 1992). The bis-biguanide chlorhexidine selectively suppresses the growth of some types of micro-organism which are associated with the development of caries lesions (Maltz et al. 1981, Marsh 1993), and constitutes an effective caries preventive method because the bacteria involved in the decay process, especially mutans streptococci, are sensitive to it (Malz et al. 1981 Meurman 1988, Tenovuo et al. 1992, Emilson 1994). The effectiveness of chlorhexidine on caries prevention has been reviewed (Kidd 1991, Emilson 1994). Chlorhexidine has been shown to reduce mutans streptococci in saliva and plaque, the effect lasting only from three to six months and therefore the treatment should be repeated after 4–12 weeks (Malz et al. 1981, Zickert et al. 1987). Only a slight long-term cariostatic effect was found two years after discontinuation of chlorhexidine treatment (Zickert et al. 1987), whereas it has been shown that mutans streptococci in saliva can be greatly reduced by repeated short-term applications of chlorhexidine (Maltz et al. 1981, Ostela & Tenovuo 1990).

Prophylactic methods with fluoride or chlorhexidine affect caries mostly on smooth surfaces, fairly in approximal sites, but not on fissure caries (Axelsson et al. 1987, Petersson et al. 1998). Among the individually used clinical preventive measures, the effectiveness of the application of fluoride varnish to the enamel of permanent teeth has been studied (Seppä et al. 1994), and the effect of treatment with chlorhexidine on the oral flora has been tested in clinical trials (Ostela et al. 1990, Tenovuo et al. 1992).

Chlorhexidine has been used in dentistry in three ways: in water solutions, in a gel, or in toothpastes. Its effect on mutans streptococci is about the same in all cases, including tooth brushing with a gel or solution, varnish or a gel applied with an individual tray.

A meta-analysis of the caries-inhibiting effect of chlorhexidine treatment resulted in an inhibiting effect of 46%, and multiple regression analysis showed no significant influence.
of the variables "application method", "application frequency", "caries-risk", "fluoride regime", "caries diagnosis" or "tooth surface" (van Rijkom et al. 1996). (Table 3)

Table 3. Vehicles and methods for application of chlorhexidine (CHX) according to Rijkom et al. (1996) and Splieth et al. (2000).

<table>
<thead>
<tr>
<th>Vehicles</th>
<th>Authors</th>
<th>Application methods</th>
<th>Application frequencies</th>
<th>Risk group</th>
<th>Tooth surfaces</th>
<th>Follow-up years</th>
<th>Age group year</th>
<th>Prevent. fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHX-mouthtrines</td>
<td>Spets-Happonen et al. 1991</td>
<td>0.05% rinse 1/day at school + 1/ day at home</td>
<td>2/day, 5 days/ every 21 days</td>
<td>high</td>
<td>all</td>
<td>2.75</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>CHX-gel</td>
<td>Linquist et al. 1989</td>
<td>1% gel professionally applied</td>
<td>every 90 days includ. floss</td>
<td>high</td>
<td>all</td>
<td>2.0</td>
<td>13</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>Gisselsson et al. 1988</td>
<td>1% gel professionally applied</td>
<td>high</td>
<td>approx.</td>
<td>12</td>
<td>44</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zickert et al. 1982</td>
<td>1% gel professionally+ 1/day at home applied</td>
<td>14 consec. days, every 120 days</td>
<td>high</td>
<td>approx.</td>
<td>1.8</td>
<td>13-14</td>
<td>68</td>
</tr>
<tr>
<td></td>
<td>Landström & Krasse 1987</td>
<td>1% gel</td>
<td>2/day, every 30 days</td>
<td>high + orthod.</td>
<td>all</td>
<td>1.8</td>
<td>11-15</td>
<td>26</td>
</tr>
<tr>
<td>CHX-gel + CHX-rinse</td>
<td>Axelsson et al. 1987</td>
<td>0.2% rinse supervised + gel profession. applied</td>
<td>every 180 days</td>
<td>high</td>
<td>approx.</td>
<td>2.5</td>
<td>13</td>
<td>38</td>
</tr>
<tr>
<td>CHX-toothpaste</td>
<td>Dolles & Germo 1980</td>
<td>2% toothpaste at home</td>
<td>2/day, every day</td>
<td>non</td>
<td>selected</td>
<td>2.0</td>
<td>13</td>
<td>no</td>
</tr>
<tr>
<td>CHX-varnish</td>
<td>Splieth et al. 2000</td>
<td>1% CHX-V Cervitec®</td>
<td>3 monthly</td>
<td>high</td>
<td>surfaces at risk</td>
<td>1.0</td>
<td>8-10</td>
<td>42.3</td>
</tr>
</tbody>
</table>

High = selected high-risk groups
Prevented fraction = (new DFS (control) - new DFS [exp.1])/ new DFS (control). (Rijkom et al.1996)
1% CHX-gel brushing +1% CHX-1%Thymol* varnish application, 3 min/3month in the high-risk children (n = 29) and in the control group (n = 25) 1%
CHX-gel brushing only. No significant differences between the groups in respect to caries reduction (Splieth et al. 2000).

2.7.3 Counselling for diet and oral hygiene

The importance of regular meals, restriction of sugar consumption and replacement of sugar with non-fermented sugar substitutes, avoidance of juices sweetened with sugar, use of fluoride tablets and regular brushing of the teeth with fluoride toothpaste, have
been the main topics in counselling schoolchildren and their parents in dental health at the health centres in Finland. Instruction of tooth brushing with fluoride containing toothpaste was provided in groups at schools and at day care centres in the 1990s, and small children have been supplied with fluoride tablets free of charge since the 1970s. These procedures have been gradually discontinued, however, because of staff restrictions and new information of the low effectiveness of preventive programmes (Klein et al. 1985, Wei & Yiu 1993, Riordan 1997). Nevertheless, it has been suggested that the habit of daily tooth brushing is important as a form of health education at day care centres (Schröder & Granath 1983, Paunio et al. 1993), and the topic is now addressed in the form of more intensive counselling for better home care, including the use of xylitol as the best substitute for sugar and a recommendation for brushing the teeth with a fluoride toothpaste. According to the current knowledge, xylitol chewing gum and tablets are nowadays widely recommended for caries control in infants and schoolchildren in Finland (Isokangas 1989, Birkhed 1994, Kärkkäinen 1997, Alanen et al. 2000).

The risk of caries has been shown to increase significantly with increasing sugar consumption only when oral hygiene is simultaneously poor (Kleemola-Kujala, & Räsänen 1982), so that children with clean teeth have little caries. Schröder & Granath (1983) observed dental plaque to be a risk factor but some authors have reported no significant correlation between oral hygiene and dental caries (Ainamo & Parviainen 1989). The frequency of tooth brushing has shown to be more closely correlated with caries than dietary factors, however (Stecksén-Blicks & Holm 1995). The 12-month results of a study to control occlusal caries in the first permanent molars by means of hygiene suggested that there were no significant differences between the preventive effects of a professional tooth cleaning application and oral health education programme, and a programme based on selective fissure sealing and the application of topical fluoride (Arrow 1997). Axelsson et al. (1993), in their study have reported good results obtained with a needs-related preventive programme for caries in schoolchildren provided by hygienists.

Pupils' dental health has been explained by their self-care practices in combination with their wish to adopt positive patterns of dental health behaviour in the future (Freeman et al. 1993). Parents of healthy children had a statistically higher level of education than those of diseased children (Milén et al. 1986, Hunt 1990). The awareness of a population is more important than merely teaching facts (Kimby et al. 1991), and it has been suggested that increased dental awareness and regular professional and home oral health care have contributed to the sharp decline in dental caries in many parts of the world (Slieth & Mayer 1996, Axelsson et al. 1993, Wei & Yiu 1993). Self-care in the form of the substitution of xylitol for sugar products (Isokangas et al. 1989, Birkhed 1994, Alanen et al. 2000) and tooth brushing with fluoride toothpastes (Ainamo & Parviainen 1989, Bratthall et al. 1996) may be the right way to promote dental health.

2.7.4 Sugar substitutes

One of the main conclusions of the “Vipeholm study” is that sugar in sticky between-meal products is associated with high caries activity (Birkhed 1989). This finding also
stimulated research on sugar substitutes, which do not support acid formation in dental plaque. On the other hand, using chewing gum as agent for sugar substitutes, simultaneously the protecting and healing properties of saliva came in use, and favourable results have been achieved (Birkhed 1994, Edgar 1998, Alanen et al. 2000). Comparison of fermentable sugars with non-fermentable sugars and artificial sugar substitutes are shown in Table 4.

Table 4. Comparison of sugars with fermentable, non-fermentable polyols and artificial sugar substitutes. (Imfeld 1994, Edgar 1998)

<table>
<thead>
<tr>
<th>Chemical characteristics of carbohydrates</th>
<th>Sugars and sugarsubstitutes</th>
<th>Cariogenicity</th>
<th>Antibacterial activity</th>
<th>Sweetness related to sucrose = 1</th>
<th>kJ/g kcal/g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sucrose (disaccharide)</td>
<td>glucose+fructose, fructose,</td>
<td>highly cariog.</td>
<td>no</td>
<td>1.0</td>
<td>17 (4)</td>
</tr>
<tr>
<td>(monosaccharide)</td>
<td>lactose</td>
<td>cariogenic</td>
<td>no</td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td>Hexitols</td>
<td>sorbitol*, mannitol</td>
<td>low cariogenic</td>
<td>no</td>
<td>0.6</td>
<td>17 (4)</td>
</tr>
<tr>
<td>Pentitols</td>
<td>xylitol**</td>
<td>non-cariogenic</td>
<td>yes</td>
<td>1.0</td>
<td>17 (4)</td>
</tr>
<tr>
<td>12- carbon polyols</td>
<td>maltitol, lactitol palatin</td>
<td>low cariogenic</td>
<td>no</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mix. of two 12-carbon polyols</td>
<td>lycasin</td>
<td>low cariogenic</td>
<td>no</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrogenated starch hydrolysate</td>
<td>saccharin, cyclamat, aspartam</td>
<td>non-cariogenic</td>
<td>no</td>
<td>200-500</td>
<td>0 (0)</td>
</tr>
</tbody>
</table>

*sorbitol is non-cariogenic in chewing-gum
**cariogenic bacteria do not ferment xylitol

The “Turku sugar study” started as an attempt at finding substitutes for sucrose (Scheinin et al. 1975). Xylitol emerged as the best non-fermentable sweetener. Xylitol appears to promote the conversion of mutans streptococci to less acidogenic strains and enhances remineralisation (Winston & Bhaskar 1998). Xylitol-sweetened gum, in addition to stimulate saliva flow, also exerts an antimicrobial effect in plaque (Edgar 1998).

Restriction of the consumption of products sweetened with sucrose (Scheie et al. 1998) and the use of xylitol (Isokangas et al. 1989, Mäkinen et al. 1996, Söderling et al. 2000) can reduce the counts of mutans streptococci for a certain period. Xylitol sweetened gum has been well accepted, thus eliminating the possibility of caries development (Nordblad et al. 1995, Edgar 1998, Alanen et al. 2002). Recently, the effect of xylitol for caries reduction has been shown to be superior to that of biannual CHX or F varnish applications (Söderling et al. 2000). Due, to the evidence based knowledge of the effect of xylitol on caries, chewing gum and tablets have recently been widely recommended in Finland for infants and schoolchildren, and for all patients with a high caries risk. Even xylitol-campaignes have been organised at schools as an educational tool (Nordblad et al. 1995).
2.7.5 Sealants

Sealants are used to prevent caries and the need for dental restoration on the occlusal surfaces of the posterior teeth, which are those at the greatest risk of developing caries. The population at risk of developing occlusal caries is the target group for sealant therapy, while the population with a low risk of developing caries may be over-treated with the use of sealants (Swango & Brunelle 1983). The long-term benefit of using sealants on permanent teeth has been well documented in studies lasting as long as six to 15 years (Houpt & Schey 1983, Vehkalahti et al. 1991, Dennison et al. 2000). Occlusal sealants reduced the number of carious surfaces by one or two over four years (Klein et al. 1985), and in a recent five-year retrospective study of a population with low caries incidence, fifteen sealed first molars or 10 sealed second molars resulted in the prevention of one occlusal restoration. This latter result cannot be considered sufficient in terms of the cost-benefit ratio of the interventions, and it is clear that for sealants to be effective, they must be allocated to children at risk and not routinely (Dennison et al. 2000). Both fissure sealing and fluoride can be highly effective against fissure caries in newly erupted teeth. Fluoride-releasing sealants, representing a new preventive method, have proved to be effective for caries prevention (Murray 1993). An evaluation of sealant programmes (Llodra et al. 1993) showed that their effectiveness is higher in populations exposed to fluoridated water, but that they do not perform well relative to other dental care programmes.

2.8 Economic evaluation

The importance of the costs of promoting health has been under discussion for many decades, and the recent literature on health services contains many statements that stress the importance of cost-benefit (CB) and cost-effectiveness (CE) analyses for the allocation of resources to or within the health sector (Garcia 1989, Sintonen & Linnosmaa 2000). Health economics is involved with problems of priority and the application and combination of resources (Sintonen et al. 1997). The input consists of all resources consumed, e.g. personnel, time, facilities, equipment and knowledge, and can also be expressed in monetary terms, i.e. as costs (Drummond 1987). The production process comprises the combined resource activity needed to generate the output, i.e. products or services. The effectiveness of the production process is related to the net achievement of the goals, while the efficiency of the production process is a function of both its effectiveness and the actual input (Sintonen et al. 1997). Both effectiveness and efficiency are relevant when considering whether to implement a preventive programme in a population. It must be emphasized, however, that the economic comparison of different preventive activities is only relevant if the outcome is of the same financial value (Drummond 1987).

Economic evaluation provides a comparative analysis of alternative courses of action in terms of both their costs and their consequences (Drummond et al. 1987). Dental health is easier to measure than is the output of most other health programmes. Measures of the success of programmes or changes in clinical measures in the field of dental health,
and of the savings in terms of costs, are the aspects most frequently studied. When it
comes to collective measures, certain criteria must be met. The measures should be
technically uncomplicated, easy to administer, inexpensive and highly effective. With
such comprehensive programmes, cost-efficiency is essential. (Yule et al. 1986)

A fairly small proportion of the economic evaluations that have been carried out of
public health care apply to the field of dentistry (Warner 1989). Some economic
evaluations of the productivity in the field of dentistry, in Finland, include a productivity
comparison between private and public dentists (Sintonen et al. 1986), comparison of
dental care in health centres (Utriainen & Widström 1990), and a study on the
productivity of public oral health care in seven health centres (Vehkalahti & Helminen
1994). In addition, Nordblad et al. (1996) studied technical efficiency in public health
centres in Finland using the Data Envelopment Analysis (DEA).

2.8.1 Cost-effectiveness analyses

Analyses in which costs are related to a single common effect that may differ in
magnitude between the alternative interventions are usually referred to as cost-
effectiveness analyses (Drummond et al. 1987). The results of such comparisons may be
expressed either in terms of cost per unit effect or in terms of effect per unit cost. Cost-
effectiveness analysis (CEA) tries to find which of the alternatives exhibits the highest
cost-effectiveness ratio (Sintonen et al. 1997). Evaluations that measure both costs and
consequences of the alternatives in terms of money are usually called cost-benefit
analyses (Drummond 1987). Studies using cost-benefit analysis (CBA) in dentistry
typically measure the outcome in terms of the savings associated with the health
programmes being evaluated. The problems entailed in CBA led to a decline in its use in
the late 1970s, when analysts became more interested in CEA (Gaspari 1983). By
comparison with other dental health programmes for the prevention of caries, fluoridation
programmes tend to perform well (Sintonen & Linnosmaa 2000). Comparisons of cost-
benefit (CB) and cost-effectiveness (CE) ratios have been made between community
water fluoridation, school water fluoridation, weekly fluoride mouth rinses at school and
sealant programmes conducted at schools with the result that the community water
fluoridation programme had the highest benefit-cost ratio among the programmes studied
(Niessen & Douglas 1984). In a cost-effectiveness assessment of Klein et al. (1985),
analysis of the dental examination data of 20,052 schoolchildren showed that dental
health lessons, brushing and flossing, fluoride tablets and mouth rinsing, and
professionally applied fluoride were not effective in reducing caries essentially, even
when all these procedures were used together. Children who were especially susceptible
to decay did not benefit appreciably more from any of the preventive measures than did
children in general. Annual direct per capita costs were $23 for sealant or fluoride gel
applications and $3.29 for fluoride mouth rinsing. Communal water fluoridation was
reaffirmed as the most cost-effective means of reducing caries. Manau et al. (1987), in
their study compared the CE of a fluoridation programme with corresponding measures
for school mouth rinsing and tooth brushing programme and came also to the conclusion
of the superiority of water fluoridation.
Mitchelle & Murray (1989) concluded from early clinical trials that fissure sealants were cost-effective relative to fillings, but that they were inferior to other fluoride programmes in terms of their CB and CE ratios. When targeted at the subpopulation of high-risk children, however sealants can become cost-effective for protecting pit and fissure surfaces (Akehurst & Sanderson 1993). Fluoride tablets in a pre-school program, showed to be most effective in primary dentition, the cost-effect ratio being 1:1 for both primary and secondary dentition (Widenheim & Birkhed 1991). In an economic evaluation of three caries preventive strategies, including fluoride varnish, a CHX-fluoride solution, and the usual prevention provided for a control group, Vehmanen (1993) in her randomised field study, in children aged 13-14 years with a risk of caries, did not find any statistical difference between the groups in terms of net caries increments or caries restoration costs over two-year and four-year periods. The use of xylitol chewing gum in adolescents was shown to be moderately cost-effective first after 10 years ahead from the start of the trial (Virtanen et al. 1996).
3 Aim of the present research

The possibility of transmission of mutans streptococci from child to child was studied in the course of a programme to reduce the spread of infectious diseases among children at the municipal day-care centres (I). The purpose was to analyse the predictive value of a series of caries risk indicators with respect to the 11-month caries increment, and the combined effect of the risk indicators and their interaction on the caries increment in adolescents, in order to find the most suitable model for screening caries risk subjects and for directing an intensive prevention programme at them (II, III). Further the efficiency of intensified prevention targeted at the selected risk groups was analysed (IV), and the cost-effectiveness of the preventive measures was assessed (V).

3.1 Hypotheses

1. Tooth brushing at day-care centres is one risk factor for the transmission of mutans streptococci (ms) from one child to another, increasing the risk for caries. (I)
2. A series of caries risk indicators tested in adolescents result in a suitable model for screening purposes. (II, III)
3. The strategy of targeting prevention at selected risk groups leads to a reduction in caries in these groups, and comparison of the groups by the survival analyses method enables the long-term effect on dental health to be determined. (IV)
4. In the long term the intensified preventive procedures provided for the risk groups and an appropriate reference group are more cost-effective than the conservative treatment model of filling the teeth. (V)
4 Materials and methods

4.1 Subjects (papers I, II, III)

Paper I. Oral health factors were surveyed in 677 children aged from 1 to 8 years, mean 4.9 years, divided more or less equally between a set of 10 intervention day-care centres and 10 control day-care centres in the city of Oulu. The numbers and ages of the children were similar in each group of centres.

Paper II, III. The baseline population (II) consisted of 221 schoolchildren born in 1974, 1975 and 1976, their mean age being 13 years 3 months, range 11 years 10 months to 14 years 11 months, who were provided with free public oral health services at dental clinics close to their schools in 5 areas of the city of Oulu. The population base of the city was about 110 000 inhabitants. There were sixteen drop-outs due to change of address, illness or medication, so that 205 subjects, 114 boys and 91 girls, were observed over the 11-months period, including 24 children receiving orthodontic treatment (II, III).

4.2 Risk groups (IV, V)

Paper II, IV. After the 11-month observation time and the obtaining of the test results, the risk groups were selected. All 109 individuals with four or more positive risk indicators were considered to have a high risk of caries and were provided with intensive prevention for one year, using either chlorhexidine (CHX group) or fluoride varnish (F group). The 86 subjects with three or fewer positive tests were regarded as forming the low risk group (LR group) and were provided with basic prevention. In order to obtain a reference (Ref) group representing the normal health centre population provided principally with basic prevention, a sex and age-matched control was chosen for each test subject. The patients’ records at Oulu Health Centre, where all the 390 participants were examined and treated, were used as documents. The measure of effectiveness of the intervention was the number of fillings saved in the test groups relative to those in the control group. Cost-effect
analysis was assessed for the test groups in respect to the additional costs of the preventive procedures.

4.3 Description of the study (I, II, III, IV, V)

Summary of subjects and description of the papers (I, II, III, IV, V) is presented in Figure 1.

Fig. 1. Summary of study periods including the number of participants, follow-up periods and subgroups

Paper I. A follow-up survey of infectious diseases and oral health factors was conducted at 20 municipal day-care centres chosen at random from the total of 53 such centres in the city of Oulu, 10 serving as intervention centres and the other ten as control centres. Since the evaluation of the occurrence of mutans streptococci in children at the day-care centres was directed towards reducing the spread of infectious diseases, the intervention included the withdrawal from tooth brushing.

Children, older than two years of age, had individual toothbrushes and mugs at the day-care centres, where the staff supervised daily tooth brushing. No toothpaste was used,
because the personnel at the day-care centres were not able to control the adequate use of it. Dental nurses instructed at least once a year the children and day-care staff in tooth brushing. Pre-school children usually visit a local municipal health clinic once a year when instructions concerning nutrition, tooth brushing and the use of fluoride, and xylitol products as sugar substitute, are given to the parents. Children over 4 years of age are recommended to use a little amount of fluoride toothpaste or low-fluoride toothpastes.

Papers II and III. The initial aim was to conduct a pilot study to serve the author’s own clinical interests, but the project was later expanded into a follow-up study covering the years 1988-1991. The participants for the study were chosen from five areas and schools in the city of Oulu. The children had a yearly dental examination and received treatment in all fields of clinical dentistry at the local Municipal Health Centre clinics. Fluoride varnish was applied topically once or twice a year for all subjects. Before commencement of the research in November 1988, all the necessary restorative procedures were completed. According to the study protocol the subjects were asked to refrain from eating and smoking for one hour before the salivary tests were performed, and not to brush their teeth on the morning of the examination. Anyone who had taken medication that was likely to reduce the salivary secretion rate and/or antibiotics within two weeks prior to the day of examination was to be excluded. No subjects had to be excluded for violating the protocol with respect to smoking, and those who had to be excluded were recalled after an appropriate interval. The subjects did not receive topical applications of chlorhexidine before or during the study. The clinical examinations were carried out in the mornings over a three-month period at the clinic closest to the schools of the participants. One experienced dentist (M.R.) interpreted the saliva tests, and aided by a dental assistant kept the clinical records and performed the diagnostic tests.

The clinical examination and the salivary tests were performed three times at intervals of about one year. The results of the first examination were not explained either given to the participants or to the dentists in charge of treatment at the clinics. When the second examination was conducted, after 11-month observation period, the individual tests were interpreted, and this time the participants were informed of the results. However, the analyses required for the multi-factorial modeling had not yet been completed or reported. Thus it was decided that intensive preventive measures should be targeted at those children who were considered to have a high risk of caries. The implementation of the risk strategy was started as soon as possible for ethical reasons, in order not to drop the standard of prevention in general. The criteria for selecting the subjects at risk on the basis of the results of the tests were gathered from the available literature.

Paper IV. Later an interest arose in evaluating the long-term effect of the preventive methods provided for the intervention groups. The risk groups were compared with an age and sex matched reference group chosen from the normal population of schoolchildren

Paper V. The economic evaluation included the material and salary costs involved in the prevention measures focused on the risk groups and the costs of fillings in all the groups. The costs of the fillings in the risk groups were compared with those for a reference group representing the normal school population provided with basic prevention at the
end of the intervention and after the follow-up. The costs of prevention were calculated for periods before, during and after the intervention and were compared with the costs of fillings, determined respectively for the intervention groups.

4.4 Methods

4.4.1 Evaluating the occurrence of mutans streptococci in children at day-care centres

At the beginning of the follow-up the first test with Salivary strip Mutans was performed, and tooth brushing was withdrawn at the intervention DCCs. The Dentocult® SM Strip Mutans method (Orion Diagnostica, Espoo, Finland) was used to estimate the counts of salivary mutans streptococci (Jensen & Bratthall 1989), after pre-stimulation of salivary secretion by chewing paraffin wax for 2 min. The tests were performed at the day-care centres in the mornings by oral hygienists or dental nurses from the local Municipal Health Centre and covered a total of 506 children in September 1991 and 358 in May 1992. Altogether 170 children at the intervention centres and 175 children at the control centres underwent both tests at an interval of 8 months. The results were expressed on a scale 0, 1, 2 and 3, corresponding to no growth, $<10^5$, 10^5-6 and $>10^6$ colony forming units per ml (CFU/ml), respectively. One experienced dentist (M.R.) interpreted all the tests. The data for past caries experience in the deciduous teeth (dmf) were taken from the children’s dental records. This data was available for 177 children as was data on caries lesions (ds) for 162 children. Before the commencement of the study a pilot study was conducted with 37 children aged 3–7 years on two occasions. The first SM test resulted in 58% positive tests and the second SM test respectively in 48%. Dental health habits were evaluated by means of a questionnaire with multiple-choice items to be filled in by parents at home and returned to DCCs.

4.4.2 Clinical evaluation (II, III)

Coronal caries, including deep enamel and dentinal caries lesions, was recorded on a tooth surface basis (WHO codes 2-4; WHO 1979). White spot lesions located on buccal and lingual tooth surfaces were recorded when the cervical border was 1.0 mm from the gingival margin (WHO code 1; WHO 1979).

Filled surfaces, sealants and the numbers of erupted teeth were recorded clinically. White spots were not included in the DFS index. The caries increment ΔDFS was calculated as the difference between the results of the 11-month and baseline examinations. Any increase in the DFS index was considered as a sign of caries activity.

Visible plaque index was calculated as the percentage of teeth with visible plaque buccally and/or lingually. Gingivitis index was based on clinical signs of inflammation,
i.e. bleeding, swelling and redness, and was calculated as the percentage of teeth with one or more signs.

4.4.3 Salivary tests (II, III)

Salivary tests were performed for salivary secretion rate, buffer effect, sucrase, mutans streptococci, lactobacilli and yeasts/Candida.

Salivary secretion rate. Salivary secretion was first pre-stimulated by chewing paraffin wax for 2 min, followed by the inoculation for the mutans test and a continuation of chewing for 5 min. Saliva was collected during the latter phase, its buffer effect and sucrase activity were measured. The rest of the saliva was used for the dip-slide tests for lactobacilli and yeasts/Candida. All these procedures will be described below.

Buffer effect. The buffer effect was measured using Dentobuff® (Orion Diagnostica, Espoo, Finland), which is based on a colorimetric screening method (Frostell 1980). In this the colour of the sample was matched to a model chart supplied by the manufacturer and the result expressed in terms of nine pH scores at 0.5 intervals, range pH 3.0 to 7.

Sucrase activity. The activity of sucrose-cleaving enzymes was measured by adding 50 mg of crystalline sucrose to 1.0 ml of stimulated saliva, shaking the sample until the crystals had dissolved and leaving it to stand at room temperature for 30 min. (Hämäläinen et al. 1988). The glucose content was measured with a Dextrostix TM strip (Ames Division, Miles, Algol AB, Helsinki, Finland), which was interpreted by reference to the manufacturer’s colorimetric chart. The result was expressed in scores of 0, 1.5, 2.5, representing sucrase activity values, \(\geq 50 \mu \text{mol/min} \cdot \text{mg}^{-1} \times (10^{-3}) \).

Mutans streptococci (ms). The Dentocult® SM Strip Mutans (Orion Diagnostica, Espoo, Finland) was used to estimate salivary counts of mutans streptococci (Jensen & Bratthall 1989). Salivary secretion was stimulated, by chewing paraffin wax for 2 min. before the MS test was performed. Both sides of the strip were brought alternately into light contact with the tongue several times and drawn out through lightly closed lips. The strip was incubated at 36°C for two days in its vial, and the colony density was read using the manufacturer’s density chart. The result was expressed as scores 0, 1, 2, and 3, corresponding to no growth and about \(< 10^3 \), \(< 10^4 \), and \(> 10^6 \) colony forming units per ml (CFU/ml), respectively. (I, II, III)

Lactobacilli (LB). The Dentocult®-LB method (Orion Diagnostica, Espoo, Finland) was used to determine the salivary lactobacilli counts (Larmas 1975). The inoculated slides were incubated in their vials at 36°C for four days, and the colony density was read off from the manufacturer’s density chart. The results were grouped into five categories corresponding to no growth and about \(10^3 \), \(10^4 \), \(10^5 \) and \(10^6 \) CFU/ml, respectively.
Yeasts. Oricult®N (Orion Diagnostica, Espoo, Finland), a dip-slide method for estimating yeasts (Larmas & Parvinen 1981), was used to determine the salivary counts of yeasts/Candida. The slide was incubated at 36°C for two days in a loosely closed tube, and the density of Candida colonies was read off from the Dentocult-LB density chart.

4.4.4 Evaluation of preventive treatment (IV)

Long-term effect of the preventive methods provided either with chlorhexidine or fluoride varnish for the risk groups was evaluated. The risk groups were compared with an age and sex matched reference group chosen from the normal population of schoolchildren. It has been shown that the documents maintained in the Finnish dental health care system are reliable for research purposes (Vehkalahti et al. 1992, Virtanen 1997, Helminen et al. 1998, Hausen et al. 2001). For a long-term follow-up data on all 390 participants were collected from their dental records at the Oulu Health Centre and survival analysis was used according to Virtanen et al. (1996). The longitudinal analysis was applied separately to each tooth and tooth surface to describe the dental health of the subjects. The observation time was expanded to a life-long retrospective analysis of dental health, i.e. before, during and after the intervention.

Chlorhexidine (CHX) group. Chlorhexidine treatment was provided for 62 children with 4 or more risk factors including one or more white spots (WS) indicating caries activity and a high salivary mutans streptococci (ms) score. The subjects undergoing orthodontic treatment were also included in the CHX group.

The 1% chlorhexidine gel (Hibitane® Dental, ICI Pharma, Espoo, Finland), was applied by dental hygienists to both jaws using standard trays (DS-Fluoride Jelly Applicator No.1; Dental Systems, Helsinki, Finland). The treatment was given three times daily on two consecutive days or twice daily on three consecutive days. After six months a control test for salivary mutans streptococci was performed and the chlorhexidine treatment was repeated in those cases where the finding was still positive. Thereafter the subjects were provided with fluoride lozenges (Fludent® 0.25 mg, Alpharma AS, Oslo, Norway) for use at home for a further year. The F-lozenges were obtained in packages of 7 x 28 tablets, free of charge from the manufacturer. The hygienists checked, that the lozenges had been taken according to the instructions.

Fluoride varnish (F) group. The 47 subjects who had 4 or more other risk factors including white spots but not high counts of mutans streptococci, were provided with applications of varnish containing 2.3% fluoride (Duraphat®, Woelm, Germany. The treatment was given at least 4 times a year by dental hygienists. (Ten subjects who refused the CHX treatment because of duties at school and lack of time were included in the F group).

Low risk (LR) group. The 86 children with no more than three of positive tests were considered to form a low risk group with regard to caries and were subjects to basic prevention measures.
Reference (Ref) group. In order to obtain a reference group representing the normal health centre population receiving mainly basic prevention, a sex and age-matched control was randomly chosen, individually for each test subject (n = 195) so that date of birth was within one month of the subject’s birthday.

4.4.5 Economic evaluation (V)

The aim of the cost-effectiveness analysis (CEA) was to compare the value of the dental health benefit achieved by means of the intervention with the material and salary costs entailed in the preventive procedures provided for the risk groups. Thus the costs considered here were the additional costs of preventive procedures directed at caries alone, and the measure of effectiveness was the number of fillings in the test groups relative to those in the reference group at the end of the intervention and after the whole follow-up period.

4.4.5.1 Costs of the intervention

The costs of the preventive methods were calculated separately for the groups provided with applications of either chlorhexidine gel (CHX group) or fluoride varnish (F group and LR group), including both the costs of materials and the salary costs of the dental hygienists, at the 1991 level.

Chlorhexidine (CHX) group (n = 62). Each 1% chlorhexidine tube (Hibitane® Dental, ICI Pharma, Espoo, Finland) contained 100 ml gel, and the gel was applied with trays to both jaws at a rate of 5 ml 3 times on two consecutive days or twice on three consecutive days (Ostela et al. 1990), i.e. 5 ml gel x 6 treatments = 30 ml gel for each subject. The time reserved per person for each treatment and other relevant procedures was 15 minutes. The counts of mutans streptococci were checked after half a year with the SM strip test (Zickert et al. 1987), and the 40 subjects who still had high values (SM ≥ 3) were retreated. The costs of materials, including the price of the chlorhexidine gel (2.5 €/tube) and the SM strip test (2.6 €/test) and the working hours of the hygienists were counted. The time required to perform the SM test and other relevant procedures, such as incubation, keeping the records etc., was estimated to be 15 minutes per subject. The salary cost of one working hour for a hygienist was 8.7 €. After the one-year intervention, prevention was continued in the CHX group for a further year with the fluoride lozenges (Fludent® 0.25 mg F, Alpharma AS, Oslo, Norway), administered at home. The dealer provided the lozenges for the study free of charge for one year.

F group (n = 47). The subjects in the F group received applications of fluoride varnish from dental hygienists four times a year. The price of a Duraphat® tube (30ml) was 71.7 €, and each application contained about 1.2 ml and took 15 minutes to perform, including other relevant procedures. The costs of four Duraphat® applications per subject were calculated.
LR group \((n = 86)\). The costs of applications of 1.2 ml fluoride varnish (Duraphat®) twice a year, taking 10 minutes per subject/treatment, were calculated.

4.4.5.2 Costs of basic prevention

Fluoride varnish (Duraphat®) was applied to the teeth of all schoolchildren once or twice a year at the health centre clinics. It was assumed that a mean of one application per subject was provided, although the low-risk group in the present trial received applications twice a year. The costs of this regular procedure were not counted, other than for the low-risk group, at the rate of one fluoride application per subject.

4.4.5.3 Costs of fillings at estimated prices

The costs of filling teeth or tooth surfaces were counted at the 1991 price level, according to Virtanen et al. (1996). Restoration on one surface of a molar or premolar was estimated to cost 25.2 €. An additional restoration on the same tooth was estimated to cost 8.4 € per surface. Restoration of one approximal surface of an incisor or canine was considered to cost 33.6 € and the additional surfaces 16.8 € each.

4.4.5.4 Cost-effectiveness of the intervention \((V)\)

In the cost-effectiveness analysis (CEA) the price of the dental health benefit achieved through the intervention was compared with the material and salary costs used for the preventive procedures in the risk groups, yielding the additional costs of the preventive procedures because of caries alone. The measures of effectiveness were the numbers of fillings in the risk groups as compared with the reference group at the end of the intervention and after the follow-up period.

The costs of the prevention methods were counted for the groups provided with applications of either chlorhexidine gel (CHX group) or fluoride varnish (F group and LR group), including both the costs of materials and the salary costs of the dental hygienists, at the 1991 level.
4.5 Statistical evaluation

4.5.1 Analysis of mutans streptococci (ms) affecting the occurrence of caries in the children at day-care centres (I)

The χ^2-test was used for comparing frequencies, and the t-test for analysing the differences in dmf values between those with ms in their saliva and those without ms. Multivariate logistic regression modeling was used to analyse the factors explaining dmf, and multivariate logistic regression analysis to determine the associations of all the risk factors with the occurrence of mutans streptococci. The results of the SM test were classified as negative or positive. If the test was positive on only one of the occasions it was interpreted as positive in the logistic regression analysis and bivariate analysis.

4.5.2 Analyses of single indicators in relation to caries increment (II)

All the variables were evaluated for dichotomization at several cut-off points on the basis of the best combination of sensitivity and specificity (Thorner & Remein 1961). The variables were further analysed through ratios measuring the accuracy of prediction (percentage of correct predictions), positive and negative predictive values (Vecchio 1960), as the RR and the OR (Fleiss 1981). The significance of the observations and the effects of age, sex and orthodontic treatment were evaluated using the χ^2-test or t-test, at the significance level $p < 0.05$. The SAS statistical software was used for data management and the statistical tests (SAS Institute Inc., 1985). Fisher's exact tests were performed for testing the hypothesis of independency between the study groups (ORT and Main, n = 181) and microbiological tests.

4.5.3 Multi-factorial modeling (III)

The 11-month caries increment ΔDFS was used as the dependent variable in the multi-factorial modeling. All the risk factors, together with past caries experience, sex and age, the latter dichotomised into < 13 and \geq 13 years, were used as independent variables. Logistic regression analysis was used to estimate differences in the logarithmic risk of caries activity. The models were developed in accordance with Kleinbaum et al. (1982) using the BMDP statistical software (Dixon 1990). Initially, all univariate factors were included, and subsequently, all possible two-factor interaction terms were added one by one, and those found significant and "rational" were included. Non-significant terms were then excluded from the model. The final model was the most parsimonious and clinically rational one. As sex had a significant effect on caries increment, the analyses were initially performed for boys and girls separately.

Although the analyses resulted in different models for boys and girls, they were also carried out for both sexes combined. Additionally, a separate analysis of initially caries-
free subjects was carried out. Odds ratios (OR) for a risk of caries and their confidence intervals were calculated for the variables in the final model (Fleiss 1981). In addition, sensitivity, specificity (Thorner & Remein 1961) and positive and negative predictive values (Vecchio 1966) were calculated, together with the percentage of correct predictions and the relative risk associated with the final model when the best clinically practicable criterion was used for screening.

To summarize the information obtained, Receiver Operating Characteristic (ROC) curves were employed (Helfenstein & Steiner 1994b, Hausen 1997). The values of the true positive rate (sensitivity) at different cut-off levels of the predictors were plotted against the false positive rate (100-specificity) at the respective levels and presented as ROC curves.

4.5.4 Analysis of dental health in the study groups (IV)

The risk groups were compared with an age and sex matched reference group chosen from the normal population of schoolchildren, and life-long data on all 390 participants were collected from their dental records at the health centre. An application of survival analysis method (Virtanen et al. 1996) was considered suitable for a follow-up evaluation of the effect of the short-term intervention. The analysis was applied taking as the starting point the time of tooth eruption and as the event the first filling due to dental caries. The observation time was expanded to a life-long retrospective analysis of dental health, i.e. before, during and after the intervention. Event history analysis was then employed to obtain the estimated time-to-filling curves for each tooth and tooth surface (Larmas et al. 1995, Virtanen & Larmas 1995). The curves (cumulative distribution function), which were produced separately for the different groups of patients, represent the proportion of new fillings at a certain point of time and are expressions of the speed and timing of caries attack. The statistical significancies of differences between the groups were determined by the log-rank statistics. The number of new fillings, from the start of the intervention to the end of the follow-up were calculated for the intervention and reference groups and compared using the t-test.
5 Results

5.1 Evaluation of the occurrence of mutans streptococci in children at day-care centres

The proportion of the children at the day care centres who had used the municipal health services was 96% and a dental health examination at a local health clinic had been performed on 93% of the children. Pre-stimulation of saliva and sampling were successful even among the youngest children. The rate of positive SM tests in the children varied from 43% to 48%, with no differences between the control and intervention day-care centres. The questionnaire for evaluating dental health habits achieved a response rate of 84%. The children brushing their teeth regularly at home were less to have mutans streptococci (ms) than those brushing irregularly (46.4% vs. 65%), whereas tooth brushing at the day-care centre was not associated with the presence of ms. Tooth brushing at home (p < 0.001), older age (p < 0.01) and female sex (p < 0.05) were significantly associated with a positive SM test in the logistic modeling. The consumption of sweets containing sucrose increased the occurrence of ms, as did irregular use of fluoride tablets. The proportion of children with intact teeth was 72%, and that of children with no caries lesions 76%. The dmf values were similar in the intervention and control groups. The children with positive SM tests had significantly higher mean dmf figures than those with negative tests (p < 0.001). The older age of the child (p < 0.001) was associated significantly with dmf in the multiple regression analysis, whereas consumption of sucrose sweets, the taking of fluoride tablets and the use of xylitol were not associated with dmf.

5.2 Baseline observations (II)

Past caries experience was observed in 60.2% of the 221 participants at the start of the study. The mean values and standard deviations for age, number of teeth, decayed and filled surfaces (DFS), filled surfaces (FS), decayed surfaces (DS), and number of sealants at the baseline examination, are presented for all the subjects in Table 5.
Table 5. Mean values and standard deviations of age, number of teeth (T), past caries experience (DFS), filled surfaces (FS), decayed surfaces (DS) and sealants in all children, in boys and girls, in the main group (Main), and in the orthodontic subgroup (ORT).

<table>
<thead>
<tr>
<th>Variable</th>
<th>All (N = 221)</th>
<th>Boys (N = 122)</th>
<th>Girls (N = 99)</th>
<th>Main (N = 195)</th>
<th>ORT (N = 26)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X</td>
<td>SD</td>
<td>X</td>
<td>SD</td>
<td>X</td>
</tr>
<tr>
<td>Age</td>
<td>13.3</td>
<td>0.9</td>
<td>13.4</td>
<td>0.9</td>
<td>13.1</td>
</tr>
<tr>
<td>T</td>
<td>26.1</td>
<td>3.3</td>
<td>25.8</td>
<td>3.5</td>
<td>26.5</td>
</tr>
<tr>
<td>DFS</td>
<td>3.0</td>
<td>4.4</td>
<td>3.2</td>
<td>4.4</td>
<td>2.9</td>
</tr>
<tr>
<td>FS</td>
<td>2.8</td>
<td>4.0</td>
<td>3.0</td>
<td>4.2</td>
<td>2.5</td>
</tr>
<tr>
<td>DS</td>
<td>0.2</td>
<td>0.8</td>
<td>0.2</td>
<td>0.5</td>
<td>0.3</td>
</tr>
<tr>
<td>Sealants</td>
<td>5.5</td>
<td>2.8</td>
<td>5.3</td>
<td>2.7</td>
<td>5.7</td>
</tr>
</tbody>
</table>

Significant differences between the boys (n = 122) and girls (n = 99) were recorded for visible plaque (≥10%), salivary secretion rate (≤0.9 ml/min) and buffer-effect (≤4.5 pH) so that the boys had higher scores than girls for visible plaque (p < 0.001), salivary secretion rate (p < 0.013) and buffer effect (< 0.001).

Fisher’s exact tests were performed for testing the hypothesis of independency between the study groups (ORT and Main, n = 181) and microbiological tests. Only yeast/Candida resulted statistically significantly, p = 0.002. The distribution of the subgroups and all subjects into the categories, determined by the microbial diagnostic variables at the baseline examination, are presented in Table 6.

Table 6. Distribution (%) of participants in different classes of salivary mutans streptococci (ms), salivary lactobacilli (LB) and yeasts/Candida (Cand) at the baseline examination, including the Main and orthodontic (ORT) subgroups.

<table>
<thead>
<tr>
<th>Microbiological variables</th>
<th>Classes</th>
<th>Main (n = 181)</th>
<th>ORT (n = 24)</th>
<th>All (n = 205)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ms</td>
<td>0</td>
<td>50.3</td>
<td>29.2</td>
<td>47.8</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>14.9</td>
<td>4.2</td>
<td>13.6</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>25.4</td>
<td>25.0</td>
<td>25.4</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>9.4</td>
<td>41.6</td>
<td>13.2</td>
</tr>
<tr>
<td>LB</td>
<td>0</td>
<td>11.6</td>
<td>0.0</td>
<td>10.2</td>
</tr>
<tr>
<td></td>
<td>10'</td>
<td>34.8</td>
<td>12.5</td>
<td>32.2</td>
</tr>
<tr>
<td></td>
<td>10'</td>
<td>20.4</td>
<td>8.3</td>
<td>19.0</td>
</tr>
<tr>
<td></td>
<td>10'</td>
<td>17.7</td>
<td>20.8</td>
<td>18.1</td>
</tr>
<tr>
<td></td>
<td>10'</td>
<td>15.5</td>
<td>58.4</td>
<td>20.5</td>
</tr>
<tr>
<td>Cand</td>
<td>0</td>
<td>70.7</td>
<td>37.5</td>
<td>66.8</td>
</tr>
<tr>
<td></td>
<td>10'</td>
<td>21.6</td>
<td>37.5</td>
<td>23.4</td>
</tr>
<tr>
<td></td>
<td>10'</td>
<td>5.5</td>
<td>8.3</td>
<td>5.9</td>
</tr>
<tr>
<td></td>
<td>10'</td>
<td>2.2</td>
<td>8.3</td>
<td>2.9</td>
</tr>
<tr>
<td></td>
<td>10'</td>
<td>0.0</td>
<td>8.3</td>
<td>1.0</td>
</tr>
</tbody>
</table>
5.3 Follow-up observations (II, III)

The mean caries increment, ΔDFS for the 21% of the subjects (the orthodontic subgroup not included) who developed new caries was 2.4 surfaces, during the 11-month follow-up period. The proportion of subjects with past caries experience who developed caries was 29%, whereas 10% of the initially caries-free subjects did so. Candida (p < 0.01) and white spots (p < 0.05) were significantly associated with ΔDFS in the initially caries-free children, but only sucrase (p < 0.05) in those with past caries experience (II).

The cut-off points when relating the risk indicators to the caries increment were ≥ 1 for white spot lesions, ≥ 1 for past caries experience, ≥ 25% for visible plaque, ≥ 1% for gingivitis, ≤ 0.9 ml/min for salivary flow rate, ≤ 4.5 pH for salivary buffer effect, ≥ 1.5 mmol/min x g prot 10^-3 for salivary sucrose activity, ≥ 10^5 for mutans streptococci, ≥ 10^5 for lactobacilli and ≥ 10^3 for yeast/Candida (II, III).

(II) Visible plaque, gingivitis, salivary secretion rate, buffer effect and mutans streptococci had no significant association with ΔDFS, but sex did significantly influence the relations between the test variables and caries increment. The boys showed significant correlations for Candida and white spot lesions (p < 0.01) and mutans streptococci (p < 0.05), and the girls for past caries experience and gingivitis (p < 0.01), and lactobacilli (p < 0.05). When the boys (n = 101) and girls (n = 80) were analysed together past caries experience (p < 0.01), white spot lesions (p < 0.01), lactobacilli (p < 0.5), Candida (p < 0.01) and sucrose (p < 0.05) were significantly correlated with ΔDFS.

(III) In the multifactorial modeling the final model for the boys included white spot lesions and yeasts/Candida, with a significant interaction between these variables, whereas the final model for girls included age and past caries experience, again with an interaction between them. The estimated OR of being caries active, at the 95% confidence level, in ≥ 13 years old girls was 8.4, when the subject was DFS-positive in comparison with DFS-negative subjects, while DFS had no effect on caries activity in the younger girls. When all the 181 subjects were analysed together, the final model included DFS, yeasts/Candida and sucrase, with interaction between DFS and sucrase. When evaluated for dichotomization at several cut-off points, the best practical criterion proved to be the presence of past caries. The more strict criteria for ΔDFS ≥ 2 or ≥ 3 produced higher sensitivity and specificity combinations, than the model DFS, yeasts/Candida and/or sucrase presenting an accuracy of only 75%. The ability of the model to identify subjects developing caries was 55%, and those not developing caries 80%. Analysis of the caries-free subjects resulted in a model including white spots and yeasts/Candida, with interaction between the variables, and with the criterion “both tests positive”, this model resulted in an accuracy of 88%. When the orthodontic group (n = 24) was included, and 205 subjects in total were analysed, the accuracy of the final model (DFS, Candida, sucrase) was 74%, and respectively for the model of the 75 caries-free subjects 86%. Sensitivity (Sn), specificity (Sp), positive (PV+) and negative (PV-) predictive values, percentage of correct predictions (A) and relative risk (RR) for the final model (DFS, Candida and sucrase) in 205 subjects, and respectively in 75 caries-free subjects for the model (white spots and Candida), are presented in Table 7. The ROC-curve illustrating the relationship of sensitivities and specificities of the variables (DFS, Candida, sucrase) of the final model, where risk scores from a logistic risk function, including the three
predictors, were used for prediction of 11-month caries increment ≥ 1, in 205 adolescents, and the ROC-curve for baseline DFS for comparison, are presented in 2.

Table 7. Sensitivity (Sn), specificity (Sp), Positive (Pv+) and negative (Pv-) predictive values, percentage of correct predictions (A) and relative ratio (RR) of the predictors DFS, yeast/Candida (Cand) and sucrase activity in the final model when related to the 11-month caries increment ≥ 1 in 205 adolescents, mean age 13.3, in Oulu, Finland. Figures are also given for the 75 initially caries-free (DFS = 0) individuals.

<table>
<thead>
<tr>
<th>Subjects</th>
<th>Model and criterion</th>
<th>Sn %</th>
<th>Sp %</th>
<th>PV+</th>
<th>PV-</th>
<th>A</th>
<th>RR</th>
</tr>
</thead>
<tbody>
<tr>
<td>N = 205</td>
<td>DFS, Cand, Sucrase</td>
<td>60</td>
<td>78</td>
<td>44</td>
<td>87</td>
<td>74</td>
<td>3.5</td>
</tr>
<tr>
<td>N = 75</td>
<td>White spots, Cand</td>
<td>63</td>
<td>88</td>
<td>36</td>
<td>96</td>
<td>86</td>
<td>8.3</td>
</tr>
</tbody>
</table>

Fig. 2. ROC-curve illustrating the relationship of sensitivities and specificities of the final model (DFS = decayed filled surfaces, yeasts/Candida, sucrase activity) where risk scores from a logistic risk function including all the three predictors were used for prediction of 11-month caries increment ≥ 1, in 205 adolescents. The ROC-curve for baseline DFS has been for comparison.

5.4 Evaluating the efficacy of the one-year intervention (IV)

The highest filling scores at the age of sixteen were found on the occlusal surfaces of the molar teeth, followed by the mesial surfaces of the first molars and the occlusal surfaces
of the second premolars. The only totally caries-free teeth were the lower canines. (IV). In the longitudinal analysis the cumulative distribution function (CDF) curves for the homologous teeth on the right and left sides of the mouth were found to be similar in all groups analysed and were combined in the figures. Much lower filling scores were observed for the proximal and smooth surfaces than for the fissures in all the risk groups, and there was also a lengthy time lag before the first restorations in the longitudinal follow-up after the intervention. Survival analysis showed that the CDF curves were highest in the high-risk group treated with chlorhexidine, the LR group had the lowest increments and the F group and Ref groups were intermediate. No effect was observed in the case of the fissures of the first molar teeth, which had erupted 5-7 years prior to the intervention.

An improvement in dental health in the high-risk subjects was obtained after the intensified prevention, especially in the second molars and premolars, where the results approached the average level for the reference group. An average of 243 new restorations were placed altogether in the three intervention groups, compared with 351 in the Ref group, indicating that one surface per subject was saved on average by virtue of the intensified prevention (IV).

The filling placement rates in CHX + F, LR and Ref groups for the lower first and second molars in males and females, are presented in Figure 3.
Fig. 3. Annual filling placement rates calculated post-eruptively for occlusal surfaces of first and second lower molars for males and females in the chlorhexidine (CXH) group and fluoride (F) group together, low risk (LR) and reference (Ref) groups.

5.5 Cost-effectiveness of the preventive methods (V)

The costs per person for the 62 subjects in the CHX group were 27 €, including 1.2 € in material costs, 2.6 € for the SM tests, and 21 € for the hygienists’ working time, and 2.2 € in connection with the SM-tests. In the F group the costs for each of the 47 subjects were 20.1 €, including 11.4 € in material costs and 8.7 € for the hygienists’ working time, while the costs per person for the 86 subjects in the LR group were 4.4 €, including 2.9 € for the Duraphat® varnish and 1.5 € in working time. The cost of the intervention in the test groups (CHX + F + LR) was 15.3 € per person.

5.6 Price of fillings in the test groups and the reference group

The numbers of fillings recorded (per 100 subjects) on all surfaces taken together in the test groups (CHX, F and LR) were: a) 408 at the start of the intervention, b) 38 new fillings after the intervention and c) 208 new fillings from the start of the intervention to the end of the whole follow-up. The corresponding numbers in the Ref group were 468, 91 and 262.
The total costs of the fillings in the test groups were 714.8 € at the end of the intervention, and 3674.9 € at the end of the whole follow-up, calculated according to estimated prices at the 1991 level (Virtanen et al. 1996). The corresponding figures in the Ref group were 1564.2 € and 4566.3 €.

The total costs of preventive procedures in the risk groups at the end of the intervention were 2990.5 € and (1.5 € per person), and the costs of restorative treatment 798.9 €. At the end of the intervention the costs of fillings were more than twice as great for the Ref group as for the risk groups, and after the whole 5-year follow-up period the costs were 891.4 € more for the Ref group than for the risk groups.

The prices of the fillings in molar and premolar tooth surfaces, and for canines and incisors, in the risk groups (CHX, F, LR) and the reference group, at the end of the 5-year follow-up, are presented in Table 8.

Table 8. Prices of restoring of molar and premolar tooth surfaces per 100 subjects in the test groups (CHX + F + LR), and reference group calculated from the formula: (Fissure surface \(n^1 \times 25.2 \) €) + (other tooth surfaces = \(n^{2345} \times 8.4 \) €) = total in €. The prices for approximal and additional surfaces (\(n^{135} \)) of canines and incisors were 33.6 € + 16.8 €, after the 5-year follow-up.

<table>
<thead>
<tr>
<th>Tooth</th>
<th>(n^1)</th>
<th>€</th>
<th>(n^{2345})</th>
<th>€</th>
<th>total €</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test groups</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>16.82</td>
<td>8</td>
<td>269.10</td>
<td>285.92</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>33.64</td>
<td>5</td>
<td>168.19</td>
<td>201.83</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>33.64</td>
<td>4</td>
<td>134.55</td>
<td>168.19</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td>252.28</td>
<td>15</td>
<td>126.14</td>
<td>378.42</td>
</tr>
<tr>
<td>5</td>
<td>23</td>
<td>580.25</td>
<td>24</td>
<td>201.83</td>
<td>782.07</td>
</tr>
<tr>
<td>6</td>
<td>23</td>
<td>580.25</td>
<td>39</td>
<td>327.97</td>
<td>908.21</td>
</tr>
<tr>
<td>7</td>
<td>28</td>
<td>706.39</td>
<td>29</td>
<td>243.87</td>
<td>950.26</td>
</tr>
<tr>
<td>Total</td>
<td>2203.27</td>
<td>1471.65</td>
<td>3674.92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reference group</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>33.64</td>
<td>9</td>
<td>302.74</td>
<td>336.38</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>50.46</td>
<td>9</td>
<td>302.74</td>
<td>355.19</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>33.64</td>
<td>9</td>
<td>302.74</td>
<td>336.38</td>
</tr>
<tr>
<td>4</td>
<td>9</td>
<td>227.05</td>
<td>15</td>
<td>126.14</td>
<td>353.19</td>
</tr>
<tr>
<td>5</td>
<td>27</td>
<td>681.16</td>
<td>36</td>
<td>302.74</td>
<td>983.90</td>
</tr>
<tr>
<td>6</td>
<td>22</td>
<td>555.02</td>
<td>52</td>
<td>437.29</td>
<td>992.31</td>
</tr>
<tr>
<td>7</td>
<td>36</td>
<td>908.21</td>
<td>36</td>
<td>302.74</td>
<td>1210.95</td>
</tr>
<tr>
<td>Total</td>
<td>2489.18</td>
<td>2077.13</td>
<td>4566.30</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
6 Discussion

6.1 Background

The tasks of those in charge of preventive dentistry at the municipal health centres in Finland are to plan strategies for dental health promotion, especially in children and adolescents, to give the personnel guidelines on strategies and methods for this, and to react to the changes brought about by new diagnostic methods and treatment designs. In practice, the interpretation of the diagnostic signs of caries and the incorporation of information on risk factors into the plans for prevention have mainly been based on the dentists’ motivation and clinical experience, and the methods that they have chosen to use. Therefore, the accuracy with which preventive measures have been targeted at the right individuals or groups has probably often been a matter of chance. This assumption was found to be correct in a study of children at the Helsinki Health Centre (Vehkalahti et al. 1992). The clinical use of salivary tests in preventive dentistry became common in Finland in the 1980s. Some of them, such as those for lactobacilli and mutans streptococci, were well accepted because they motivated patients. The common experience, however, was that the changes in patients’ health behaviour were only temporary. No model existed that was specific or reliable enough to identify caries-prone or caries-active individuals in practical situations and the cost-effectiveness of the existing tests was questionable. Accordingly, the issue of this research posed a real challenge for the Municipal Health Centre of Oulu.

The purpose of the work reported here was to find the most suitable model from among the known caries risk indicators for identifying caries-prone and caries-active children. Resources should be targeted rationally at those patients who have been found to be at risk for caries. Especially since the 1980s, the demand for correct use of personnel and consideration of the costs of dental health methods has been emphasized (Yule et al. 1986).

An important change that took place in the administrative field in the 1990s concerned the treatment needs of schoolchildren. An extension of the check-up interval for low-caries children to avoid over-treatment and to direct resources to those at risk, were discussed. This change was not adopted successfully enough in the health centres in
Finland, however (Wang et al. 1992). It was found that dentists doubted their ability to assess patients’ risk level and thus were afraid to individualise their check-up intervals (Wang & Holst 1995). The provision of empirical information for dental clinicians may be important in enabling them to change their attitudes and think more in cost-benefit terms.

6.2 Subjects and risk groups

Teenagers are commonly considered to represent a particular risk group for caries (FDI 1988, Nordblad & Larmas 1985c), and consequently such age groups were randomly selected for the present analysis, just as children receiving orthodontic treatment were also included (II, III, IV, V). Data on the children’s past caries experience were available from documents at Oulu Municipal Health Centre, where the participants had been examined and treated (I). Their caries experience represented an average level for the same age groups in the Finnish school population (Vehkalahti et al. 1991, Nordblad et al. 1993). (II) Documents available from Finnish health centres have been used previously for studying caries in teenagers (Vehkalahti et al. 1992, Virtanen 1997, Helminen et al. 1998).

The different disease levels, applying to the intervention groups at the onset were clearly demonstrated, and had evidently existed from the time of eruption of the teeth. The subjects chosen for the low-risk group were found to have relatively low caries prevalence in both the pre-intervention and post-intervention periods, which is in line with the findings of Seppä et al. (1991), whereas the other risk groups showed higher caries rates, e.g. in the first permanent molars. Thus the selection of the risk groups on the basis of salivary tests, the occurrence of dental plaque, and white spot lesions and the possession of high DMF scores were found to be successful (IV).

6.3 Risk indicators as single tests

Past caries experience, which has proved previously to be the strongest single indicator of the risk of future caries increment in schoolchildren (Honkala et al. 1984, Pienihäkkinen 1987, Wilson & Ashley 1989, Alaluusua 1993, Russell et al. 1991), yielded a higher OR than the other indicators in the present analysis, although this effect was restricted to the girls (II). Similar sex-related differences have been shown earlier (Honkala et al. 1984, Kolehmainen et al. 1985). The present association between past caries experience and caries increment is also in line with previous reports (Honkala et al. 1984, Russell et al. 1991, Tukia-Kulmala & Tenovuo 1993, Virtanen et al. 1997, van Palenstein Helderman et al. 2001) (II). The recently reported study of van Palenstein Helderman et al. (2001) involved the testing of a new method with various variables representing caries experience in an eight-year forecast at different age-intervals in a mixed dentition, and it was observed that the correlation between caries increment and the number of affected approximal surfaces of permanent first molars or the number of other affected surfaces on
the permanent dentition appeared to increase with age. It has also been shown that the caries status of the most recently erupted/exposed tooth surface predicts caries well for newly emerging teeth surfaces in general (Virtanen et al. 1997, Powell 1998, van Palenstein Helderman et al. 2001).

Most of the salivary tests are incapable of predicting caries either as single test or even in combination. The present observations showing the lack of any association between visible plaque, gingivitis, salivary secretion rate or buffer effect and caries increment, also concur with previous findings (Pienihäkkinen 1987, Wiktorsson et al. 1992, Tukia-Kulmala & Tenovuo 1993), yet they are in contradiction to the earlier results of Parviainen et al. (1977) and Stecksén-Blicks (1985). According to Hausen (1997), no appreciable effect was shown when additional predictors such as mutans streptococci and lactobacilli counts, salivary flow rate, sucrose intake frequency, brushing frequency and social group were included in combination with past caries experience. In the material of Vehkalahti et al. (1996), the salivary LB test or a combination of the LB and SM tests was found to predict caries increment well, whereas salivary flow rate and buffer effect were observed to be the least accurate predictors. A discrepancy with salivary tests has been shown, in that simultaneous changes in teenagers with developing denture, behavioural, hormonal and dietary factors, make single-point-measurements of salivary factors unreliable for diagnostic and predictive purposes (Tukia-Kulmala & Tenovuo 1993).

The present study found a significant correlation between white spot lesions and caries increment as also shown earlier (Pienihäkkinen 1987, Seppä & Hausen 1988, Graves et al. 1991), and similarly confirmed that white spot lesions had a slightly lower predictive value than past caries experience (II).

White spot lesions were closely related to caries increment, especially in the boys, possibly because of their high plaque indices (II). According to Neilson & Pitts (1991), incipient smooth surface lesions provide a valuable caries risk indicator, especially in individuals with poor oral hygiene. When the indicators were analysed separately white spots and yeasts/Candida were significantly associated with caries increment in the initially caries-free cases (II). Both variables may indicate a change in the health behaviour of the subjects towards poor oral hygiene and/or higher sugar consumption or even increased tobacco smoking because adolescents may periodically change their lifestyle and attitudes. The change in lifestyle has been shown to affect microbial scores in the oral cavity, e.g. tobacco smoking increases the scores of Candida and lactobacilli in adults (Sakki & Knuuttila 1996).

The fact, that the children receiving orthodontic treatment had higher counts of mutans streptococci, lactobacilli and yeasts/Candida, than the other subjects (II) partly confirm to earlier conclusions, emphasizing that erupting teeth, overt caries lesions, low salivation and buffer capacity, orthodontic banding and other retentive sites are able to increase the counts of microbiological flora (Sakamaki & Bahn 1968, Parvinen & Larmas 1981, Addy et al. 1982, Meurman et al. 1987). Since school classes in these age groups include numerous children who are receiving orthodontic treatment, the LB test may not be a relevant diagnostic test in these groups nor a sufficient motivation for restricting sugar consumption. This discrepancy could be avoided by using the salivary sucrase test in schoolchildren instead of the LB test, because salivary sucrase activity reflects the
amount and variation and frequency of sucrose consumption at the group level (Karjalainen et al. 1989).

Surprisingly, mutans streptococci did not show any significant association with caries increment, although this measure has generally been found to be of value for caries prediction (Stecksén-Blicks 1985b, Alaluusua 1990, Russell et al. 1991, Vehkalahti et al. 1996). This may be attributable to the low caries experience of the participants, but it may also be associated with their frequent use of xylitol (Trahan et al. 1992). A relation of caries increment to lactobacilli and yeasts/Candida has also been shown previously (Pienihäkkinen 1987, Wilson & Ashley 1989, Beck et al. 1990, Russell et al. 1991). The associations between the microbiological salivary counts observed here are also in accordance with observations obtained in several earlier studies (Pienihäkkinen 1987, Alaluusua 1990, Russel et al. 1991, Tukia-Kulmala & Tenovuo 1993) (II).

The results of the present assessment of single indicators in relation to caries in adolescents strongly indicate the importance of past caries experience and white spot lesions for the prediction of future caries (II).

The occurrence of mutans streptococci varied in the children at day-care centres, which result is in agreement with earlier findings in corresponding age groups (Köhler et al. 1988, Alaluusua et al. 1983, Tenovuo et al. 1993) (I). The present correlation between ms and caries experience (dmf) is likewise in agreement with earlier reports (Burt et al. 1983, Granath et al. 1993, Holbrook 1995). (I) According to Burt et al. (1983), high levels of ms infection are related to the subsequent development of caries when the ms counts themselves remain stable. Low ms counts are more predictive of low rates of caries than are high counts of high rates of caries (Granath et al. 1993), but maternal caries activity is closely associated with the occurrence of caries in the child, suggesting that factors transmitting infections, such as ms, are crucial for the initiation of caries in infants (Aaltonen 1990). The present children (I) with a positive SM test had significantly higher mean dmf than those with a negative test, in line with the findings of Alaluusua & Renkonen (1983) and Alaluusua et al. (1987). The age of the child was significantly associated with the occurrence of ms in the present logistic regression model (I), as also found by Alaluusua et al. (1987). Most of the factors related to oral health and the presence of ms found here were interrelated (I). The SM test, when related to age, may provide information on the susceptibility of small children to caries (Burt et al. 1983, Alaluusua et al. 1990, Granath et al. 1993, Tenovuo et al. 1993), but the salivary SM test may not be a reliable predictor in children who frequently receive xylitol products (Trahan et al. 1992). Holbrook et al. (1995), in their study showed, that the SM test when used as a single measure of caries activity in pre-school children could not predict caries well, although it was more accurate in combination with other variables. Since the day-care centres had been randomly allocated to the intervention and control groups, and no other changes were made in oral health practices, it was concluded that the discontinuation of tooth brushing had not influenced the incidence of mutans streptococci.
The multifactorial nature of the disease and the polarization of caries in young populations make it difficult to find correct classified methods for caries prediction in children. Combinations of factors have been observed to be more predictive than the additive benefit of individual factors (Pienihäkkinen 1987, Disney et al. 1992). This also proved to be the case in the present study (II, III). The validity of a method for predicting caries was improved by including the indicators in a somewhat corrected prediction model, and using longitudinal designs and more appropriate statistical methods (Kolehmainen et al. 1985, Abernathy et al. 1987, Pienihäkkinen 1987).

Various indicators covering clinical, microbiological, salivary and socio-demographic factors have been analysed and discussed in relation to caries prediction in children and adolescents (Demers et al. 1990, Hausen et al. 1994, Powell 1998). Even though past caries experience was shown to be the strongest predictor of future caries, it had limited value as the sole indicator at an individual level which is in line with previous studies (Pienihäkkinen 1987, Wilson & Ashley 1989, Alaluusua 1990, Russell et al. 1991 (II, III).

According to a recent review (Powell 1998), past caries experience is the most significant predictor, while other important variables are socio-economic status, fluoride exposure, tooth mortality and microbial agents. Regression models in which the preferred analysis made use of multiple factors and data on clinical variables showed clinical variables to be stronger predictors than non-clinical ones (Powell 1998).

The relationship between caries risk indicators and caries increment is not necessarily similar in boys and girls (Honkala et al. 1984, Bader et al. 1986). This was confirmed in the present study (II, III). However, these results are inconsistent with the findings of previous large field studies involving numerous other explanatory variables, in which no association with sex has been observed (Abernathy et al. 1987, Disney et al. 1992). The present analysis (III) resulted in different models for girls and boys. The model for the boys, which included white spots and yeasts/Candida, with a significant interaction between these variables, resulted in 78% accuracy, and that for the girls, including age and past caries experience, in 76% accuracy. The accuracy of both models can be accepted as reasonable, although below the 80% target level. When the boys and girls were analysed together, the final model included DFS, yeasts/Candida and salivary sucrase, with an interaction between DFS and sucrase, and the ability of this model to identify subjects correctly was 55% for those developing caries and 80% for those not developing caries. The figures are comparable also with those of earlier studies (Powell 1998).

However, as shown with the ROC–curve, the model (DFS, yeasts/Candida, Sucrease) predicted slightly better than DFS alone (Figure 2). When analysed separately in caries-free subjects, the final model included white spots and yeasts/Candida, with an interaction between the two variables, and resulted in an accuracy of 88%. Most previous prediction studies have failed to achieve the target level of 80% (Powell 1998). The most accurate prediction models have been those that include bacterial levels, while socio-demographic variables have proved most important in caries prediction models for young children and old people (Powell 1998). The present findings indicate the importance of past caries experience for the prediction of caries, but also show that even this variable is not acceptable as a single test at either the group or the individual level (III), which is in
line with previous studies (Wilson & Ashley 1989, Russell et al. 1991, Powel 1998). Yeasts/Candida were causally associated with caries, the presence of the yeasts being merely an indication of unfavourable conditions in the oral cavity. The activity of salivary sucrase, as the third risk indicator in the final model, may also be of potential value for caries prediction in adolescents. In caries-free subjects the presence of incipient caries lesions and salivary yeast counts would seem to be indicative of an increased risk of the development of caries. (III)

6.5 Efficacy of intensive prevention

The statements that the first and second molar teeth are the main determinants of the total caries increment among the school-aged population and that more lesions develop on the pit and fissure surfaces of posterior teeth than on other surfaces (Nordblad & Larmas 1985a, Carvalho et al. 1992, Virtanen & Larmas 1995) were corroborated by the present findings (IV). An improvement in both fissure and proximal caries on the erupting teeth was shown when preventive measures were initiated during the second phase of tooth eruption, indicating that a high risk can be reduced. In the present risk subjects, however, the start of the intervention was far too late with respect to the teeth in the first phase of eruption, which had been filled to a high degree by the onset of the intervention (IV).

Life-long dental health comparisons, tooth by tooth at the surface level involving all the test groups and the reference group, showed that the increments for both the risk groups were above the level for the reference group before the intervention but approached this level during the post-intervention period. Thus, indicating that the intervention had an effect of promoting dental health (IV). This can be considered an acceptable achievement for a risk strategy (Hausen et al. 1994).

The present findings (IV) show that if intensified prevention of caries is planned for young age cohorts, preventive measures should be provided during the first and second phases of tooth eruption (Nordblad & Larmas 1986, Carvalho et al. 1992, Virtanen et al. 1996, Varsio 1999). In fact, it has been suggested recently, that risk strategies should be implemented in early childhood to prevent the child from becoming prone to caries (Pienihäkkinen & Jokela 1995, Söderling et al. 2000).

To reduce the risk of caries in individuals at high risk has been shown to be difficult (Seppä et al. 1991). The questions to whom prevention should be targeted at and what costs should be regarded as justified still remain open (Seppä et al. 1998). The present outcome, that one surface per subject was saved from being filled in all the risk groups by comparison with the reference group, can be considered a moderate achievement. The input of manpower and other resources that was needed for the selection of the risk groups and for the preventive procedures was excessive in the context of current welfare policies in Finland (IV).

In conclusion, the tooth-by-tooth survival analysis indicated that even short-term intervention, especially at the time of tooth eruption, can promote dental health in high risk groups and bring them more to the level with the average school population. The results stress the importance of dental age and of providing preventive procedures at the time of tooth eruption (IV).
6.6 Cost-effectiveness of the intervention

Arguments for preventive dental care are often supported by comparisons between the estimated costs of the preventive procedures and the costs of restoring the tooth surfaces that would otherwise have been affected by decay (Riordan 1997). The present economic assessment was based on the price of the one-year intensified prevention programme and the dental health benefits achieved in the form of fillings saved by the end of the follow-up. The result that after a five-year post-intervention period, one tooth surface per subject was saved from being filled in the test groups, presenting four or more risk indicators, and provided with either chlorhexidine or fluoride treatment for one year, was rather modest. After the intervention the costs of the fillings in the test groups were nearly 25% of the total expenses of the intensified prevention, but over the whole follow-up period the costs of the intensified prevention seemed to even out to the same level as the costs of the increasing numbers of fillings. The clinical effectiveness of many caries prophylactic agents has been demonstrated, but their public health value has often been questioned from the viewpoint of economic efficiency.

It has been suggested that the cost-effectiveness of caries prevention will improve only if a long-term effect can be achieved (Klock, 1984, Virtanen 1996). Donaldson et al. (1986), comparing the CE of a preventive health programme with that of the ordinary restorative treatment of carious teeth, observed that the cost per unit of DMFS was higher for the preventive programme than for the restorative treatment, as also shown in the present case, but that the situation changed once the quality differences between the restored and healthy teeth were taken into account, i.e. if a healthy tooth is regarded as 1, that of a restored tooth is less than 0.85, making the preventive programme more cost-effective.

During the 5-year follow-up period the fillings increased in the test groups, so that the costs were nearing the level of the costs of the intervention. The reference group had incurred about twice the costs of the fillings in comparison with those of the test groups by the end of the intervention, whereas after the whole follow-up period the costs of their fillings were only 891.4 € higher. In view of its expense, intensive prevention cannot be considered sufficiently cost-effective, as the benefit in terms of dental health is no more than modest, a result which is in agreement with the report of Hausen et al. (2000). Helfenstein & Steiner (1992) also state that intensive prevention programmes for the small percentage of children with a relatively high risk of caries would cost more than they would save in terms of financial expenditure.

If the test groups had been provided with only basic prevention, the expenses would have been about a half of the costs of the intervention, given the prices used here, which is in line with the findings of Kallestål et al. (1997). For the present target population, basic prevention would have been a more cost-effective risk strategy than the intensified intervention, again in line with earlier reports (Vehmanen 1993, Kallestål et al. 1997, Hausen et al. 2000). The cost of basic prevention, and also that of intensive prevention, could be somewhat lower if it were provided for the children at their existing check-up and treatment appointments at the clinics rather than separately as in this case. According to Wang et al. (1998), basic prevention provided for schoolchildren at clinics by dental hygienists or dental nurses would be more cost-effective, even as a risk
strategy. It is significant that salaries account for over 70% of the total costs of dental health care at health centres in Finland (Utriainen & Widström 1990). In the present study only the additional costs of the intervention in the test groups over and above the normal preventive programme were counted. The expenses would be far greater in financial terms if all the running and administrative costs of the municipal health care system were taken into account (V).

The results of the present study show that it was too late to provide intensified prevention for the children at the age when the first molar teeth had mostly been filled (IV). Numerous risk indicators should be considered when planning caries prevention procedures in addition to salivary factors, including risk ages, teeth and surfaces at risk, time at risk, medical risks and social risks (Bader et al. 1986, Virtanen et al. 1996, Vehkalahti et al. 1997, Meurman 1997, Powell 1998, Härkänen et al. 2002). Preventive care should be initiated before the first phase of tooth eruption and during maturation of the enamel, in order to prevent the children from becoming high-risk cases in adolescence, as stated previously (Klock 1984, Pienihäkkinen & Jokela 1995, Virtanen et al. 1996). It has even been shown that preventive care should be focused on early childhood, to prevent the adherence of caries bacteria to the newly erupted primary molars and their growth there (Alaluusua & Renkonen 1983, Köhler et al. 1988, Tenovuo et al. 1992), and also that parents’ attitudes towards dental care affect oral health of small children (I, Kinnby et al. 1991, Gibson & Williams 1999).

The moderate cost-effectiveness of most risk strategies used to control caries may arouse philosophical thoughts regarding the value of dental health. Yule et al. (1986) pointed out that the cost savings approach tends to underestimate the true benefits to society, because it typically ignores time and travel costs and increasing physical uneasiness, including pain and discomfort.

It may be difficult in an era in which evidence-based health care is the accepted modern attitude to convince administrators of the need for resources for large preventive programmes if the methods cannot be shown to be sufficiently cost-effective (McGlone et al. 2001). Preventive procedures have been systematically used in schoolchildren, in Finland, but have not been adequately targeted (Vehkalahti et al. 1992, Kärkkäinen 1997, Helminen et al. 1999, Varsio 1999). Relatively modern methods of caries prevention are practised in public dental clinics, but prevention often has little relevance to the actual needs of the individual patient (Kärkkäinen 1997). In spite of that the occurrence of caries in Finnish schoolchildren is one of the lowest in the world, and on a par, with figures for the other Nordic countries (von der Fehr 1994).

Low caries prevalence in a population makes the planning and focusing of preventive procedures difficult. One discrepancy in the planning of preventive care has been that the procedures are chosen before their effectiveness has been evaluated and the persons at risk accurately selected (Varsio & Vehkalahti 1996). The biological aspects of caries have been well studied, and methods of prevention have been chosen on a cause-and-effect basis. But when considering the limited community resources available, preventive methods should be acceptable and cost-effective, and no over-treatment should be allowed. The control of caries is of major importance in dentistry and will continue to be so for the foreseeable future (Winston & Bhaskar 1998). As stated by Renson (1985), there is an urgent need for regular monitoring of oral health status in all countries, for the sake of better personnel planning and procedures. Adequately oriented decisions by
dentists, and especially the motivation of parents to encourage their children to care for their teeth appropriately at home, would lead to more cost-effective use of the limited resources available for public oral health. Changes in staff attitudes in the field of dental care are needed for any new approaches to planning strategies for caries prevention at either the individual or group level to emerge.
7 Conclusions

1. The results indicate the importance of past caries experience and white spot lesions for caries prediction. The other risk indicators analysed, although significant as single tests, do not provide any additional information for risk assessment. The effect of past caries experience on the association of risk indicators with caries increment, also reflects to the difficulties of caries prediction in populations with different caries prevalences.

2. The present multifactorial model for prediction of 11-month caries increment, in which the most accurate indicators were DFS, Candida and salivary sucrase enzym activity gives additive information of adolescents at risk of caries, and for targeting preventive measures at an individual level and for motivating these patients. In subjects with earlier or present caries experience, for instance, the use of two tests, one for salivary Candida and the other for salivary sucrase activity, would provide additive, semi-quantitative information on the caries risk. The present findings indicate the importance of past caries experience for the prediction of caries, but also show that this variable is not acceptable as a single test at either the group or the individual level. The risk of caries increases with the number of positive test results, but the high accuracy of the prediction model in caries-free children points to the importance of monitoring the dental health of those children not believed to be at risk as well.

3. The discontinuation of tooth brushing at day-care centres did not influence the occurrence of salivary mutans streptococci in children, but SM counts increased with age and were correlated with caries experience, so that they constituted a risk factor for caries.

4. Survival analysis conducted tooth by tooth indicated that, especially at the time of tooth eruption, even short-term intervention could promote dental health in high-risk groups and bring them more into line with the average school population. The results stress the importance of dental age and of providing preventive procedures at the time of eruption and maturation of the teeth.

5. The effect of the intensified caries prevention provided for adolescents with a high risk was shown to be acceptable in the long term, but the salary and material costs entailed in such an intervention can be regarded as relatively high. Basic prevention would be more cost-effective as a risk strategy. Considering the small fraction of population
with a high risk, more emphasis should be placed on the individual indications for preventive procedures at clinics and in home care. The benefit of the present risk strategy in terms of improved dental health proved to be moderate by comparison with the difference in costs between preventive and restorative care, and cannot be recommended for common use as such among target populations with a high risk of caries.
References

81

