ACUTE RHINOSINUSITIS DURING UPPER RESPIRATORY INFECTION IN CHILDREN

AILA KRISTO

Faculty of Medicine, Department of Otorhinolaryngology, Department of Paediatrics, University of Oulu

OULU 2005
AILA KRISTO

ACUTE RHINOSINUSITIS DURING UPPER RESPIRATORY INFECTION IN CHILDREN

Academic Dissertation to be presented with the assent of the Faculty of Medicine, University of Oulu, for public discussion in the Auditorium 7 of Oulu University Hospital, on November 18th, 2005, at 12 noon

OULUN YLIOPISTO, OULU 2005
Kristo, Aila, Acute rhinosinusitis during upper respiratory infection in children
Faculty of Medicine, Department of Otorhinolaryngology, Department of Paediatrics, University of Oulu, P.O.Box 5000, FIN-90014 University of Oulu, Finland
2005
Oulu, Finland

Abstract
Acute rhinosinusitis is estimated to be one of the most common diseases in childhood. Still, the diagnostics and clinical relevance of this disease are controversial.
Bacterial rhinosinusitis cannot be differentiated from mere rhinitis on clinical grounds alone. Abnormal radiologic findings have been found to be common in child and adult volunteers without sinus symptoms and in adults during viral upper respiratory infection. In children, the results of the few placebo-controlled studies on the benefit of antimicrobial treatment of clinically diagnosed acute rhinosinusitis are controversial. Bacteriologic cultures obtained from the middle meatus by rigid nasal endoscopy have been introduced as a way to determine the bacteriology of the maxillary sinus in adults, but they have not been studied in children with acute symptoms.
In this thesis, incidental paranasal abnormalities were found to be common in healthy school children examined by magnetic resonance imaging (MRI). Some of these abnormalities resolved during a follow-up period of 6 months, but new abnormalities appeared in some children. MRI abnormalities of the paranasal sinuses were found to be much more common in children with acute upper respiratory infections, and most of these abnormalities resolve spontaneously. Children with acute rhinosinusitis confirmed clinically and by imaging did not benefit from cefuroxime treatment as compared to placebo. Pathogenic bacteria (Streptococcus pneumoniae, Haemophilus influenzae, or Moraxella catarrhalis) in the nasal middle meatus during acute upper respiratory infection predicted longer duration of the symptoms and signs of common cold.
Based on these findings, imaging methods should not be used in the diagnostics of acute rhinosinusitis in children. Similarly, incidental imaging findings of abnormalities in the paranasal sinuses or in children with symptoms of acute rhinosinusitis are not an indication for antimicrobial treatment. Because middle meatal pathogenic bacteria were found to predict prolonged symptoms of upper respiratory infection, a randomized controlled trial is needed to evaluate the clinical value of middle meatal culture in identifying the children who would benefit from antimicrobial treatment during acute respiratory infection.

Keywords: antibiotics, middle meatus, MRI, respiratory infection, respiratory track bacteria, sinusitis, trials
Acknowledgements

This work was carried out at the Departments of Otorhinolaryngology and Pediatrics, University of Oulu, during the years 1998–2005. The clinical work was carried out at the Departments of Otorhinolaryngology, Pediatrics and Radiology of Oulu University Hospital, and in the health centres of Oulu and Tornio.

I wish to express my sincere gratitude to Professor Martti Sorri, Head of the Department of Otorhinolaryngology, for his encouraging attitude, warm optimism and interest in my scientific work. Professor Juhani Nuutinen and Professor Kalevi Jokinen, former Heads of the Department of Otorhinolaryngology, are acknowledged for creating an inspiring atmosphere for scientific work and for providing the research facilities to carry out this project.

I owe my deepest and warmest gratitude to my supervisor, Professor Olli-Pekka Alho, Department of Otorhinolaryngology, for his competent and warm guidance during my doctoral work. He always had time for numerous discussions of the problems related to the project. His patience, positive attitude and inspiring proficiency have been invaluable.

Equally, I wish to express my special thanks to my other supervisor, Professor Matti Uhari, Department of Pediatrics, for his stimulating attitude to scientific work. His wide knowledge of research and statistics and his interest in my work have been one of the cornerstones of this project.

My sincere gratitude is due to the clinical director of Otorhinolaryngology, docent Jukka Luotonen. He always gave time and attention to my scientific work, but also took care of my clinical career and working facilities. My special thanks are due to the other co-workers from the “respi group”: Terhi Tapiainen, MD, PhD, docent Tero Kontio, docent Marjo Renko and Tytti Pokka, BSc, from the Department of Pediatrics, and docent Petri Koivunen and Tiia Kujala, MD, from the Department of Otorhinolaryngology. Our meetings have been joyful, helpful and important during these years. Leevi Luotonen, MD, was one of us until August 2001. I remember him with many thanks as a friendly and helpful co-worker.

I wish to thank docent Eero Ilkko and docent Osmo Tervonen from the Department of Radiology for their interest and careful interpretation of radiographs. Docent Virpi Glumoff from the Department of Microbiology and Professor Maija Leinonen and Tarja
Kaijalainen, MSc, from National Public Health Institute are acknowledged for help and advice in microbiologic examinations.

I am grateful to Professor Jouko Suonpää and docent Matti Korppi for their careful reviews and valuable comments on this thesis. I also thank Mrs. Sirkka-Liisa Leinonen, Lic.Phil., for revising the English language of the original papers and the final manuscript and Mrs. Raili Puhakka for her friendly assistance.

Grateful thanks go to my colleagues in the Department of Otorhinolaryngology: docent Tapio Pirilä, docent Heikki Löppönen, docent Kyösti Laitakari, Heino Karjalainen, MD, PhD, Tuomas Holma, MD, Tomi Penna, MD, Roine Huotari, MD, Mikael Halonen, MD, Jaakko Laitakari, MD, PhD, Antti Raappana, MD, Eeva Lőfgren, MD, Samuli Hannula, MD, and the many other colleagues I have had during the years. It has been pleasant to work in a stimulating and friendly atmosphere. Special thanks go to docent Tapio Pirilä for teaching me in the field of nasal surgery.

Thanks to the other staff of the Departments of Otorhinolaryngology, Pediatrics and Radiology in Oulu University Hospital, to the staff of the health centres in Tornio and Oulu, and all the children who participated as study patients.

I am deeply grateful to my close friends Anu Kunnari, MA, Katri Myllyniemi, DDS, Kirsi Mäntyvaara, MA, and Minna Katajala, DDS, who have not always been so interested in my research, but have always been interested in my life and friendship. The discussions and many travels with them and other friends have been invaluable during these years.

Finally, I want to express my warmest thanks to my mother Rauha, who has been optimistic of my career and supported me in my life. My sisters Helena, Marjatta and Seija and brothers Seppo, Tapani and Reima have had an important role in my life, and they have been interested in and supported my work on this thesis. The children of my siblings and their families are my sunshine. My warmest thanks to all of them!

This research project was supported by KEVO funding of Oulu University Hospital, Maud Kuistila Memorial Foundation and Finnish Medical Foundation.

Oulu, October 2005

Aila Kristo
List of original papers

The thesis is based on following reports, which are referred to in the text by Roman numerals.

Reproduced with permission from American Academy of Pediatrics and Taylor & Francis Group.
Contents

Abstract
Acknowledgements
List of original papers
Contents

1 Introduction ... 11

2 Review of the literature ... 13
 2.1 Development and anatomy of paranasal sinuses .. 13
 2.2 Physiology of paranasal sinuses ... 14
 2.3 Definition of acute rhinosinusitis .. 15
 2.4 Pathophysiology of acute rhinosinusitis ... 16
 2.5 Microbiology .. 17
 2.6 Incidence and risk factors ... 19
 2.7 Diagnostics of acute rhinosinusitis ... 20
 2.7.1 Symptoms and signs compared to sinus aspiration and culture 21
 2.7.2 Imaging ... 21
 2.7.2.1 Incidental paranasal abnormalities in radiography 22
 2.7.2.2 Symptoms and signs compared to radiography 24
 2.7.2.3 Radiography compared to sinus aspiration and culture 25
 2.7.2.4 Ultrasonography compared to radiography or sinus aspiration 25
 2.7.3 Nasal and nasopharyngeal cultures .. 28
 2.7.3.1 Cultures from the nasal cavity ... 28
 2.7.3.2 Cultures from the nasopharynx ... 29
 2.7.4 Laboratory tests ... 30
 2.7.5 Current recommendations for diagnosing acute rhinosinusitis in children..... 31

3 Purpose of the present study ... 33

4 Patients and methods .. 34
 4.1 MRI findings of paranasal sinuses in schoolchildren (I) .. 34
 4.2 MRI findings of paranasal sinuses during upper respiratory infection (II) 35
 4.3 Effect of cefuroxime axetil on acute rhinosinusitis (III) 35
 4.4 Nasal middle meatal bacteriology and duration of common cold (IV).............. 37
4.5 Statistical analysis...38
4.6 Ethical aspects ..39
5 Results ... 40
 5.1 MRI findings of paranasal sinuses in schoolchildren (I) ..40
 5.2 Background characteristics of children in studies II–IV..42
 5.3 MRI findings of paranasal sinuses during upper respiratory infection (II)..........42
 5.4 Resolution of paranasal abnormalities after upper respiratory infection (II)43
 5.5 Effect of cefuroxime axetil during acute rhinosinusitis (III)44
 5.6 Nasal middle meatal bacteriology and duration of symptoms
 of common cold (IV)...46
6 Discussion 49
7 Conclusions ...53
References
1 Introduction

Acute maxillary sinusitis is claimed to be one of the most common diseases in childhood. (1) Children have 6 to 8 upper respiratory infections each year (2,3), and it is estimated that acute bacterial rhinosinusitis complicates up to 13% of these infections. (4,5)

In the past, acute purulent maxillary sinusitis was common and required aggressive treatment and operations. (6,7) In the late 1940’s, before the widespread use of antibiotics, beta-hemolytic streptococci and Streptococcus pneumoniae were the most common pathogens causative of purulent sinusitis. (8) This situation has changed during last decades (9), however, and the role of viral rhinosinusitis is increasing. Abnormal radiologic findings of the sinuses were earlier recommended to be treated with puncture and aspiration of the maxillary antra (6,10), but according to recent studies in adults, paranasal sinus abnormalities are common even during viral upper respiratory infection (11). Although the recommendation is to diagnose acute bacterial rhinosinusitis only on clinical grounds in young children, bacterial sinusitis cannot be differentiated from rhinitis on clinical grounds alone. (4,12,13) The results of the few placebo-controlled studies on the benefit of antimicrobial treatment of clinically diagnosed acute bacterial rhinosinusitis are controversial. (14,15) The gold standard for the diagnosis of bacterial sinusitis is puncture, aspiration and positive bacteriologic culture of sinuses, which are usually impossible in children without general anaesthesia. Bacteriologic cultures obtained from the middle meatus by rigid nasal endoscopy have been introduced as a way to determine the bacteriology of the maxillary sinus in adults (16), but they have not been studied in children with acute symptoms.

Inappropriate prescribing of antibiotics is common for children with upper respiratory tract infections (17,18) and leads to unnecessary side effects and the emerging phenomenon of antimicrobial resistance (19,20). Accurate diagnostics of acute bacterial rhinosinusitis would help the clinician to find the patients who really benefit from antimicrobial treatment and prevent the complications associated with bacterial sinusitis, such as orbital or intracranial infections. (21–24)

Although the pathophysiology of chronic rhinosinusitis is claimed to begin from the changes of sinuses during acute rhinosinusitis, most studies of rhinosinusitis in children traditionally concern the diagnostics and treatment of chronic disease. In this thesis,
imaging-based and microbiological methods of diagnosing acute rhinosinusitis were evaluated.
2 Review of the literature

2.1 Development and anatomy of paranasal sinuses

The development of the paranasal sinuses begins very early in utero. The maxillary sinus can be seen approximately by day 17 of gestation and it begins as an evagination in the lateral nasal fossa, where the middle meatus develops between the inferior and middle turbinates. (25) By 19 weeks, the cartilaginous wall of the maxillary sinus gradually disappears and the mucosa of the maxillary sinus comes into direct contact with the maxillary bone. (26) The primitive form of the maxillary sinus develops into a maxillary cavity 7–10 mm in length, 4 mm in height and 3–4 mm in width at birth. (25,27,28) In the past, it was assumed that the paranasal cavities are not yet present in young children, who were hence considered unable to develop sinusitis. (29,30) (Fig.1)

The ostiomeatal unit is readily identifiable in CT examination and well developed in early childhood. (31) The ethmoid labyrinth begins to develop at about the third to fifth month of fetal life (25), and the ethmoidal sinus in a newborn can be identified on x-rays (32). By 12–14 weeks, the sphenoid sinus is visible as an invagination of nasal mucosa into the posterior portion of the cartilaginous nasal capsule. (26) The onset of sphenoid pneumatisation is observed in 19% of children at the age of 12–15 months, but it usually starts in the third year of life, being complete in children older than 10 years. (28,33) The frontal sinuses develop from anterior ethmoidal cells and move above the orbital ridge by the child’s fifth or sixth birthday, showing wide variation in size. (27,28) All paranasal sinuses are completely developed by late adolescence. (27)
Fig. 1. Development of maxillary and frontal sinuses at different ages. The numbers indicate age in years. (Modified by Graney and Rice (34))

2.2 Physiology of paranasal sinuses

Although the physiological purpose of the paranasal sinuses is unknown, several hypotheses have been published. The possible functions of the paranasal sinuses are phonetic (resonance, sound protection ability for the transmission of one’s own speech to the ears), respiratory (reservoir of warm and humid air), olfactory (contributory to the olfactory function in animals, reservoir of air utilized as reference for new olfactory stimuli), static (reduced weight of the facial bones), mechanical (protective against trauma), and thermal (heat insulation of the skull base). (35)

The patency of the ostia, the function of the ciliary apparatus and the quality of secretions are key elements in the normal physiology of the paranasal sinuses. (36) The maxillary, anterior ethmoidal and frontal sinuses drain beneath the middle turbinate in the ostiomeatal area. The ostium of the maxillary sinus is a small tubular structure 2.5 mm in diameter (cross-section about 5 mm) and 6 mm in length, which drains into the ostiomeatal complex. (35) The infundibulum is the drainage pathway of the maxillary sinuses between the uncinate process and the lacrimal bone. Disease in the ostiomeatal complex may produce inflammation that obstructs the infundibulum and drainage.
Ventilation of the sinuses through the ostium must be present. Ciliary activity moves secretions from the sinuses through the ostia and infundibulum into the nasal cavity and further into the nasopharynx. (37) From there, secretions are either swallowed or expectorated. The average velocity of mucociliary transport is about 7.5 mm/min in healthy adults and 8.5 mm/min in healthy children. (38,39) Normal mucociliary function is responsible for the elimination of inhaled particles from the respiratory tract. (40)

2.3 Definition of acute rhinosinusitis

All paranasal sinuses can be infected, but the maxillary and anterior ethmoid sinuses are the most frequent sites of sinus infection. Infection of the maxillary sinuses is most important for a clinician. Isolated involvement of the frontal and sphenoid sinuses is rare. (20)

The term “rhinosinusitis” instead of “sinusitis” is largely accepted since sinus infection is almost always accompanied by concurrent nasal airway inflammation (41), and because most viral infections of the upper respiratory track involve the nose and the paranasal sinuses in adults (11). According to the Clinical Practice Guideline of American Academy of Pediatrics, however, bacterial infections of the paranasal sinuses do not usually involve the nose. (4) The authors presumed that the nose acts as a conduit for secretions produced in the sinuses in patients with bacterial infection of the paranasal sinuses, although data was not provided. Despite the numerous attempts to define “rhinosinusitis”, no consensus has been reached (41), and the definition of acute rhinosinusitis varies according to investigators.

“Rhinosinusitis” is a group of disorders characterized by inflammation of the mucosa of the nose and the paranasal sinuses. (41) The inflammatory process in the sinus mucosa may have a viral, allergic or bacterial origin. (42).

Acute rhinosinusitis is an inflammatory condition involving the paranasal sinuses, as well as the lining of the paranasal passages, and it lasts up to 4 weeks, after which the symptoms resolve completely. Diseases that last for more than three weeks but less than three months are defined as “subacute”, and those that last for more than three months are defined as “chronic”. (41) In some definitions, acute and subacute diseases are regarded as one group, with the symptoms lasting for up to 12 weeks. (43)

Sinus infection is defined as the invasion and multiplication of microorganisms within a sinus. “Viral rhinosinusitis” is, in practice, synonymous to common cold or viral rhinitis. (11,44,45) Most adult patients with viral rhinosinusitis show clinical and radiological recovery without antimicrobials treatment. (11,46,47) For the purposes of research, diagnosis of acute viral rhinosinusitis depends on sinus puncture with the finding of positive virus culture or the detection of viral nucleic acid in cells of the sinus epithelium, indicating viral replication. (41,48) “Bacterial rhinosinusitis” is caused by one or more bacteria present in the sinus in high density (at least 1000 colony-forming units (CFU)/ml). (41)
2.4 Pathophysiology of acute rhinosinusitis

Upper respiratory infections are mainly caused by viruses, leading to symptoms of common cold and inflammation of the paranasal sinuses. Viruses causing common cold spread from person to person by virus-contaminated secretions, contact with infected secretions or through inhalation of infected aerosols. (49,50) The pathogenetic mechanisms of various respiratory viruses can be very different from each other. (51) The main binding site for rhinoviruses is ICAM-1 (intercellular adhesion receptor molecule 1) (52), which are mainly located in the area of the nasopharynx (53,54) and the primary site of replication of influenza viruses is the tracheobronchial epithelium (51). Rhinoviruses are frequently present in adenoid tissue in children during the cold months of the year. (55) After intracellular invasion and replication, rhinovirus infection spreads intranasally and into the pharynx. (56) Rhinovirus infections are typically characterized by isolated scattered foci of the infected epithelium between large areas of normal epithelium. (57) After viral replication has started, inflammatory and immune responses are evoked by the host, characterized by vasodilatation, increased vascular permeability, cellular infiltration and release of mediators. (58) Several proinflammatory cytokines, such as IL-1β (interleukine), IL-6, RANTES (Regulated by Activation, Normal T cell Expressed and Secreted), TNF-α (tumor necrosis factor), MPO (myeloperoxidase), ECP (eosinophilic cationic protein), IL-10 and IFN-γ (interferon), have been shown to be elevated in nasal lavage, as are also lymphocytes and mast cells in nasal biopsies during common cold. (59,60) Mediators and cytokines results in a cascade of inflammatory reactions, which are responsible for the symptoms of common cold. (58,61)

Paranasal sinus abnormalities have been detected by magnetic resonance imaging (MRI) in adults during experimental rhinovirus infection (46) and by computed tomography (CT) and plain radiography (11,47,62) during community-acquired common cold. It is unknown whether the sinus abnormalities seen during common cold are caused by direct invasion of viruses into the sinus cavity, or whether inflammatory events in the ostiomeatal area are responsible for the development of sinusitis. (63) Rhinovirus RNA has been found inside epithelial cells in biopsies of maxillary sinus mucosa during acute sinusitis, and it is therefore thought that viral replication also occurs in the maxillary sinus epithelium. (63) Thus, radiographic abnormalities during viral rhinosinusitis could be the result of inflammation alone or of viral infection of cells in the sinus epithelium. (41) According to Gwaltney et al., viral rhinitis may lead to sinus disease by obstructing sinus ostium. (11) The sinus epithelium is rich in mucus-producing goblet cells, and it has been thought that part of the material in the sinuses during common cold is the result of goblet cell exocytosis of mucus. (64) On the other hand, in a CT study of adults, nasal blow increased intranasal pressure and contrast medium placed in the pharynx appeared in one or more sinuses, and this may be an important source of the sinus exudates observed during colds. (64,65) Some authors assume that negative pressure following ostial obstruction leads to bacterial invasion into the sinus cavity. (66)

Inflammation is a series of cellular and molecular responses to eliminate foreign agents and to promote the repair of damaged tissue. The inflammatory process of mucous membranes lining the nasal cavity and the paranasal sinuses results in edema and hypersecretion of mucus. (42)
The drainage of secretion from the sinus is dependent on a patent ostium and also on intact mucociliary transport. (35) Common cold results in marked impairment of the nasal mucociliary clearance function, which is due to the loss of cilia and ciliated cells rather than to ultrastructural anomalies in the cilia. In a study of 16 adults with common cold, one week after the onset of symptoms, the loss of cilia and ciliated cells was found to be severe. In samples taken 3 weeks after the beginning of the disease, the amount of cilia and ciliated cells was nearly normal. (67) The transport rate was also markedly reduced in adults with common cold, where the number of ciliated cells decreased, and regeneration was slow. A moderate and short-lasting change in beating frequency and intracellular synchrony was also observed. (68) Impaired mucociliary function has also been found to be common in children with respiratory tract infections, including children with recurrent sinusitis. (69) Nitric oxide (NO) plays an important role in host defence through its potent antiviral properties and is also a regulator of mucociliary function in the nasal airway. (70,71) In an experimental rhinovirus study, six adults were infected with human rhinovirus, and eNO (exhaled nitric oxide) was measured from the nose and lower airways. Significant increases in both eNO concentrations were accompanied by rhinovirus infections. (71) Low nasal NO measurements have been found to be related to low ciliary beat frequency and mucociliary clearance. (72) Very low levels or absence of NO have been found in nasal air sampled from children with Kartagener’s syndrome or cystic fibrosis. (70)

Concomitant bacterial infections are common in patients with viral respiratory infection, and some cases of acute viral rhinosinusitis are also complicated by bacterial infection of sinuses. According to a review article by Korppi, dual viral infection is present in 0–14%, dual bacterial infection likewise in 0–14% and mixed viral-bacterial infection in 3–30% of children with pneumonia. (73) In another study, up to 50% of children with respiratory symptoms had a mixed viral and bacterial infection diagnosed by enzyme immunoassay (Haemophilus influenzae and Moraxella (Branhamella) catarrhalis) or detection of pneumococcal antigens. (74)

2.5 Microbiology

The relative proportions of different viruses as causes of common cold and viral rhinosinusitis vary dependent on several factors, such as age, season and the methods of viral sampling and detection. (51) Rhinovirus is the most common cause of common cold in all age groups, accounting for 30–70% of all respiratory illnesses. (2,75–79) Other viruses causing upper respiratory infections are coronaviruses (7–18%), followed by influenza A and B, adenoviruses, parainfluenza viruses, respiratory syncytial viruses (RSV) and enteroviruses, all accounting for minor proportions of common cold. (47,51,76) In the Finnish Otitis Media (FinOM) Cohort Study of children aged from 2 to 24 months, the viral etiology was similar in infection-prone children and children without frequently recurring respiratory infection. (78)

The normal bacteriology of nasal cavities in healthy children differs from that in adults. Major sinus pathogens, such as Streptococcus pneumoniae, H. influenzae and M. catarrhalis, are commonly seen in the nasal cavity in healthy children (80,81), whereas
major sinus pathogens are seen only occasionally in healthy adults. In healthy adults, the most common bacteria are non-pathogenic bacteria, such as coagulase-negative staphylococci, *Staphylococcus aureus*, corynebacteria and *Streptococcus viridans*. (82,83)

The virology of nasal cavities or paranasal sinuses has not been studied systematically in healthy children or adults. In experimental common cold studies, rhinovirus infected 95% of the 343 challenged adults, but only 75% of those who became infected developed a cold. The remaining individuals had subclinical infections without symptoms of common cold. (84)

Under normal circumstances, the paranasal sinuses are assumed to be sterile. (4,8,48) On the other hand, Arruda *et al.* found *S. viridans*, *Streptococcus faecalis* and *Staphylococcus epidermidis* from 6 (29%) out of 21 children with normal maxillary sinus radiographs. These children had surgery because of chronic tonsillitis and/or adenoid enlargement, and the finding could thus be due to contamination. (85) Buchem *et al.* made a sinus puncture and culture in children with clinically suspected sinusitis and found that almost 21% (6/29) of radiologically normal sinuses had pathogenic bacteria in maxillary sinus culture. The type of these bacteria was not mentioned, but because *S. aureus* was also regarded as pathogenic, contamination from the nasal cavity could be involved. (13)

Viruses have been detected in the maxillary sinuses during common cold and also during acute bacterial sinusitis in children and in adults (table 1). In a common cold study of adults, viral infection was detected by nasopharyngeal virus culture, antigen detection, serology and rhinovirus PCR (polymerase chain reaction) significantly more often in patients with radiologically confirmed rhinosinusitis than in those without sinus infection (82% (n = 38), and 63% (n = 60), respectively). The most frequent cause was rhinovirus, detected in 55% of the patients with rhinosinusitis and in 48% of those without rhinosinusitis. (47,76) Rhinovirus has also been found to be present in mucosal biopsies of the maxillary sinus. (63)

Studies on the microbiology of acute rhinosinusitis in children have been relatively limited, because maxillary sinus puncture is invasive and requires general anaesthesia. Wald *et al.* conducted two studies in 1979–1982 on children with sinus symptoms for less than 30 days and radiological evidence of maxillary sinusitis (N = 80 altogether, age 1–16 years). At least one maxillary sinus was found to be infected (bacterial growth $\geq 10^4$ CFU/ml) in 70–77% of children. *S. pneumoniae* was the most common pathogen, followed by *H. influenzae* and *M. catarrhalis*. *H. influenzae* and *S. pneumoniae* are recovered at all ages, whereas *M. catarrhalis* is found more often in younger children. (86,87) Anaerobic bacteria are rarely cultured from the sinuses of children or young adults with acute sinusitis. (87,88) As shown by table 1, where bacterial isolates are listed, the most common bacteria in acute rhinosinusitis are the same as those seen in acute rhinosinusitis in adults. Because pathogenic bacteria are commonly seen in the nasal cavities and nasopharynx, nasal contaminants are more common in specimens obtained by irrigation. Thus, sinus culture should be taken from puncture and needle aspiration. (89)
Table 1. Microbiological etiology of acute rhinosinusitis in children and adults. Data are from (8,13,44,48,83,86,87,90).

<table>
<thead>
<tr>
<th>Microbe</th>
<th>Children (%)</th>
<th>Adults (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viruses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhinovirus</td>
<td>1</td>
<td>15–40</td>
</tr>
<tr>
<td>Influenza virus</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Parainfluenza virus</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Adenovirus</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Bacteria (range)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. pneumoniae</td>
<td>28–36</td>
<td>31 (20–35)</td>
</tr>
<tr>
<td>H. influenzae</td>
<td>19–23</td>
<td>21 (6–26)</td>
</tr>
<tr>
<td>M. catarrhalis</td>
<td>19</td>
<td>2 (2–10)</td>
</tr>
<tr>
<td>Anaerobic bacteria</td>
<td>1</td>
<td>6 (0–10)</td>
</tr>
<tr>
<td>S. aureus</td>
<td>4 (0–8)</td>
<td></td>
</tr>
<tr>
<td>Str. Pyogenes</td>
<td>1–2</td>
<td>2 (1–3)</td>
</tr>
<tr>
<td>Gram-negative bacteria</td>
<td>28–35</td>
<td>9 (0–24)</td>
</tr>
</tbody>
</table>

2.6 Incidence and risk factors

Maresh and Washburn reported a prospective follow-up study on sinus infections in 1940. They started their study of 100 healthy children in 1925 and made regularly clinical examinations and obtained posteroanterior radiographs of the sinuses four times a year from birth to maturity. They found that the percentage of “pathologic” antrums was 23–35% in children aged 6 to 12 years and 15% in older children. After a recent upper respiratory infection (in previous 2 weeks), less than 50% showed clear sinuses. (91–93)

Viral rhinosinusitis is much more common than bacterial infection of the sinuses. (94) Inflammation of sinus mucosa is common during viral upper respiratory infections in adults. Sinus CT scans obtained in 31 young adults with early common colds revealed abnormalities in the maxillary sinus in 87% of the patients, in the ethmoid sinus in 65%, in the frontal sinus in 32%, and in the sphenoid sinus in 39%. Some of these patients had follow-up CT two weeks later, and most of the changes had resolved spontaneously after resolution of the corresponding upper respiratory track infection. This self-limited process represents viral rhinosinusitis that occurs as part of common cold. (11,94) Viral rhinosinusitis is used in some articles as a synonym for the common cold syndrome. (95) There are no previous studies about sinus findings during common cold in children, but it has been estimated that about 90% of upper respiratory infections show evidence of viral rhinosinusitis. (3,20) Since children have 6–8 viral respiratory infections per year (2,3), viral rhinosinusitis is very common but does not usually require any antimicrobial treatment.

The incidence of acute bacterial maxillary sinusitis varies a lot, because diagnosis is difficult, and viral rhinosinusitis is often misdiagnosed as a bacterial condition. (20) It has been estimated that 0.5–13% of upper respiratory infections are complicated by acute
bacterial rhinosinusitis. (5,66,96) If the duration of respiratory symptoms for more than ten days is used as a diagnostic criterion for acute bacterial rhinosinusitis, 6–13% of children with upper respiratory infections are complicated by acute bacterial rhinosinusitis during the first 3 years of life and 7% at 2 to 15 years of age. (5,96)

The most common factor associated with rhinosinusitis is upper respiratory infection, which is complicated by bacterial infection. (5) Children in day care are about twice more likely to have sinusitis than children in home care. (3,17) Boys are about twice more susceptible to maxillary sinusitis than girls, as they are to recurrent episodes of acute otitis media. (96–98)

Allergy and asthma are commonly associated with sinusitis. (99–103) Allergy may contribute to sinusitis through either nasal congestion and subsequent ostial obstruction or direct allergic effects on sinus-lining cells. (104) The mechanism of association between asthma and paranasal sinusitis has been ascribed to a common allergic mechanism, a nasobronchial reflex, aspiration of sinus secretions, and mediators such as leukotrienes, histamine, and prostaglandin. (105,106) Clinical improvement in the symptoms of asthma has been seen after antimicrobial therapy for sinusitis. (103,107) This may partly be due to the immunomodulatory effects of antimicrobials, which are beneficial for those suffering from asthma. (108–110)

The occurrence of specific immune deficiency in pediatric populations is rare, but some of them are associated with recurrent or chronic sinusitis. (105,111) Congenital abnormalities of the mucociliary clearance mechanism may affect the cilia or the mucus. These conditions are often present with recurrent or chronic sinusitis before the lower respiratory track is involved. (105) Other predisposing factors associated with sinusitis are adenoidal hypertrophy, deviated septum, polyps, foreign bodies, immotile cilia, cystic fibrosis, bronchiectasis, immunodeficiency, barotraumas, dental procedures, tobacco, air pollution, and overuse of topical decongestants. (102,104)

2.7 Diagnostics of acute rhinosinusitis

Although sinusitis can be seen in all paranasal sinuses, inflammation or infection of maxillary sinuses is clinically the most important aspect of infection during acute disease. Isolated involvement of the frontal and sphenoidal sinuses is rare (20), although a study in adults showed as high proportion of isolated frontal sinus infection as 19% (112).

Radiologic paranasal sinus abnormalities are common in adults during acute respiratory infection. (11) The majority of these changes consist of mucosal thickening and resolve without treatment during and after the resolution of the symptoms of common cold, and in clinical practice viral rhinosinusitis can be diagnosed without further investigations. In some cases, bacteria from the upper respiratory track cause a complication of bacterial rhinosinusitis.

Bacterial rhinosinusitis should be distinguished from viral upper respiratory infection, and treated with antimicrobials because serious, even life-threatening complications may be associated with this bacterial disease. (21,113–115) The gold (referred) standard for diagnosing acute bacterial sinusitis is the recovery of bacteria (≥ 10⁵ CFU/ml) from the paranasal sinus cavity. According to Evans et al., elevated counts of polymorphonuclear
leukocytes in the sinus aspirate are also a useful tool in the diagnosis of acute bacterial rhinosinusitis. (48) These cases require sinus puncture, which is not possible without general anaesthesia in children, and is not recommended as a routine diagnosis for children. (116) Although sinus aspiration with a positive bacterial culture is the only possibility to establish an accurate diagnosis of acute bacterial rhinosinusitis (20), sinus puncture is not recommended in general practice, because the procedure is time-consuming, technically demanding, causes discomfort to the patient and usually requires general anaesthesia in children. According to the Consensus Meeting in Brussels in 1996, the indications for sinus puncture are: severe illness or toxic condition in a child, acute illness in a child that does not improve with medical therapy in 48 to 72 hours, immunocompromised host and the presence of suppurative complications. (12)

The most widely used diagnostic modalities for acute rhinosinusitis are signs and symptoms, radiography and nasal or nasopharyngeal cultures.

2.7.1 Symptoms and signs compared to sinus aspiration and culture

In the study of Wald et al., symptoms and signs of acute rhinosinusitis were compared between maxillary sinus culture-positive and culture-negative children. There were 30 children, aged 1–16 years, with a history of respiratory symptoms for less than 30 days and radiographically confirmed rhinosinusitis. The presence and duration of headache, dental or facial pain, facial swelling, nasal discharge, malodorous breath, cough and fever were recorded, and all children underwent a physical examination. The patients whose maxillary sinus aspirate cultures were negative could not be distinguished from the patients whose aspirate cultures were positive either on clinical grounds or according to the appearance of the aspirate. No correlation was apparent between the occurrence of specific symptoms and signs and the recovery of a particular bacterial species. (86)

According to some authors, purulent secretion at the middle meatus is a useful finding in the diagnosis of acute bacterial rhinosinusitis (14,117–119), but it is difficult to detect without an endoscope. In the study of Berg and Carenfelt concerning 155 adults with sinus symptoms for less than 3 months, purulent secretion from the middle meatus was pathognomonic of clinically and radiologically diagnosed bacterial sinusitis. Unfortunately, purulent secretion is a rare finding. The authors of this study only found purulent middle meatal secretion in 9% of their patients with suspected bacterial sinusitis. (118)

A change in the colour (from clear to purulent) and quality (from thin to thick) of nasal discharge may be misinterpreted as a specific indication of bacterial infection, although this sign is part of the natural course of viral respiratory infection. (120–124)

2.7.2 Imaging

The most common radiographic criteria used for maxillary rhinosinusitis are mucosal thickening of at least 4 mm, total opacification or an air-fluid level. (125) According to some investigators, radiological examination is the most reliable method for diagnosing acute maxillary sinusitis in adults and for differentiating sinusitis from rhinitis. (88,126)
Traditionally, ear, nose and throat surgeons have relied upon a combination of clinical impression and plain sinus radiographs to support the diagnosis of sinusitis. (105)

According to most investigators, occipito-mental projections give enough information in most clinical cases. (93,127,128) On the other hand, in a study of Kuuliala and Revonta, lateral occipito-mental projections were superior in the detection of a fluid level in maxillary sinuses compared to vertical occipito-mental projection in 58 children with symptoms of acute rhinosinusitis. (129) Usually, air-fluid level is an uncommon finding during acute sinusitis in children (14,87,96), but in this study air-fluid level was detected in 15% of sinuses (129).

2.7.2.1 Incidental paranasal abnormalities in radiography

The value of sinus radiography is controversial, because abnormal radiography findings are common in children without symptoms of sinus disease. This has been documented with plain radiography (85,130–132), CT (93,133–137) and MRI (137–139) as shown in table 2. Two of the studies were made on school children without any medical problem, but the other studies were made unrelated to sinus symptoms, mainly for neurological or ophthalmological reasons.

In some studies, the rate of radiological paranasal abnormalities has been most common among young children (131,133,135), whereas some authors have not found any differences between the age groups (136–138). In the study of Diament, children aged 1–2 years had a higher rate of opacification than children less than 1 year of age. (134) According to some studies, radiological abnormalities are more common in children with symptoms of recent respiratory infection (131,137–139), but some authors have not found any differences (130,133,135,136). Radiological paranasal sinus abnormalities are also common in children with chronic cough without symptoms of sinus infection. (140)

In a series of 33 children with chronic tonsillitis and/or adenoid enlargement without a previous diagnosis of sinusitis, the radiologically most abnormal maxillary sinus was punctured, and aspirates were cultured. Children with complete radiologic opacification of the maxillary sinus had bacterial infection in almost 70% of the cases with symptoms that did not prompt their physicians to consider the diagnosis of sinusitis. (85) These findings were not incidental, since the children had had prolonged symptoms of upper respiratory tract infection, although sinus infection had not been suspected.

Incidental sinus abnormalities in radiography are also common in adults. Some abnormality of the paranasal sinuses was found in 32–53% of the patients with cranial CT or MRI evaluated for reasons other than sinus problems. (141–144) Tarp et al. found more abnormalities in adults with nasal symptoms and in the winter season (144), but in the study of Havas et al., the abnormalities were not related to season, age, or the patient’s living environment (143).
Delayed resolution of radiographic abnormalities is common in both treated and untreated children and not necessarily an indication of bacterial infection or inadequate treatment. In one study, the relative effectiveness of amoxicillin and amoxicillin-clavulanate potassium was compared to placebo in the treatment of acute maxillary sinusitis in children 2 to 16 years of age. Follow-up radiographic evaluation was available for 59 children who had improved or recovered after ten days of therapy, and the radiographs were unchanged or worse in 22 (37%) cases. Although the children with antimicrobial treatment were clinically cured more often than those in the placebo group, the authors did not mention the follow-up radiographic findings separately in the antimicrobial and placebo groups. (14) The same phenomenon was found in a study of 50 children aged 1–16 years treated with amoxicillin or cefaclor because of clinically diagnosed and radiologically confirmed acute maxillary sinusitis. Of the 100 sinuses studied, 89% had abnormal radiographic findings at the study entry. Follow-up radiographic evaluation was done on 44 patients after approximately 10–14 days. Regardless of clinical improvement, one third of the radiologic findings of the sinuses were unchanged or worse than in the initial radiography. (87) Leopold et al. made a prospective MRI study to assess mucosal changes during the resolution of acute maxillary sinusitis. Altogether 13 adults had clinical and MRI examinations up to eight

<table>
<thead>
<tr>
<th>Authors</th>
<th>Imaging method</th>
<th>Age</th>
<th>N</th>
<th>Material</th>
<th>Abnormality of maxillary sinuses (%)</th>
<th>Abnormality of any sinus (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Uhari et al.</td>
<td>Plain X-ray</td>
<td>7 and 11 y</td>
<td>55</td>
<td>School children, plain X-ray twice in 4 months</td>
<td>31 and 24</td>
<td>-</td>
</tr>
<tr>
<td>Kovatch et al.</td>
<td>Plain X-ray</td>
<td>< 18 y</td>
<td>112</td>
<td>Skull radiographs for reasons unrelated to sinus symptoms</td>
<td>41</td>
<td>-</td>
</tr>
<tr>
<td>Haapaniemi</td>
<td>Plain X-ray</td>
<td>6–15 y</td>
<td>663</td>
<td>School children</td>
<td>10–18</td>
<td>-</td>
</tr>
<tr>
<td>Glasier et al.</td>
<td>CT</td>
<td>< 1 y</td>
<td>100</td>
<td>Cranial MRI /CT for reasons unrelated to sinus symptoms</td>
<td>64</td>
<td>67</td>
</tr>
<tr>
<td>Glasier et al.</td>
<td>CT</td>
<td>1 day–16 y</td>
<td>101</td>
<td>Cranial CT scans without suspected sinus disease</td>
<td>-</td>
<td>31</td>
</tr>
<tr>
<td>Diament et al.</td>
<td>CT</td>
<td>< 17 y</td>
<td>137</td>
<td>Cranial CT for neurological reasons</td>
<td>36</td>
<td>45</td>
</tr>
<tr>
<td>Lesserson et al.</td>
<td>CT</td>
<td>< 18 y</td>
<td>142</td>
<td>CT of orbits and temporal bones</td>
<td>39</td>
<td>41</td>
</tr>
<tr>
<td>Manning et al.</td>
<td>CT/MRI</td>
<td>1–15 y</td>
<td>60</td>
<td>MRI /CT for reasons unrelated to sinus symptoms</td>
<td>41</td>
<td>55</td>
</tr>
<tr>
<td>Gordts et al.</td>
<td>MRI</td>
<td>1 mo–15 y</td>
<td>100</td>
<td>MRI with suspected intracranial neurological disease</td>
<td>29</td>
<td>45</td>
</tr>
<tr>
<td>Lim et al.</td>
<td>MRI</td>
<td>< 16 y</td>
<td>60</td>
<td>MRI for reasons unrelated to sinus symptoms</td>
<td>60</td>
<td>38</td>
</tr>
</tbody>
</table>
times after the initiation of amoxicillin-clavulinate treatment. Despite the clinical resolution of symptoms, mucosal changes were seen after more than eight weeks on MRI. (145)

2.7.2.2 Symptoms and signs compared to radiography

Radiological paranasal sinus abnormalities are very common in children with signs and symptoms of acute rhinosinusitis, as seen in table 3. The variation in the frequency of radiologic abnormalities may be due to differences in the study population, the imaging modality (plain radiography, CT, MRI) and the determination of radiologic abnormality.

Radiological abnormalities in children with suspected rhinosinusitis have been found to be more common in younger age groups than in older children. (14,146) According to the study of Van der Veken, atopy does not affect the frequency of paranasal radiological abnormalities (146), but in another study, children with rhinitis, asthma or immunologic deficiencies had more severe involvement of the paranasal sinuses in radiography. (147) Jannert et al. found that the most reliable symptoms and clinical signs of radiologically demonstrable mucosal swelling were purulent nasal secretions on examination, history of upper respiratory infection during the previous two weeks, and sinus pain or tenderness. Altogether 99% of the children with all these symptoms and signs and 75% of those with two of these symptoms and signs had radiological sinus abnormalities. (127)

The severity of symptoms is not related to the degree of sinus abnormality. Wald et al. classified 50 children with a history of acute respiratory symptoms as having either ‘severe’ (n = 20) or ‘persistent’ (n = 30) symptoms. The children with ‘severe’ symptoms had been sick for less than 10 days, while the children with ‘persistent’ symptoms had had persistent symptoms for more than 10 but less than 30 days without improvement. The frequencies of bilateral involvement, air-fluid level, diffuse opacification and mucosal thickening were similar in the children with severe or persistent symptoms. (87) Van Buchem et al. found a positive significant correlation between symptoms of cough and purulent discharge with an opaque sinus on radiography in 76 children with clinically suspected sinusitis. The duration of symptoms was not mentioned. (13)
Table 3. Imaging abnormalities of paranasal sinuses in children with symptoms and signs of rhinosinusitis

<table>
<thead>
<tr>
<th>Author</th>
<th>Age</th>
<th>N</th>
<th>Symptoms and signs</th>
<th>Duration of symptoms</th>
<th>Imaging method</th>
<th>Imaging abnormality N (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wald et al. (14)</td>
<td>2–16 y</td>
<td>171</td>
<td>Nasal discharge or daytime cough or both</td>
<td>10–30 days</td>
<td>Plain radiography</td>
<td>131 (80%)</td>
</tr>
<tr>
<td>Ueda and Yoto (96)</td>
<td>2–15 y</td>
<td>146</td>
<td>Respiratory symptoms</td>
<td>> 10 days</td>
<td>Plain radiography</td>
<td>135 (93%)</td>
</tr>
<tr>
<td>Kogutt and</td>
<td>7 mo–14 y</td>
<td>100</td>
<td>Symptoms of suspected sinusitis</td>
<td>Not mentioned</td>
<td>Plain radiography</td>
<td>96 (96%)</td>
</tr>
<tr>
<td>Swischuk (147)</td>
<td>< 15 y</td>
<td>175</td>
<td>Symptoms of acute sinusitis</td>
<td>“Acute”</td>
<td>Plain radiography</td>
<td>128 (73%)</td>
</tr>
<tr>
<td>Jannert et al. (127)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barlan et al. (148)</td>
<td>1–15 y</td>
<td>89</td>
<td>Symptoms of acute sinusitis</td>
<td>> 7 days</td>
<td>Plain radiography</td>
<td>79 (89%)</td>
</tr>
<tr>
<td>Schwartz et al. (149)*</td>
<td>2.5–12 y</td>
<td>30</td>
<td>Purulent rhinorrhea</td>
<td>1–7 days</td>
<td>Computed tomography (CT)</td>
<td>27 (90%)</td>
</tr>
<tr>
<td>Van der Veken et al. (146)</td>
<td>3–14 y</td>
<td>196</td>
<td>Symptoms of suspected sinusitis</td>
<td>Not mentioned</td>
<td>Computed tomography (CT)</td>
<td>125 (64%)</td>
</tr>
</tbody>
</table>

*CT done after nasal lavage

2.7.2.3 Radiography compared to sinus aspiration and culture

Wald et al. compared abnormal radiological findings to sinus culture in children with acute bacterial rhinosinusitis. They found notable bacterial growth in 23 out of 30 children (77%) with clinically and radiologically diagnosed acute rhinosinusitis. (86) Van Buchem et al. found radiography to be of doubtful value in the diagnostics of bacterial sinusitis. They obtained radiography and maxillary sinus puncture and culture from children with clinically suspected sinusitis. The duration of symptoms was not mentioned. When S. pneumoniae, H. influenzae, group A streptococcus, and S. aureus were regarded as pathogenic, pathogenic bacteria were found in 40% (25/64) of the sinuses with radiological abnormality (“veiling or mucosal swelling”) and in 21% (6/29) of the clear sinuses. Although exact results were not reported, the authors concluded that ‘the radiographs tend to have more complete opacity in those with pathogenic bacteria, but there was a great overlap’. (13)

2.7.2.4 Ultrasonography compared to radiography or sinus aspiration

The value of ultrasonography as a diagnostic method for acute rhinosinusitis in children is controversial, and there is a large range of research results (table 4). According to some authors, ultrasonography is a simple and reliable screening test for rhinosinusitis in children (150), whereas some others do not support the use of ultrasonography. (13,86,151) As shown in table 4, negative findings of ultrasonography are relatively
reliable (specificity 49–98%), whereas positive findings are less reliable (sensitivity 13–56%). If a positive likelihood ratio > 5 and a negative likelihood ratio < 0.5 are used the markers of useful examination (116), ultrasonography is at least a reasonably useful method for detecting sinus abnormalities. The different results of the reliability of ultrasonography can be explained by different study populations (asymptomatic/symptomatic), differences in examiner training (nurse/radiologist/otorhinolaryngologist) and different definitions of rhinosinusitis.

Some authors have found clinical evaluation alone to be a better way to establish a correct diagnosis of sinus empyema in adults than a combination of clinical evaluation and ultrasonography (specificity 77% and 70%, respectively). (152) In another study, ultrasound was compared to plain radiography in 46 adults with clinical suspicion of sinusitis. The sensitivity of ultrasound was 29–75%, depending on the device used and the degree of opacification on radiography. Overall specificity was 92–94%. (153) According to Blomgren et al., the specificity of ultrasound versus irrigation in the diagnosis of acute maxillary sinusitis in adults was 100% when otorhinolaryngologists or general practitioners made the examination, whereas sensitivity was 29% and 14%, respectively. (154)
Table 4. Concordance of diagnostic findings on ultrasonography and maxillary sinus puncture or radiography

<table>
<thead>
<tr>
<th>Author</th>
<th>Subjects</th>
<th>Age</th>
<th>N (patients/sinuses)</th>
<th>Both abnormal/both normal</th>
<th>Ultrasound abnormal, reference normal</th>
<th>Ultrasound normal, reference abnormal</th>
<th>Sensitivity (%)</th>
<th>Specificity (%)</th>
<th>Positive likelihood ratio</th>
<th>Negative likelihood ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reilly et al. (151)(^a)</td>
<td>Children with symptoms of sinusitis</td>
<td>2–16 y</td>
<td>53/106(^a)</td>
<td>9/57</td>
<td>8</td>
<td>32</td>
<td>22</td>
<td>87</td>
<td>1.7</td>
<td>0.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>53/106(^a)</td>
<td>10/86</td>
<td>2</td>
<td>8</td>
<td>56</td>
<td>98</td>
<td>28</td>
<td>0.5</td>
</tr>
<tr>
<td>Van Buchem et al. (13)</td>
<td>Children with suspected sinusitis</td>
<td>2–12</td>
<td>79/103(^d)</td>
<td>2/63</td>
<td>25</td>
<td>13</td>
<td>13</td>
<td>72</td>
<td>0.5</td>
<td>1.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>79/124(^e)</td>
<td>25/33</td>
<td>7</td>
<td>59</td>
<td>30</td>
<td>83</td>
<td>1.7</td>
<td>0.9</td>
</tr>
<tr>
<td>Haapaniemi (132)(^f)</td>
<td>Unselected school-aged children</td>
<td>7–14</td>
<td>663/1326</td>
<td>61/1191</td>
<td>27</td>
<td>47</td>
<td>56</td>
<td>98</td>
<td>28</td>
<td>0.4</td>
</tr>
<tr>
<td>Haapaniemi and Laurikainen (155)(^f)</td>
<td>Adults with acute or prolonged sinusitis</td>
<td>adults</td>
<td>206/290</td>
<td>148/48</td>
<td>50</td>
<td>44</td>
<td>77</td>
<td>49</td>
<td>1.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Puhakka et al. (156)</td>
<td>Adults with common cold</td>
<td>adults</td>
<td>200/394(^f)</td>
<td>53/261</td>
<td>39</td>
<td>41</td>
<td>56</td>
<td>87</td>
<td>4.3</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>40/80(^f)</td>
<td>14/55</td>
<td>3</td>
<td>8</td>
<td>64</td>
<td>95</td>
<td>12.8</td>
<td>0.4</td>
</tr>
</tbody>
</table>

\(^a\) Ultrasonography compared to plain X-ray. \(^b\) Any abnormality in radiography. \(^c\) Complete opacification in radiography. \(^d\) Ultrasonography compared to sinus irrigation. \(^e\) Ultrasonography compared to MRI.
2.7.3 Nasal and nasopharyngeal cultures

The correlation between cultures of nasal cavities and cultures of sinus aspirates during acute rhinosinusitis sinusitis varies a lot in different studies. (13,48,85) The site of the nasal culture, the use of endoscopic control in the sampling and the patients’ age may affect the correlation findings. Most of these studies have been done on adults.

2.7.3.1 Cultures from the nasal cavity

Cultures from the posterior parts of nasal cavities were found to have a good correlation with ipsilateral maxillary sinus aspiration fluid cultures in a study of 185 Finnish adult military service patients with acute maxillary sinusitis, where 267 cultures were compared. When a sinus aspirate culture yielded a presumed sinus pathogen, the same pathogen was found in the nasal samples in 91% of the cases. The predictive value of a pathogen-positive nasal finding was highest for *S. pyogenes* (94%), followed by *H. influenzae* (78%) and *S. pneumoniae* (69%), and lowest for *M. catarrhalis* (20%). (82) A study of Evans et al. had 24 adult patients with acute maxillary sinusitis, and they reported a high rate of false-negative nasal cultures and concluded that anterior nasal cultures correlate poorly with direct aspirate cultures. (48)

The role of middle meatal cultures obtained with a rigid endoscope is controversial, and there is no consensus as to whether middle meatal cultures can substitute for sinus punctures in children. (43) According to some authors, endoscopy is recommended as a first-line diagnostic tool for the diagnosis of acute bacterial rhinosinusitis in routine ear, nose and throat practice in adults. (157)

The normal bacteriology of the middle meatus is different in adults and children. Non-pathogenic bacteria, such as coagulase-negative staphylococci, *S. aureus, S. viridans* and corynebacteria are the most common bacteria in healthy adults, whereas pathogenic bacteria, such as *S. pneumoniae, H. influenzae* and *M. catarrhalis* are only occasionally found in the middle meatus (carriage rates of 0–6% in healthy adults). (158–161) On the other hand, Gordts et al. found middle meatal pathogenic bacteria in 70% of 3- to 4-year-old children undergoing other surgical procedures than surgery for ear, nose or throat disease. *S. pneumoniae* was the most frequently cultured organism, followed by *H. influenzae* and *M. catarrhalis*, which were seen in 50%, 40% and 34%, respectively. In the same study, middle meatal culture was taken from 50 children undergoing ear, nose or throat surgery because of adenoid and/or tonsillar hyperplasia, recurrent tonsillitis or recurrent/chronic otitis media. Middle meatal pathogenic bacteria were found in 92% of these children: *H. influenzae* in 68%, *S. pneumoniae* in 60% and *M. catarrhalis* in 50%. The authors did not report the status of the nasal cavities or the sinus findings, and the specimen from the middle meatus was taken using an ear speculum without an endoscope. (80) The authors do not have an explanation for the differences in the middle meatal flora between healthy adults and children. (160)
In some studies, the correlation between the culture samples from the middle meatus and the maxillary sinus have been good in adults with acute and chronic maxillary sinusitis (16,162–164) and also in children with recurrent or chronic sinusitis (165). Examination of the nose and middle meatus with an endoscope can be performed in many children even under local anesthesia. (166–168) Culture specimens from the middle meatus are more likely to be positive than culture from the maxillary antrum. (43,165)

In a study of 39 children with recurrent or chronic sinusitis, cultures were taken during a surgical intervention from 50 middle meatuses, 48 ethmoid sinuses and 23 maxillary sinuses. Endoscopically guided middle meatal samples were obtained after decongestation, local anesthesia with cocaine and nasal endoscopy. Tissue or aspiration cultures of maxillary sinus contents were taken through middle meatal antrostomy or antral irrigation. The agreement between ipsilaterally obtained cultures of the middle meatus and the maxillary sinuses was 83% (19/23) and that between the middle meatus and ethmoid sinuses 80% (33/44). (165) Talbot et al. compared the microbiology of the middle meatus to the microbiology of maxillary sinus aspiration in 46 adults with acute sinus symptoms and significant sinus x-ray abnormality. Endoscopy cultures of the pathogenic bacteria *H. influenzae, M. catarrhalis* and *S. pneumoniae* demonstrated a sensitivity of 86% and specificity of 91% as compared to the cultures of sinus puncture and aspiration. (16) On the other hand, Axelsson and Brorson compared the bacteriologic findings of middle meatus and maxillary sinus cultures in adult patients with acute maxillary sinusitis and found the same bacteria in only 63% (53/85) of the samples. The same bacteria were found in 81% (548/677) of the ipsilateral middle and inferior meatuses. The swabs were taken with a sterile nasal speculum without an endoscope. (83) Correlations were also studied in 24 rabbits with induced acute sinusitis, and the investigators demonstrated a 100% correlation between middle the meatal and maxillary sinus cultures in those animals. (169)

The role of middle meatal culture as a diagnostic method in children with acute rhinosinusitis is unknown.

2.7.3.2 Cultures from the nasopharynx

The agreement between cultures of the nasopharynx and maxillary sinuses has been found to be poor. Wald et al. compared the bacteriologic findings from maxillary sinuses to nasopharyngeal culture in 30 children with clinically and radiologically diagnosed maxillary sinusitis. They compared the predominant bacterium recovered from the nasopharyngeal and throat cultures to the sinus aspirates and found no correlation. Although the organism recovered from the sinus aspirate was usually also found in the nasopharyngeal and throat culture, it was rarely the predominant organism. They concluded that nasopharyngeal or throat cultures cannot be used as guidelines for antimicrobial treatment of maxillary sinusitis. (86) The association between nasopharyngeal and maxillary sinus cultures was also low in a study of 39 children with recurrent or chronic sinusitis. The species for culture were obtained at a time of surgery from 27 nasopharynxes, 48 ethmoid sinuses and 23 maxillary sinuses. The same bacteria were found in 45% (9/20) of the nasopharyngeal and maxillary sinus cultures and in 40%
In another study of 56 adult patients, the same bacteria were detected from nasopharyngeal and maxillary sinus cultures in 43% (16/37) of patients with acute sinusitis and in 16% (3/19) of patients with chronic sinusitis. (9)

In a study of Jannert et al. children with pathogenic bacteria in the nasopharynx were found to have more pronounced radiological abnormalities than children without pathogenic bacteria in the nasopharynx. Bacterial culture specimens were taken from the nasopharynx in 103 children with clinical and radiological evidence of acute maxillary sinusitis. Altogether 77% (55/71) of the children with major radiologic findings had pathogenic bacteria in the nasopharynx, compared to 60% (9/15) of those with normal radiography. (127) In the study of Kaiser et al., antimicrobials were found to be effective in adult patients with sinusitis or common cold with S. pneumoniae, H. influenzae or M. catarrhalis in the nasopharynx. (170) A significant association has also been found between nasopharyngeal carriage of S. pneumoniae and acute otitis in children (171).

Some authors have observed an increased isolation rate of H. influenzae, S. pneumoniae or M. catarrhalis in the nasopharynx of children with upper respiratory infection (172,173), but some authors have found the frequency of common sinus pathogens in nasopharyngeal culture to be the same in healthy children and children with acute upper respiratory infection (81,174).

2.7.4 Laboratory tests

Erythrocyte sedimentation rate (ESR), white blood cell count (WBC) and C-reactive protein (CRP) could not give any useful information about the causative agents in 176 young men with acute maxillary sinusitis. The great majority of tests (82%) showed normal values despite pathogen-positive acute maxillary sinusitis. (175) This finding is not in accordance with the result of the study of 174 adults with acute maxillary sinusitis, in which elevated ESR and CRP appeared to be useful diagnostic criteria for acute maxillary sinusitis. The combination of ESR and CRP had a sensitivity of 82% and a specificity of 57% in diagnosing purulent or mucopurulent material in sinus aspiration or lavage (positive likelihood ratio 1.9, negative likelihood ratio 0.32), though microbial etiology was not assessed. (176) In another study, ESR > 10 mm/h was associated independently with acute sinusitis confirmed by CT, whereas WBC or CRP did not have any diagnostic value. (177)

The diagnostic value of laboratory tests has not been studied in children with acute rhinosinusitis, but according to Fireman, WBC and differential and ESR are usually of no clinical value in the diagnostics of acute maxillary sinusitis in children. (119) Also, according to the Finnish guidelines of acute sinusitis, laboratory tests should not be used in the diagnostics of acute rhinosinusitis. (178)
2.7.5 Current recommendations for diagnosing acute rhinosinusitis in children

The current clinical diagnostic criteria for viral rhinosinusitis include a respiratory infection that is beginning to resolve after a few days and is better by a week to 10 days after onset.

American Academy of Pediatrics recommends that the diagnosis of acute bacterial rhinosinusitis in children six years or younger could be based on clinical criteria only (4), although acute bacterial rhinosinusitis cannot be distinguished from acute viral rhinosinusitis on clinical grounds alone without sinus puncture and culture (12,44). Imaging studies may be necessary to confirm the diagnosis in children older than six years and in all children (regardless of age) with severe symptoms. (4,179) According to a recent review, the greatest predictive value of plain radiography lies in its ability to exclude acute bacterial rhinosinusitis in symptomatic children: normal radiography has a sensitivity of approximately 90% in excluding acute bacterial rhinosinusitis. (180) Clinical criteria for acute rhinosinusitis in children are divided into severe and non-severe forms (43,104,181):

1. Non-severe acute bacterial rhinosinusitis has symptoms of upper respiratory tract infection that persist without improvement for more than 10 days. Although patients may not be asymptomatic by the tenth day, their condition has virtually always improved.

2. The severe form has unusually severe symptoms of upper respiratory infection with high fever (temperature more than 39°C) and purulent nasal discharge. In this clinical presentation, the duration of symptoms is not important, and antimicrobial treatment is recommended to be started as soon as possible.

These recommendations are mainly based on the studies of Wald et al. (14,86,87). Two studies were done partly on the same children with symptoms for less than 30 days and radiologically confirmed sinusitis (age 1–16 years, N = 30 and N = 50). (86,87) Maxillary sinus aspiration and culture were done on one or both sides, and at least one maxillary sinus was found to be infected in 70–77% of children (65–72% of sinuses). The children were treated with amoxicillin or cefaclor, and the clinical cure rates were 81% and 78%, respectively. (86,87) One of the studies of Wald et al. was done on 93 children with 10–30 days of nasal discharge, daytime cough or both and radiological maxillary sinusitis. These children were treated with amoxicillin, amoxicillin-clavulanate potassium or placebo. The children treated with an antibiotic were more likely to be cured than those receiving placebo (67%, 64% and 43%, respectively). (14) However, at the follow-up visit, 30–37% of the sinuses in the children with clinical improvement or cure were radiologically unchanged or worse than at enrollment. According to the authors, delayed radiographic resolution is common and does not necessarily indicate inadequate treatment.

In a study of Ueda and Yoto, 2- to 15-year-old children with > 10 days of upper respiratory infection and radiological sinusitis were treated with cefaclor. At follow-up 2 weeks later, 93% of the children were clinically and radiologically cured or improved. Even though this was not a randomised controlled study, the authors assume that the 10-
day mark is a simple and practical diagnostic basis for acute paranasal sinusitis. (96) In contrast, Garbutt et al. concluded that the clinical criteria of sinusitis do not provide sufficient evidence. They studied a total of 188 pediatric patients with 10 to 28 days of persistent symptoms and randomised them to receive amoxicillin, amoxicillin-clavulanate or placebo for 14 days. Sinus symptoms were followed by a quantitative symptom score and subjectively by interviewing the parents on telephone. There were no differences between the treatment groups in the improvement rates on day 14 (amoxicillin 79%, amoxicillin-clavulanate 81% and placebo 79%). The authors concluded that clinically diagnosed, uncomplicated acute maxillary sinusitis in children is usually a self-limiting illness of short duration, and that antimicrobials do not offer clinical benefit. (15)

According to the Finnish guidelines, the diagnosis of maxillary sinusitis should be based on symptoms of acute respiratory infection and detection of effusion by ultrasonography or radiography in adults. Rhinosinusitis in children is recommended to be diagnosed mainly on a clinical basis, and repeated radiographies should be avoided. Ultrasonography provides limited information of the quality of mucosal swelling, but it may be useful in the follow-up of secretion, if a child older than seven years suffers recurrent episodes of sinusitis. (178) In the studies of Finnish health centres, ultrasonography and/or radiography were used as a diagnostic method for 80–90% of patients diagnosed with acute maxillary sinusitis (74–79% and 2–5%, respectively). These imaging methods were also used commonly among children (60% of children aged less than five years and 77% of children aged 5–14 years). (182,183)
3 Purpose of the present study

The purpose of the present study was:

1. To evaluate the clinical relevance of the imaging of paranasal sinuses among healthy and sick children.
2. To evaluate the value of antimicrobial treatment in children with radiologically confirmed acute rhinosinusitis.
3. To evaluate the predictive value of nasal middle meatal bacteriology for the course of common cold.
4 Patients and methods

4.1 MRI findings of paranasal sinuses in schoolchildren (I)

All 48 pupils aged 8–9 years (29 boys and 17 girls) in two class groups at one school were informed about the study and asked to participate. Twenty-seven of them volunteered for the first examination in April–May.

The background information and the occurrence of symptoms at the time of examination were inquired from the parents with a questionnaire. The children were examined just before or immediately after the MRI scanning. The children were considered symptomatic if they had a history of recent upper respiratory infection consisting of rhinorrhea or cough, and if nasal discharge and mucosal erythema were observed in the physical examination.

MRI was performed with a 1.5 T MRI scanner (GE Signa, Milwaukee, WI, USA). Axial and coronal T2 (TR 3500, TE 98) and proton density (TR 3500, TE 14) weighted fast-spin echo images were obtained. Contiguous slices 3 mm in thickness (23 × 17 fov, 256 × 224 matrix) were obtained using a head coil. Mucosal thickening of more than 3 mm, total sinus opacification and an air-fluid level were considered as pathological findings. The more seriously affected side was recorded as the final grade for each sinus. If the sinus was not developed, it was recorded as normal. The volume of the maxillary sinus contents (fluid and mucosa) and the airspace were determined by summing the voxels in the appropriate regions on the contiguous images through the maxillary sinuses, and the percentage volume of opacification in the maxillary sinuses was calculated. The MRI scans were evaluated from hard copies by a radiologist and an oto-rhino-laryngologist. In cases of disagreement, a consensus was reached after re-evaluation.

During the initial visit, each child was asked to participate in a re-examination after 6–7 months, and 18 of them participated.
4.2 MRI findings of paranasal sinuses during upper respiratory infection (II)

The children from 48 day-care centers participated in a trial evaluating the effect of xylitol on the appearance of otitis media during upper respiratory infection. (184) The parents were asked to bring their child to the outpatient clinic of pediatrics, within three days after the onset of symptoms suggestive of respiratory infection (rhinitis, conjunctivitis, cough, ear ache, sore throat and fever). A total of 74 children aged 4 to 7 were offered a possibility to have MRI of paranasal sinuses, and 68 of them were willing to participate. The MRI examination was carried out within the next seven days. Children with acute otitis or tonsillitis requiring antimicrobial treatment, chronic/recurrent sinusitis or prior sinus surgery, claustrophobia or any implanted ferrous material were excluded. After the exclusion of six claustrophobic and two asymptomatic children, altogether 60 symptomatic children (27 boys and 33 girls) were examined.

The occurrence and duration of respiratory symptoms were evaluated. The severity of nasal obstruction, nasal discharge, cough, sneezing, sore throat, headache, chills and fever were graded on a scale from 0 (not present) to 4 (very severe) and summed up to obtain a total symptom score.

MRI was performed with an open resistive 0.23 T MRI scanner (Marconi Medical Systems) with a head surface coil, including axial and coronal T2-weighted (TR 4300 ms, TE 126 ms) fast-spin echo images with a 4-mm slice thickness, a 210-mm field-of-view, and a 256 × 256 acquisition matrix. The gradings of the paranasal sinuses were: grade 0: ≤ 2 mm mucosal thickening, grade 1: over 2 mm mucosal thickening - 1/3 volume loss, grade 2: 1/3 - 2/3 volume loss and grade 3: more than 2/3 volume loss or air-fluid level. The final grade for each sinus was determined from the more severely affected side, and the grades was summed up to obtain a total MRI score (range 0–24 for all paranasal sinuses). Grade 0 and undeveloped sinuses were recorded as a normal finding, grade 1 as minor abnormality, and the grades 2–3 as major abnormality.

In case of major abnormality in the maxillary sinus on the initial MRI scan, the child was offered the possibility of a follow-up scan two weeks later. The symptoms, medications and acute complications between the two scans were recorded.

4.3 Effect of cefuroxime axetil on acute rhinosinusitis (III)

We selected the participants at one primary health centre in Oulu from among all children aged 4–10 years who presented with acute respiratory complaints. The study was conducted between November 1998 and March 1999 and between October 2000 and March 2001. To be eligible, the child had to have acute respiratory symptoms suggestive of sinusitis that were not improving and an abnormal ultrasound finding of at least one maxillary sinus. The exclusion criteria were: respiratory symptoms for more than 3 weeks, antimicrobial treatment within 4 weeks of screening, ongoing antimicrobial treatment, allergy to cephalosporin, complications of sinus disease and a prior sinus operation.
The parents recorded the presence and duration of eight acute symptoms: severity of nasal obstruction, nasal discharge (clear or coloured), day- or nighttime cough, sneezing, sore throat, headache, chills and fever. The symptoms were graded on a scale from 0 (not present) to 4 (very severe) and summed up for a total symptom score. (185)

The same otolaryngologist carried out the clinical examination and the ultrasonography of the maxillary sinuses. Ultrasonography was done using a portable Sinuscan 101 (Oriola, Helsinki, Finland) with a frequency of 3 MHz and a transducer diameter of 8 mm in an upright position, as described previously. (186) Three or more echoes reflected in the probe were considered as either mucosal thickening (distance to the third echo < 2cm) or fluid (≥ 2 cm). A finding of at least 5-mm mucosal thickening or fluid in at least one maxillary sinus was considered abnormal.

The plain radiographies (occipitomental view) taken on day 1 were interpreted at the end of the study by an otolaryngologist and a radiologist, who were blinded to the clinical course and the results of ultrasonography. A radiological diagnosis of sinusitis was made if mucosal thickening of at least 4 mm, an air-fluid level or total opacification in at least one maxillary sinus was detected. Specimens for aerobic bacterial cultures were taken from the nasopharynx. The swabs were inoculated on blood and chocolate agar plates according to routine procedures.

Each patient received either cefuroxime axetil in 125-mg capsules twice a day for 10 days or placebo in a similar form at a similar frequency. The use of analgesics, nose drops and cough mixtures was allowed, the amount being recorded in the diary.

The parents were instructed to keep a diary of the presence of six symptoms (fever, cough, nasal discharge, nasal obstruction, headache and otalgia) and the administration of the study and other medication. Follow-up visits were scheduled on day 14, and based on the symptoms and signs assessed by one clinician and by the parents, the child’s condition was classified as cured, improving, unchanged or deteriorated. Plain radiography and bacterial specimens were repeated, and symptom diaries and residual drugs were collected.

Any child whose symptoms were aggravated during the follow-up was re-examined. In case the disease had progressed, which was defined as persistent fever ≥38°C for three consecutive days and/or severe fatigue, or otitis media or pneumonia was diagnosed, the child was defined to have a complication, and the code was opened. Placebo was replaced by amoxicillin (40 mg/kg/day), and cefuroxime was continued as planned.

The primary outcome measure was the percentage of children with complete cure in 2 weeks as assessed by the clinician and the parents. The other end points were the percentage of children with improvement without complications, the percentage with side effects and the mean difference in symptoms and days when analgesics, nasal decongestants or cough mixtures were given.
4.4 Nasal middle meatal bacteriology and duration of common cold (IV)

The parents of about 3700 school children in the towns of Oulu and Tornio were informed about the study by a letter. An advertisement about the study was published once in a local newspaper.

If a child had any symptoms suggestive of respiratory infection, the parents were asked to bring him/her to the clinic within 10 days of the beginning of the episode. The child was eligible if he/she had had symptoms of respiratory infection, including rhinorrhea and/or cough. Children with infection requiring antimicrobial treatment or with upper respiratory infection or antimicrobial treatment within 4 weeks preceding the screening visit were excluded. Children with diabetes, immunological deficiency or facial anomalies were also excluded. The parents completed a questionnaire of the presence and duration of nasal obstruction, nasal secretion (clear/colored), cough, headache, sore throat and fever at enrolment. Each symptom was graded on a scale from 0 (not present) to 3 (very severe) and summed up to obtain the total symptom score. An ear, nose and throat examination was done on all children.

The parents were instructed to keep a diary of the presence of four symptoms (nasal discharge (clear/coloured), nasal obstruction and cough). The use of analgesics, antihistamines, nasal corticosteroids and nose drops was allowed, the amount being recorded in the diary. Any child whose symptoms were aggravated during the follow-up was re-examined. Antimicrobials were used if needed, i.e. if the disease progressed or the child developed complications. At a follow-up visit three weeks later, the diaries were collected and the child was re-examined.

One hundred children volunteered to participate, but 18 of them were excluded (7 had had symptoms for more than 10 days, 5 had otitis media, 3 had had respiratory infection within four weeks preceding the screening visit, 2 were of unsuitable age and one had a sore throat without nasal symptoms or cough). Thus, 82 children (42 boys, mean age 9.8 years, range 6–13) entered the study, of whom 80 attended the follow-up visit.

At enrolment, specimens for virologic analysis were taken by aspirating nasal secretion with a glass suction tip under visual control with a headlamp and a nasal speculum, about 10 mm inside the nostril from the bottom of the nasal cavity. Secretion was diluted with 1.5 ml of normal saline and stored frozen at -70°C. Total nucleic acids were purified from 250 µl of nasal sample, using the High PureViral Nucleic Acid Isolation Kit (Roche Applied Science, Germany). Nucleic acid isolation was carried out as recommended by the manufacturer, except that the nucleic acid elution buffer was pre-warmed to 72°C before adding it into the column. The column was incubated at 72°C for 1 min prior to final centrifugation. Parainfluenza, Influenza and RSV viruses were detected by the Prodesse Hexaplex® Plus Kit (Prodesse, Waukesha, WI, USA). Enteroviruses and rhinoviruses were detected according to the method of Lönnrot et al. (187). Instead of lanthanide chelate-labelled probes, DIG-labelled probes were used. For adenovirus detection, an in-house test was developed according to Gröndahl et al.. (188)

At enrolment and at follow-up, bacteriologic samples were taken as follows. Secretion from the middle meatus on both sides was obtained with a cotton swab under the control of a 2.7-mm thick 30° rigid endoscope. The children were informed about the sampling,
which was done without decongestant or topical anesthesia, avoiding contamination of the skin of the nares. Specimens for aerobic bacterial cultures were taken from the nasopharynx through the mouth using an angled cotton swab. The samples were immersed in a tube containing 1 ml of STGG (skim milk, tryptone, glucose, glycerol) medium and stored frozen at -75°C. (189) The nasopharyngeal specimens were cultured on 5% sheep blood agar (Trypticase Soy agar BBL 11043, Muller Hinton agar BBL 11438, USA) and sheep blood agar with gentamicin (5 μg/ml) plates. The middle meatal specimens were cultured on blood agar and enriched chocolate agar plates. The plates were incubated in 5% CO₂ at +37°C for 18 to 24 h. Colonies suspected as S. pneumoniae from nasopharyngeal specimens and S. pneumoniae, H. influenzae and M. catarrhalis from middle meatal specimens were identified using generally accepted methods as described earlier. (190) The number of bacterial colonies as well as the amount of normal flora were recorded.

S. pneumoniae, H. influenzae and M. catarrhalis were considered as potentially pathogenic bacteria in the middle meatus. The only pathogenic bacterium identified from the nasopharynx was S. pneumoniae.

The primary outcome measure was the mean duration of the symptoms of acute respiratory infection. The numbers of symptomatic days before and after enrolment were summed up, the latter being taken from the diary. After three asymptomatic days, the episode was considered to be cured.

4.5 Statistical analysis

Summary statistics are expressed as means, medians and standard deviations (SD) for descriptive purposes. Fisher’s exact test, Mann-Whitney U-test, χ²-test and SND test were used to analyze the interdependencies between two variables for unpaired data (studies II–IV) and Kruskal-Wallis analysis of variance with more groups (study II). Wilcoxon’s ranked-pairs analysis was used for analysing paired data, and correlation coefficients were calculated using Spearman’s rank correlation (study II). In the placebo-controlled study (III), the data were analysed on the per protocol basis. The differences in means with 95% confidence intervals were calculated to compare the proportions of children with complete cure and with improvement without complications in the groups receiving cefuroxime or placebo (study III) and to compare the numbers of symptomatic days in the children with and without middle meatal pathogenic bacteria (study IV). (191) The times to complete elimination of symptoms relative to the findings of middle meatal pathogens were analysed by means of Kaplan-Meier curves, and the differences between the groups were tested with the log rank test. (192,193) The Cox proportional-hazards regression model was used for multivariate analysis. (194) The cumulative risk of failure to cure was calculated as a hazard ratio with 95 percent confidence intervals, which were adjusted for age, sex, allergic rhinitis and viral findings (positive/negative) (study IV).
4.6 Ethical aspects

All the studies were approved by the ethics committee of Oulu University Hospital. Informed consent was obtained from the parents in all cases and also from the child whenever appropriate. MRI and ultrasonography examinations are safe, painless and non-invasive without exposure to ionising radiation. Plain radiography causes ionising radiation, which was minimised by obtaining an X-ray image in only one direction. Bacterial sampling of the middle meatus causes discomfort and requires good cooperation of the child, but the sampling is otherwise non-invasive.
5 Results

5.1 MRI findings of paranasal sinuses in schoolchildren (I)

The final series consisted of 24 children, mean age 8.9 years (ranging from 8.4 to 9.7 years). Nineteen of them were asymptomatic and 5 were symptomatic in terms of their history and the clinical examination.

Some form of sinus abnormality was found in 12 children (50%, 95% CI 29–71%). Changes in the ethmoidal sinuses were found in 10 (42%, 95% CI 22–63%) and abnormalities in the maxillary sinuses in nine (38%, 95% CI 19–59%). Sphenoidal abnormalities were found in 3 cases (13%, 95% CI 3–32%) and frontal sinus abnormalities in 3 (13%, 95% CI 3–32%). Ten of the children (42%) had undeveloped frontal sinuses, and one had undeveloped sphenoidal sinuses. The asymptomatic children had sinus abnormalities in their MRI in 8/19 cases (42%, 95% CI 20–67%) (Table 5). The mean percentage opacification in the volume of the maxillary sinuses was 18% among the symptomatic children and 11% and among the asymptomatic children.

Eighteen of the children attended the follow-up examination after six months. One child was excluded because the scan was technically inadequate due to a dental bridge. Abnormal MRI findings were seen in seven children on this occasion (41%, 95% CI 18–67%), the most frequent abnormality being mucosal thickening of the ethmoids (41%, 95% CI 17–64%). Five of the 13 asymptomatic children had abnormal MRI findings (38%, 95% CI 14–68%). The previous abnormalities of the maxillary sinus had resolved without any treatment in 63% of the cases (95% CI 25–92%) and those concerning the ethmoidal sinus findings in 42% (95% CI 15–72%) (Fig. 2).
Table 5. Prevalence of current nasal symptoms and signs versus MRI findings in the first examination (n = 24)

<table>
<thead>
<tr>
<th>MRI findings</th>
<th>Asymptomatic (n = 19)</th>
<th>Symptomatic* (n = 5)</th>
<th>Total (n = 24)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maxillary sinuses</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>14</td>
<td>1</td>
<td>15</td>
</tr>
<tr>
<td>Abnormal</td>
<td>5</td>
<td>4</td>
<td>9</td>
</tr>
<tr>
<td>Ethmoidal sinuses</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>13</td>
<td>1</td>
<td>14</td>
</tr>
<tr>
<td>Abnormal</td>
<td>6</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>Any sinus</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>11</td>
<td>1</td>
<td>12</td>
</tr>
<tr>
<td>Abnormal</td>
<td>8</td>
<td>4</td>
<td>12</td>
</tr>
</tbody>
</table>

*Children were considered symptomatic if they had a history of recent upper respiratory infection consisting of rhinorrhea or cough, and if nasal discharge with mucosal erythema was observed in the physical examination.

Fig. 2. MRI findings of paranasal sinuses in children who participated in two examinations at six-month interval (n = 17).
5.2 Background characteristics of children in studies II–IV

Altogether 214 children aged 3.9–13.2 years attended the studies II–IV. Ninety-nine of them were seeking medical help because of upper respiratory infection; 115 attended only as study subjects. Other details of the baseline characteristics are shown in table 6.

Table 6. Baseline characteristics of the 214 children with symptoms of upper respiratory infection attending the studies II–IV.

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Patients seeking medical help</th>
<th>Patients not seeking medical help</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N = 99</td>
<td>N = 115</td>
</tr>
<tr>
<td>Mean age in years (SD)</td>
<td>8.0 (2.3)</td>
<td>7.6 (2.4)</td>
</tr>
<tr>
<td>Female, no (%)</td>
<td>49 (50)</td>
<td>56 (49)</td>
</tr>
<tr>
<td>Allergic rhinitis, no (%)</td>
<td>7 (7)</td>
<td>18 (16)</td>
</tr>
<tr>
<td>Asthma bronchiale, no (%)</td>
<td>2 (2)</td>
<td>10 (9)</td>
</tr>
<tr>
<td>Recurrent otitis media, no (%)</td>
<td>12 (12)</td>
<td>18 (16)</td>
</tr>
<tr>
<td>Recurrent treatment for rhinosinusitis, no (%)</td>
<td>11 (11)</td>
<td>2 (2)</td>
</tr>
<tr>
<td>Adenoidectomy, no (%)</td>
<td>38 (38)</td>
<td>42 (37)</td>
</tr>
<tr>
<td>Tonsillectomy, no (%)</td>
<td>6 (6)</td>
<td>5 (4)</td>
</tr>
</tbody>
</table>

Symptoms

<table>
<thead>
<tr>
<th></th>
<th>Patients seeking medical help</th>
<th>Patients not seeking medical help</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean duration of symptoms (SD)</td>
<td>7.3 (5.1)</td>
<td>5.7 (3.4)</td>
</tr>
<tr>
<td>Nasal symptoms (%)</td>
<td>98 (99)</td>
<td>110 (96)</td>
</tr>
<tr>
<td>Clear discharge (%)</td>
<td>77 (78)</td>
<td>79 (69)</td>
</tr>
<tr>
<td>Coloured discharge (%)</td>
<td>58 (59)</td>
<td>57 (50)</td>
</tr>
<tr>
<td>Nasal obstruction (%)</td>
<td>93 (94)</td>
<td>96 (84)</td>
</tr>
<tr>
<td>Cough (%)</td>
<td>92 (93)</td>
<td>90 (78)</td>
</tr>
<tr>
<td>Headache (%)</td>
<td>65 (66)</td>
<td>36 (31)</td>
</tr>
<tr>
<td>Sore throat (%)</td>
<td>65 (66)</td>
<td>54 (47)</td>
</tr>
<tr>
<td>Fever (%)</td>
<td>53 (54)</td>
<td>24 (21)</td>
</tr>
<tr>
<td>Radiologic maxillary sinusitis*</td>
<td>59 (82)</td>
<td>37 (63)</td>
</tr>
</tbody>
</table>

*Radiography of the sinuses done on 132 of the children

5.3 MRI findings of paranasal sinuses during upper respiratory infection (II)

The subjects had had symptoms of an uncomplicated acute respiratory infection for an average of six days (mean 6.5 days (SD 3.0) range 2–12), and the mean overall symptom score was 6.5 (SD 4.0).

Altogether 68% of the children had major abnormalities in their paranasal sinuses (Table 7). The opacity of these abnormal findings indicated in most cases the density of mucosal swelling.
The mean MRI scores correlated significantly with the symptoms scores ($r_s = 0.3$, $p = 0.02$), but not with the duration of symptoms ($r_s = -0.04$, $p = 0.73$). Of the individual symptoms, nasal obstruction, nasal discharge and fever were significantly related to the MRI scores.

Table 7. Findings in magnetic resonance imaging during acute respiratory infection in a series of 60 children

<table>
<thead>
<tr>
<th>Sinus</th>
<th>Normal N (%)</th>
<th>Minor abnormality N (%)</th>
<th>Major abnormality N (%)</th>
<th>Mean score (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maxillary</td>
<td>15 (25)</td>
<td>9 (15)</td>
<td>36 (60)</td>
<td>1.8 (1.2)</td>
</tr>
<tr>
<td>Ethmoidal</td>
<td>10 (17)</td>
<td>13 (22)</td>
<td>37 (62)</td>
<td>1.9 (1.1)</td>
</tr>
<tr>
<td>Frontal</td>
<td>16 (27)</td>
<td>6 (10)</td>
<td>11 (18)</td>
<td>1.1 (1.2)</td>
</tr>
<tr>
<td>Sphenoidal</td>
<td>31 (55)</td>
<td>6 (10)</td>
<td>20 (35)</td>
<td>1.1 (1.3)</td>
</tr>
<tr>
<td>All</td>
<td>7 (12)</td>
<td>12 (20)</td>
<td>41 (68)</td>
<td>8.5 (6.8)</td>
</tr>
</tbody>
</table>

Normal = less than 2-mm mucosal thickening; Minor abnormality = less than 1/3 volume loss; Major abnormality = more than 1/3 volume loss or an air-fluid level. The final grade was determined according to the more severely affected side. *Frontal sinuses were not developed in 24 children and not displayed in the slices in 3 children. †Sphenoidal sinuses were not developed in 3 children. ‡Calculated for all the sinuses on both sides.

5.4 Resolution of paranasal abnormalities after upper respiratory infection (II)

Of the 26 children attending the follow-up examination, 9 (35%) had fully recovered from the respiratory infection, 9 (35%) continued to have symptoms, and 8 (30%) had developed a new respiratory infection. Two children had received antimicrobial treatment.

Overall, the MRI findings had improved significantly from the initial scans ($p = 0.001$). Despite the improvement, however, 69% of the 26 most severely affected children still had major abnormalities in their sinuses (Table 8). The MRI scores at the control visit did not correlate significantly with the control visit’s symptom score ($r_s = 0.21$, $p = 0.29$) or the MRI scores at the initial visit ($r_s = 0.09$, $p = 0.66$).
Table 8. Findings in magnetic resonance imaging during an acute respiratory infection and at a follow-up visit two weeks later in a series of 26 children with major abnormal findings in the first scan

<table>
<thead>
<tr>
<th>Sinus</th>
<th>Acute visit</th>
<th>Follow-up visit</th>
<th>Mean score (SD)</th>
<th>Mean score (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Normal</td>
<td>Abnormality</td>
<td>Minor (%) N (%)</td>
<td>Major (%) N (%)</td>
</tr>
<tr>
<td></td>
<td>Mean score</td>
<td></td>
<td>Mean score</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td></td>
<td>Mean score</td>
<td></td>
</tr>
<tr>
<td>Maxillary</td>
<td>-</td>
<td>-</td>
<td>26 (100)</td>
<td>10 (38)</td>
</tr>
<tr>
<td></td>
<td>2.7 (0.4)</td>
<td></td>
<td>7 (27)</td>
<td>9 (35)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.3 (1.3)</td>
<td></td>
</tr>
<tr>
<td>Ethmoidal</td>
<td>3 (12)</td>
<td>23 (89)</td>
<td>2.5 (0.7)</td>
<td>8 (31)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6 (23)</td>
<td>12 (46)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.3 (1.1)</td>
<td></td>
</tr>
<tr>
<td>Frontal*</td>
<td>3 (21)</td>
<td>4 (29)</td>
<td>7 (50)</td>
<td>12 (75)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.7 (1.2)</td>
<td>1 (6)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>12 (75)</td>
<td>3 (19)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.6 (1.1)</td>
<td></td>
</tr>
<tr>
<td>Sphenoidal**</td>
<td>8 (35)</td>
<td>2 (8)</td>
<td>13 (55)</td>
<td>15 (60)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.7 (1.4)</td>
<td>4 (16)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6 (24)</td>
<td>0.8 (1.1)</td>
</tr>
<tr>
<td>All</td>
<td>12.7 (5.6)***</td>
<td></td>
<td>5.7 (5.2)***</td>
<td></td>
</tr>
</tbody>
</table>

Normal = less than 2 mm mucosal thickening; Minor abnormality = less than 1/3 volume loss; Major abnormality more than 1/3 volume loss or air-fluid level. The final grade was determined according to the more affected side. *Frontal sinuses were not developed in 10 children and not displayed in the slices at the acute visit in 2 children. **Sphenoidal sinuses were not developed in 1 child and not displayed in the slices at the acute visit in 2 children. ***Calculated for all the sinuses on both sides.

5.5 Effect of cefuroxime axetil during acute rhinosinusitis (III)

Altogether 82 children were randomly allocated to one of the treatment groups (Fig. 3). Inability to swallow the tablets and loss to follow-up reduced the number of children analysed to 72 (88%). The baseline characteristics were similar between the cefuroxime and placebo groups. Overall, 65 out of the 72 (90%) had severe (≥4mm) mucosal oedema, an air-fluid level or total opacification in either maxillary sinus in the plain radiograph on day 1. The children had had symptoms for an average of 8.4 days (SD 5.6), and there were no significant differences between the groups or in the severity and quality of acute respiratory symptoms.

By day 14, altogether 43 children (60%) had cured completely, 20 (28%) had improved, 4 (6%) had remained the same, and 5 (7%) had developed a complication (2 children from the cefuroxime group, and 3 children from the placebo group).

The number of children who had cured completely in 2 weeks was 22 out of 35 (63%) in the cefuroxime group and 21 out of 37 (57%) in the placebo group. Similarly, there were no significant differences between the groups in the percentages of children who had improved without complications (Table 9). These proportions remained similar in the two groups among children aged under and over 6 years of age. The disappearance of symptoms was comparable between the groups as well (Fig. 4).

No significant differences were observed between the two groups in the numbers of days when analgesics, nose drops or cough mixtures were given. By day 14, the proportions of children with findings of radiological sinusitis were similar in the cefuroxime and placebo groups (69% vs. 64%, respectively). The radiological findings at day 14 did not correlate with any of the outcomes (data not shown).
One child in the cefuroxime group and two children in the placebo group were reported to have diarrhoea as an adverse effect. The mean numbers of forgotten doses in the cefuroxime and placebo groups during the trial were 0.5 and 0.3, respectively.

Fig. 3. Trial profile and participant flow of study IV

Fig. 4. Mean (SD) symptom scores in children with acute rhinosinusitis according to treatment assignment (35 children in placebo group and 37 children in the cefuroxime group)
Table 9. Primary outcome measures at day 14 in children with acute rhinosinusitis according to treatment assignment.

<table>
<thead>
<tr>
<th>Measure</th>
<th>Cefuroxime (n = 35)</th>
<th>Placebo (n = 37)</th>
<th>Difference in % (95% CI)</th>
<th>P*</th>
</tr>
</thead>
<tbody>
<tr>
<td>All children</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No (%) with complete cure</td>
<td>22/35 (63)</td>
<td>21/37 (57)</td>
<td>6 (-16 to 28)</td>
<td>0.64</td>
</tr>
<tr>
<td>No (%) with improvement without complications**</td>
<td>32/35 (91)</td>
<td>31/37 (84)</td>
<td>7 (-9 to 24)</td>
<td>0.48</td>
</tr>
<tr>
<td>Children ≤ 6 years of age</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No (%) with complete cure</td>
<td>6/10 (60)</td>
<td>9/17 (53)</td>
<td>7 (-31 to 42)</td>
<td>1.0</td>
</tr>
<tr>
<td>No (%) with improvement without complications**</td>
<td>9/10 (90)</td>
<td>13/17 (77)</td>
<td>13 (-21 to 41)</td>
<td>0.62</td>
</tr>
<tr>
<td>Children > 6 years of age</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No (%) with complete cure</td>
<td>16/25 (64)</td>
<td>12/20 (60)</td>
<td>4 (-24 to 32)</td>
<td>1.0</td>
</tr>
<tr>
<td>No (%) with improvement without complications**</td>
<td>23/25 (92)</td>
<td>18/20 (90)</td>
<td>2 (-17 to 24)</td>
<td>1.0</td>
</tr>
</tbody>
</table>

*Fisher’s exact test. **Defined as otitis media, pneumonia, severe clinical orientation (persistent fever ≥ 38°C for three consecutive days and/or severe fatigue).

5.6 Nasal middle meatal bacteriology and duration of symptoms of common cold (IV)

At enrolment, the children had had symptoms for an average of four days (range 1–10). The parents of twenty-seven (33%) children reported that they would have sought medical attention regardless of the study. The endoscopic procedure and the bacteriologic sampling succeeded in all children. Viral etiology was verified in 39 (54%) out of the 72 children analysed. Thirty-eight children (46%) had at least one pathogenic bacterium in their middle meatus. The children without nasal pathogens tended to be older and allergic and to have proven viral infection more often than the children with pathogens.

Of the 80 children who returned their symptom diaries, 63 (79%) had fully recovered from their initial respiratory infection, 5 (6%) had developed a new respiratory infection, and 12 (15%) continued to have symptoms. Follow-up endoscopic sampling was done on 80 children (98%). One child declined the second sampling because he had found the first sampling uncomfortable. No adverse events were related to the endoscopy or the sampling. Five children had received antimicrobial treatment before the follow-up visit because of progressing symptoms. Forty-three children (54%) had used analgesics or nose drops during the follow-up, but there were no significant differences in the mean number of days when these medicines had been used between the children with and without nasal pathogens at entry (P = 0.66).

Among the 38 children with nasal bacteria present at entry, 13 had H. influenzae, 12 had S. pneumoniae, 7 had M. catarrhalis and 6 had combinations of these bacteria. Seventeen (45%) of these children no longer had pathogenic bacteria at the follow-up visit, whereas in two new children a pathogenic bacterium had emerged. S. pneumoniae
was isolated more commonly from the nasopharynx than from the middle meatus (31/82, 38%, vs. 17/82, 21%). Of the 17 children with *S. pneumoniae* in the middle meatus, 12 (71%) also had the pathogen in the nasopharynx.

The children with nasal middle meatal pathogens at entry had a significantly longer mean duration of symptoms than the children with non-pathogenic bacteria (Table 10). The children with more than one pathogen had symptoms for a longer time, but otherwise there were no significant differences between the different pathogens. The time to recovery was significantly longer in the children with middle meatal pathogens at entry compared to the children without them (P = 0.014, log rank test) (Fig. 5). The effect of pathogenic bacteria was significant (unadjusted hazard ratio, HR, for prolonged recovery 1.68, 95% CI 1.1–2.6) and remained significant after adjustment for age, sex, allergic symptoms and the presence of virus (adjusted HR 2.0, 95% CI 1.1–3.6). The children with *M. catarrhalis* had longer cough episodes than those without (P = 0.003), but no other significant associations between the bacteria and symptoms were seen.

Table 10. Effect of prognostic factors on the duration (days) of acute respiratory infection in children*

<table>
<thead>
<tr>
<th>Prognostic factor</th>
<th>Factor present</th>
<th>Factor absent</th>
<th>Difference in mean (95% confidence interval)</th>
<th>P***</th>
</tr>
</thead>
<tbody>
<tr>
<td>Middle meatal bacteria (yes vs no)***</td>
<td>38 16.7 (7.0)</td>
<td>42 13.1 (6.0)</td>
<td>3.6 (0.7–6.5)</td>
<td>0.025</td>
</tr>
<tr>
<td>Middle meatal bacteria (multiple vs no)***</td>
<td>6 20.0 (6.7)</td>
<td>42 13.1 (6.0)</td>
<td>6.9 (1.5–12.2)</td>
<td>0.023</td>
</tr>
<tr>
<td>No proven viral infection (yes vs no)</td>
<td>32 16.3 (7.6)</td>
<td>38 13.3 (5.3)</td>
<td>3.0 (-0.1–6.0)</td>
<td>0.148</td>
</tr>
<tr>
<td>Young age (7–9 yr vs 10–13 yr)</td>
<td>35 14.7 (6.8)</td>
<td>45 14.9 (6.7)</td>
<td>-0.2 (-3.3–2.8)</td>
<td>0.950</td>
</tr>
<tr>
<td>Male sex (boys vs girls)</td>
<td>40 15.1 (7.1)</td>
<td>40 14.6 (6.4)</td>
<td>0.5 (-2.4–3.6)</td>
<td>0.806</td>
</tr>
<tr>
<td>Allergic rhinitis (yes vs no)</td>
<td>14 13.6 (6.0)</td>
<td>66 15.1 (6.9)</td>
<td>-1.5 (-5.4–2.5)</td>
<td>0.577</td>
</tr>
</tbody>
</table>

*Includes the 81 children who returned the symptom diary out of the 82 enrolled. **Mann-Whitney U-test. ***The findings of *S. pneumoniae, H. influenzae* or *M. catarrhalis* in the nasal rigid endoscopic swab culture taken at an early phase of an acute respiratory infection.
Fig. 5. Recovery of symptoms of acute respiratory infection in children according to the findings of pathogenic bacteria in endoscopic nasal middle meatal samples taken at an early phase of a respiratory infection ($P = 0.014$ for the difference, log rank test).
6 Discussion

According to the present studies, imaging examinations are of no value during acute uncomplicated rhinosinusitis in children. Incidental radiological paranasal sinus abnormalities are common even in healthy children without intention to seek medical help for any reason, and almost all children have paranasal sinus abnormalities during acute respiratory infection. These abnormalities resolve mainly without intervention. Antimicrobials do not give any benefit compared to placebo during acute respiratory infection with radiological rhinosinusitis. Cultures of middle meatal samples seem to predict prolonged duration of respiratory infection, since children with *S. pneumoniae*, *H. influenzae* or *M. catarrhalis* had a longer duration of common cold than children from whom these bacteria were not found. Further studies are needed to clarify whether this sampling method could be used as a diagnostic test to sort out the children who would benefit from antimicrobial treatment.

Despite the presence of extensive literature on sinusitis in children, actual evidence and data on the value of diagnostics of acute uncomplicated sinusitis are limited. According to the Clinical Practice Guideline of American Academy of Pediatrics, physical examination is not helpful in the diagnosis of acute rhinosinusitis in children, since the findings are similar in patients with uncomplicated viral rhinosinusitis and in patients with bacterial acute rhinosinusitis. It is also argued that imaging studies are not necessary to confirm a diagnosis of clinical acute rhinosinusitis in children ≤ 6 years of age. The need for radiographs as a confirmatory test of acute rhinosinusitis in children older than 6 years with persistent symptoms and for all children (regardless of age) with severe symptoms is controversial. (4) We did not find the age of the children to affect the radiologic findings, and our findings are thus in concordance with the American College of Radiology and the Sinus and Allergy Health Partnership, who do not recommend radiologic examinations for the diagnosis of acute uncomplicated sinusitis in any age group. (195,196) The Consensus Meetings of Rhinosinusitis in Children (Brussels, 1996) argue that the diagnosis is usually made on clinical grounds alone, but imaging of the sinuses may be indicated in selected patients. (12)

One important limitation of using imaging examinations as a diagnostic method of rhinosinusitis is the occurrence of incidental changes in the paranasal sinuses in children with radiographies taken for purposes other than the diagnosis of sinus disease. The
prevalence of incidental paranasal sinus abnormalities in our survey was similar to or slightly higher than was to be expected based on a review of the literature, which consisted of reports on MRI or CT performed on selected children hospitalised for indications other than sinus problems. In some series, the sinus abnormalities were more common in children with symptoms of recent respiratory infection. (131,137–139) Our findings are in concordance with the results that failed to show any differences in the frequency of incidental sinus findings in children with recent common cold compared to those without. (133,135,136) Our study is the only survey concerning healthy children without neurological or ophthalmological problems, and also the first prospective longitudinal follow-up study comparing MRI findings to respiratory symptoms.

Another limitation of imaging in the diagnostics of acute rhinosinusitis in children is the high frequency of radiological changes during any viral upper respiratory infection. Previously, common cold was widely thought to affect only the nasal passages and not the sinuses (197), but we found radiological paranasal sinus abnormalities to be common in children with common cold. This is in accordance with the surveys concerning adults with common cold (11,47,62) and with the CT study of children with purulent rhinitis of short duration (149). In the study of Schwartz et al., CT of paranasal sinuses of children was taken after irrigation of nasal cavities with normal saline (made for diagnostic and therapeutic reasons), and the authors concluded that these paranasal abnormalities may have contributed to or been the sole cause of maxillary sinus effusions. (149)

In our study, abnormal MRI findings improved significantly in two weeks, although most of the children still had major abnormalities in their sinuses at the follow-up examination, as in the studies done on adults. (11,47) In the study of Leopold et al., adults with clinically and radiographically diagnosed acute bacterial rhinosinusitis had paranasal sinus abnormalities for more than 8 weeks despite antimicrobial treatment. (145) The severity of the paranasal abnormalities was related to the severity of respiratory symptoms. Nasal obstruction, nasal discharge, and fever as individual symptoms also significantly correlated with the MRI scores. A correlation has also been found between nasal or head congestion (11) and the high mean severity scores of purulent rhinitis (47) and radiological sinusitis in the common cold studies done on adult patients.

The present finding of antimicrobials being no better than placebo in improving the clinical status of the children with radiological rhinosinusitis indicates that acute viral and bacterial rhinosinusitis cannot be differentiated with this method. Kaiser et al. also reported a lack of significant benefit from azithromycin compared to placebo in a study of adults with symptoms of common cold and radiologically confirmed maxillary sinusitis. (170)

This leaves us with the difficult problem of how to identify the children with acute respiratory infection who suffer from bacterial infection and would benefit from antimicrobial treatment. One possible solution could be middle meatal bacterial cultures, especially in children older than 6 years. The correlations between culture samples from the middle meatus and the maxillary sinus have been good in studies on adults with acute and chronic maxillary sinusitis (16,162–164) and also in children with chronic sinusitis (165). In our study, children with *S. pneumoniae*, *H. influenzae* or *M. catarrhalis* in the middle meatal bacterial culture had a significantly longer duration of common cold symptoms than children without these bacteria. This finding is clinically important, since the median duration of common cold was 3.6 days longer in a group with these bacteria
compared to a group without these bacteria in the middle meatus (16.7 days vs 13.1 days, respectively). We did not obtain bacterial cultures from the paranasal sinuses, and we therefore do not know if middle meatal culture correlates with paranasal sinus cultures.

Pathogenic bacteria have also been found to be common in the middle meatus in children without sinus symptoms. Gordts et al. reported that 92% of 3- to 4-year-old children undergoing ear, nose and throat surgery and 70% of those undergoing other surgical procedures had *S. pneumoniae, H. influenzae* or *M. catarrhalis* in their middle meatus. In our study, altogether 41% children with acute respiratory infection had pathogenic bacteria in the middle meatus, but the children in our study were older (mean age 9.8 years) than those in the studies of Gordts. In our study, the children without pathogenic bacteria in the middle meatus tended to be older than those with pathogenic bacteria. Pathogenic bacteria are seldom seen in the middle meatus of healthy adults.

Endoscopic control in the sampling of middle meatal secretion is essential, since middle meatal cultures obtained without endoscopy are not specific for the identification of the bacteria responsible for acute rhinosinusitis. These cultures are frequently contaminated with *S. aureus* and do not correlate well with the results of paranasal sinus aspiration. The Consensus Meeting of Management of Rhinosinusitis in Children could not reach any consensus regarding whether middle meatal cultures could substitute for sinus punctures. A randomised controlled trial is therefore needed to evaluate the clinical value of taking a swab culture from the middle meatus to identify the children who would benefit from antimicrobial treatment among the children with acute respiratory infection.

Nasopharyngeal cultures correlate with the duration of acute respiratory symptoms in adults. Kaiser et al. found that adults with uncomplicated common cold had a more protracted course of illness when *S. pneumoniae, H. influenzae* or *M. catarrhalis* was obtained from the nasopharynx. In their other study, they found antimicrobials to be effective in adult patients with sinusitis or common cold when *S. pneumoniae, H. influenzae* or *M. catarrhalis* was found in their nasopharynx. In our study, *S. pneumoniae* was much more often found in the nasopharynx than in the nasal middle meatus, and the results of nasopharyngeal culture did not correlate with the duration of symptoms. Because of the high carriage rate of pathogenic bacteria in the nasopharynx, this is not a suitable method for screening children for antimicrobial treatment.

The thesis consists of four prospectively designed reports, which all had a separate study population, and the research questions were pre-specified. Three of the papers were observational descriptive cohort studies (I,II,IV) and one a randomised, double-blinded clinical study (III). The age of the study children ranged from 4 to 13 years, and 47% of them were girls. The samples of the studies I and IV consisted of volunteers and could thus represent the part of the general population willing to participate in research. Hence, the populations of these two studies can be healthier or sicker than normal, which may affect the generalisability of the results. In the studies II and III, we had consecutive samples of sick children seen at the clinic. The duration of symptoms in our patients was 6.5 days (SD 4.4), which represents only the first days of rhinosinusitis (according to the definition, the duration of acute rhinosinusitis is up to 4 weeks). Microbiological samples from the maxillary sinuses would have given us much more information, but they were
not obtained because maxillary puncture is invasive and unethical in children with mild symptoms and signs.

Based on these findings, it is recommended that radiological examinations of paranasal sinuses should not be made in children with symptoms of acute rhinosinusitis. Children with pathological imaging findings as an incidental finding or during respiratory infection should not be treated with antimicrobials without any other evidence of bacterial etiology.
7 Conclusions

1. Radiological abnormalities of the paranasal sinuses are common even in healthy children without specific symptoms of sinus infections. These incidental radiological abnormalities are not an indication for antimicrobial treatment.
2. Radiological abnormalities of the paranasal sinuses are very common during upper respiratory infection, and most of them resolve spontaneously without antimicrobial treatment.
3. Ultrasonography or radiography should not be used alone as indications for antimicrobial treatment in children with symptoms of acute rhinosinusitis.
4. Pathogenic bacteria (S. pneumoniae, H. influenzae or M. catarrhalis) in the nasal middle meatus predict a longer duration of upper respiratory infection.
References

57

Maresh MM (1940) Paranasal sinuses from birth to late adolescence: size of the paranasal sinuses as observed in routine posteroanterior roentgenograms. Am J Dis Child 60: 55–78.

