Leena Tiitto

HISTOPATHOLOGICAL FEATURES IN THE PROGRESSION OF IDIOPATHIC PULMONARY FIBROSIS/USUAL INTERSTITIAL PNEUMONIA WITH SPECIAL EMPHASIS ON THE REDOX MODULATING ENZYMES OF THE HUMAN LUNG
LEENA TIITTO

HISTOPATHOLOGICAL FEATURES IN THE PROGRESSION OF IDIOPATHIC PULMONARY FIBROSIS/USUAL INTERSTITIAL PNEUMONIA WITH SPECIAL EMPHASIS ON THE REDOX MODULATING ENZYMES OF THE HUMAN LUNG

Academic dissertation to be presented, with the assent of the Faculty of Medicine of the University of Oulu, for public defence in Auditorium 10 of Oulu University Hospital, on September 22nd, 2006, at 12 noon

OULUN YLIOPISTO, OULU 2006
Tiitto, Leena, Histopathological features in the progression of idiopathic pulmonary fibrosis/usual interstitial pneumonia with special emphasis on the redox modulating enzymes of the human lung
Faculty of Medicine, Department of Internal Medicine, Department of Pathology, University of Oulu, P.O.Box 5000, FI-90014 University of Oulu, Finland; Oulu University Hospital, P.O. Box 10, FI-90029 OYS, Finland; Faculty of Medicine, Division of Pulmonary Diseases, University of Helsinki, P.O.Box 22, FI-00014 University of Helsinki, Finland
Acta Univ. Oul. D 891, 2006
Oulu, Finland

Abstract

Interstitial lung diseases (ILD), including interstitial pneumonias (IP), represent disorders with variable degrees of parenchymal inflammation and/or fibrosis offer an ideal model to investigate the histopathological features in relation to the course of these diseases. The most common IP is idiopathic pulmonary fibrosis (IPF) with the histological pattern of usual interstitial pneumonia (UIP) exhibiting the histological hallmark of fibroblast foci (FF). Surgical lung biopsy (SLB) is not usually needed for diagnosis of IPF, but the lung biopsy samples taken by SLB confers the diagnosis in atypical cases. The safety of SLB in IPF/UIP has been a controversial issue. The acute exacerbation occasionally occurs during the course of IPF/UIP, but pathological features related to this event are poorly understood.

Recent studies suggest that one important determinant in the pathogenesis of ILDs, as in IPF, is oxidant stress and an imbalance of the redox-state in the lung. Thiol containing redox-regulated proteins which participate in the antioxidant defence of the lung include thiorexin (Trx) and gamma-glutamylcysteine synthetase (γGCS), also called glutamate-cysteine ligase (GLCL), the rate-limiting enzyme of glutathione (GSH) synthesis.

The goal of this research was to evaluate the safety of SLB and the relationships between the histological findings and the course of IPF/UIP, and to investigate the above mentioned defense mechanisms in a variety of ILDs by means of immunohistochemical analyses, Western Blotting and immunoelectronmicroscopy.

No deaths occurred in the following 30 days after 34 video-assisted thoracoscopic lung biopsy (VATS). The number of FF in the lung sample predicted the survival, but it was not associated with acute exacerbation of IPF/UIP before death. Diffuse alveolar damage was a common feature in autopsy samples. The studied redox regulated defense enzymes were expressed in bronchial epithelium, metaplastic alveolar epithelium and alveolar macrophages, but the fibrotic areas generally showed no expression.

In IPF/UIP VATS is a safe diagnostic method and counting the number of FF represents a reproducible and reliable method for predicting patient survival. Alterations in the redox regulated defense enzymes further point to the importance of oxidant burden in the fibrotic lung.

Keywords: gamma-glutamylcysteine synthetase, idiopathic pulmonary fibrosis, thioredoxin, thioredoxin reductase, thoracoscopic lung biopsy, usual interstitial pneumonia
To Matti
Acknowledgements

This study was carried out in the Departments of Internal Medicine and Pathology of the University of Oulu 2000–2006.

I am indebted to Professor Antero Kesäniemi, M.D., Ph.D, Head of the Department of Internal Medicine for placing the excellent research facilities at my disposal.

I express my gratitude to my supervisor Professor Vuokko Kinnula, M.D., Ph.D., Helsinki University Hospital, Pulmonary Division, for letting me to participate in this scientific project. She implanted within me a desire for knowledge. Her indefatigable enthusiasm as well as her great scientific experience has paved the way for me.

I appreciate the help from my supervisor Docent Riitta Kaarteenaho-Wiik, M.D., Ph. D., she has taught me histopathology, spending many hours with me at the microscope, read and helped in writing the manuscripts, gave practical advices in scientific matters and showed true interest in my work.

I wish to express my respect and gratitude to Professor Arne Holmgren and Professor Terrence J Kavanagh who generously provided the antibodies against TrxR and γGCS.

Docent Sisko Anttila, M.D., Ph.D., and Docent Lauri Tammilehto, M.D., Ph.D., have revised this thesis carefully and provided such excellent comments, for which I am very thankful. Dr. Ewen MacDonald deserves acknowledgement for promptly and efficiently revising the manuscript.

I send my appreciation to Docent Paavo Pääkkö, M.D., Ph.D. for his thoughtful insight into this research, he has also spent hours in evaluating histopathological specimens and manuscripts. Docent Ylermi Soini, M.D., Ph.D., has been very important collaborator in my immunohistochemical studies.

Mr Risto Bloigu, M. Sc. is acknowledged for the many sessions, when he has explained the statistical problems in a way which is even accessible to a clinician.

I want to thank Docent Raija Sormunen, Ph. D for instructive collaboration in immunoelectronmicroscopy, and Ms Mirva Peltoniemi, M. Sc. for her skilful laboratory work. Ms Ulla Heiskanen M.D is hardworking and bright young colleague, who helped in data collection.

My warmest thanks go to Mr Manu Tuovinen for his versatile contribution in the laboratory and his guidance over the years. Ms Raija Sirviö must be mentioned for her share in the laboratory work. Ms Terttu Niemelä has provided immaculate secretarial
help. Instantaneous help in all kinds of problems, spiced with a good sense of humour has been provided by Ms Anne Salovaara and Ms Irene Tuomela-Törmänen. Ms Kaija Salkosalo has kindly helped me several times in obtaining data from the archives. Ms Liisa Kärki and Ms Seija Leskelä have provided high quality professional help in editing photographs and posters.

I am grateful to Dr Riitta Mäkitaro M.D., Ph.D., for making arrangements to allow me to work and study.

My colleagues in the Department of Internal Medicine deserve my thanks, especially all my fellow-workers in our work community in the Pulmonary Division. Ms Marita Koistinen and Ms Eija Eloranta M.D have been guaranteed the pleasant atmosphere in our study chamber.

My precious parents Elisabeth and Erkki Tiitto provided me with an excellent upbringing and supported me all my life, as well as gifting me the talent of loving my everyday life. The source of inspiration and strength comes from my children Marja and Juha, who will be the only truly remaining part of me, even when this thesis has vanished. Matti’s loving sympathy and confidence have encouraged me to fulfill my private and professional hopes. Our relatives and friends have provided valuable companionship in our free time activities, which I acknowledge with gratitude.

This work was financially supported by the Finnish Anti-Tuberculosis Association Foundation, Sigrid Juselius Foundation, Maud Kuistila Foundation and University of Oulu, which are gratefully acknowledged.

Oulu, 22.8.2006

Leena Tiitto
Abbreviations

AB-PAS Alcian blue periodic acid Schiff
AIP Acute interstitial pneumonia
AP-1 Activator protein-1
ARE Antioxidant response element
ASK Apoptosis signal regulating kinase
ATS American Thoracic Society
BAL Bronchoalveolar lavage
BALF Bronchoalveolar lavage fluid
BOOP Bronchiolitis obliterans organizing pneumonia
CI Confidence interval
COP Cryptogenic organizing pneumonia
COPD Chronic obstructive pulmonary disease
CVD Collagen vascular diseases
CuSOD Copper-zinc superoxide dismutase
Grx Glutaredoxin
DAD Diffuse alveolar damage
DIP Desquamative interstitial pneumonia
D_{LCO} Diffusion capacity for carbon monoxide
GPx Glutathione peroxidase
ECSOD Extracellular superoxide dismutase
eNos Endothelial nitric oxide synthase
ERS European Respiratory Society
FF Fibroblast focus
FEV1 Forced expiratory volume
FVC Forced vital capacity
γGCS Gamma-glutamylcysteine synthetase
γGCS_h Gamma-glutamylcysteine synthetase heavy subunit
γGCS_l Gamma-glutamylcysteine synthetase light subunit
GLCL Glutamate-cysteine ligase
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPx</td>
<td>Glutathione peroxidase</td>
</tr>
<tr>
<td>GSH</td>
<td>Glutathione</td>
</tr>
<tr>
<td>GSSG</td>
<td>Glutathione disulfide</td>
</tr>
<tr>
<td>HE</td>
<td>Hematoxylin eosin</td>
</tr>
<tr>
<td>HO-1</td>
<td>Hemeoxygenase 1</td>
</tr>
<tr>
<td>HOCl</td>
<td>Hypochlorous acid</td>
</tr>
<tr>
<td>HP</td>
<td>Hypersensitivity pneumonitis</td>
</tr>
<tr>
<td>HRCT</td>
<td>High-resolution computed tomography</td>
</tr>
<tr>
<td>H₂O₂</td>
<td>Hydrogen peroxide</td>
</tr>
<tr>
<td>IFNγ</td>
<td>Interferon-gamma</td>
</tr>
<tr>
<td>IFNγ₁b</td>
<td>Interferon-gamma₁b</td>
</tr>
<tr>
<td>IIP</td>
<td>Idiopathic interstitial pneumonia</td>
</tr>
<tr>
<td>IP</td>
<td>Interstitial pneumonia</td>
</tr>
<tr>
<td>IPF</td>
<td>Idiopathic pulmonary fibrosis</td>
</tr>
<tr>
<td>IL</td>
<td>Interleukin</td>
</tr>
<tr>
<td>ILD</td>
<td>Interstitial lung disease</td>
</tr>
<tr>
<td>ILD-CVD</td>
<td>Interstitial lung diseases with collagen vascular disease</td>
</tr>
<tr>
<td>iNOS</td>
<td>Inducible nitric oxide synthase</td>
</tr>
<tr>
<td>IPF</td>
<td>Idiopathic pulmonary fibrosis</td>
</tr>
<tr>
<td>kDa</td>
<td>Kilo Dalton</td>
</tr>
<tr>
<td>LIP</td>
<td>Lymphoid interstitial pneumonia</td>
</tr>
<tr>
<td>MAP</td>
<td>Mitogen activated proteins</td>
</tr>
<tr>
<td>MMP</td>
<td>Matrix metalloproteinase</td>
</tr>
<tr>
<td>MnSOD</td>
<td>Manganese superoxide dismutase</td>
</tr>
<tr>
<td>MPO</td>
<td>Myeloperoxidase</td>
</tr>
<tr>
<td>mRNA</td>
<td>Messenger ribonucleic acid</td>
</tr>
<tr>
<td>NAC</td>
<td>N-acetylcysteine</td>
</tr>
<tr>
<td>NADPH</td>
<td>Nicotinamide-adenine dinucleotide phosphate</td>
</tr>
<tr>
<td>NFκB</td>
<td>Nuclear factor kappa beta</td>
</tr>
<tr>
<td>NRF2</td>
<td>Nuclear-factor-E2-related factor</td>
</tr>
<tr>
<td>NO</td>
<td>Nitric oxide</td>
</tr>
<tr>
<td>NO₂</td>
<td>Nitrogen dioxide</td>
</tr>
<tr>
<td>NOS</td>
<td>Nitric oxide synthetase</td>
</tr>
<tr>
<td>NSIP</td>
<td>Nonspecific interstitial pneumonia</td>
</tr>
<tr>
<td>O₂⁻</td>
<td>Superoxide anion</td>
</tr>
<tr>
<td>OH</td>
<td>Hydroxyl radical</td>
</tr>
<tr>
<td>OLb</td>
<td>Open lung biopsy</td>
</tr>
<tr>
<td>RB-ILD</td>
<td>Respiratory bronchiolitis associated interstitial lung disease</td>
</tr>
<tr>
<td>RNS</td>
<td>Reactive nitrogen species</td>
</tr>
<tr>
<td>ROC</td>
<td>Receiver operating characteristics</td>
</tr>
<tr>
<td>ROS</td>
<td>Reactive oxygen species</td>
</tr>
<tr>
<td>SLB</td>
<td>Surgical lung biopsy</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>SLE</td>
<td>Systemic lupus erythematosus</td>
</tr>
<tr>
<td>SOD</td>
<td>Superoxide dismutase</td>
</tr>
<tr>
<td>TIMP</td>
<td>Tissue inhibitor of metalloproteases</td>
</tr>
<tr>
<td>TNFα</td>
<td>Tumour necrosis factor alpha</td>
</tr>
<tr>
<td>TGFβ₁</td>
<td>Transforming growth factor beta₁</td>
</tr>
<tr>
<td>TLB</td>
<td>Transbronchial lung biopsy</td>
</tr>
<tr>
<td>Trx</td>
<td>Thioredoxin</td>
</tr>
<tr>
<td>TrxR</td>
<td>Thioredoxin reductase</td>
</tr>
<tr>
<td>UIP</td>
<td>Usual interstitial pneumonia</td>
</tr>
<tr>
<td>VATS</td>
<td>Video-assisted thoracoscopic lung biopsy</td>
</tr>
<tr>
<td>VEGF</td>
<td>Vascular endothelial growth factor</td>
</tr>
<tr>
<td>VC</td>
<td>Vital capacity</td>
</tr>
</tbody>
</table>
List of original publications

This thesis is based on the following publications, which are referred to in the text by their Roman numerals:

Contents

Abstract
Acknowledgements
Abbreviations
List of original publications
Contents

1 Introduction ... 17
2 Review of the literature ... 20
 2.1 Interstitial lung diseases .. 20
 2.1.1 Idiopathic pulmonary fibrosis ... 20
 2.1.1.1 Pathology of IPF ... 20
 2.1.1.2 Pathogenesis of IPF ... 21
 2.1.1.3 Survival and treatment of IPF .. 25
 2.1.1.4 Safety of the lung biopsy in UIP ... 26
 2.1.1.5 Acute exacerbation in IPF ... 26
 2.1.2 Desquamative interstitial pneumonia ... 27
 2.1.3 ILD associated with collagen vascular diseases 28
 2.1.4 Sarcoidosis ... 29
 2.1.5 Allergic alveolitis ... 30
 2.2 Oxidants and antioxidant-oxidant imbalance in the pathogenesis of interstitial lung diseases ... 30
 2.2.1 Thioredoxin system proteins ... 33
 2.2.2 Glutathione related redox modulating pathways in human lung 35
 2.2.2.1 Gamma-glutamyleysteine synthetase .. 35
3 Aims of the study .. 37
4 Materials and methods .. 38
 4.1 Clinical information (I, II, III, IV) .. 38
 4.2 Human tissue specimens (I, II) ... 38
 4.3 Human tissue specimens (III, IV) .. 39
 4.4 Lung biopsies (I, II, III, IV) .. 39
 4.5 Bronchoalveolar lavage (III) .. 40
 4.6 Cell culture and exposures (IV) .. 40
 4.7 Histopathological evaluation (I, III, IV) .. 41
4.8 Histopathological evaluation (II) ... 41
4.9 Immunohistochemistry and evaluation of immunoreactivity (III, IV) 41
4.10 Immunoelectron microscopy (III, IV) ... 42
4.11 Statistical analyses (I, II, III, IV) .. 43
4.12 Ethical considerations (I, II, III, IV) .. 43
5 Results ... 44
 5.1 Safety of the thoracoscopic and open lung biopsies (I) 44
 5.1.1 Clinical findings and symptoms (I, II) ... 44
 5.1.2 Lung biopsy and survival (I) .. 45
 5.2 Fibroblast foci, diffuse alveolar damage and exacerbation of idiopathic
 pulmonary fibrosis/usual interstitial pneumonia (II) 46
 5.2.1 Clinical features (II) .. 46
 5.2.2 Histopathologic findings of lung biopsies and their
 correlation with survival (II) ... 47
 5.2.3 Histopathologic findings of autopsy samples (II) 47
 5.2.4 The associations between FF, DAD and acute exacerbations
 before death (II) .. 48
 5.3 Expression of the Thioredoxin system in interstitial
 lung diseases (III) .. 50
 5.3.1 Clinical features (III, IV) .. 50
 5.3.2 Localization for Trx and TrxR by immunohistochemistry (III) 50
 5.3.2.1 Trx and TrxR in normal lung (III) ... 50
 5.3.2.2 Trx and TrxR in UIP, DIP and ILD-CVD (III) 50
 5.3.2.3 Trx and TrxR in granulomatous diseases (III) 51
 5.3.3 Immunohistochemical analyses of BAL samples (III) 52
 5.3.4 Ultrastructural distribution of Trx and TrxR in UIP (III) 53
 5.4 Cell-specific regulation of gamma-glutamylcysteine synthetase in human
 interstitial lung diseases (IV) ... 53
 5.4.1 Localization of γGCSH and γGCSl by immunohistochemistry (IV) .. 53
 5.4.1.1 γGCSH and γGCSl in normal lung (IV) 53
 5.4.1.2 γGCSl and γGCSH in UIP, DIP and ILD-CVD (IV) 53
 5.4.1.3 γGCSH and γGCSl in granulomatous diseases (IV) 54
 5.4.2 Ultrastructural localization for γGCSl and γGCSH in UIP and
 sarcoidosis (IV) .. 55
 5.4.3 In vitro experiments with A549 cells (IV) .. 55
6 Discussion ... 56
 6.1 Methodological aspects (I, II, III, IV) .. 56
 6.2 Survival and safety of SLB in usual interstitial pneumonia (I) 57
 6.3 Fibroblast foci, diffuse alveolar damage and exacerbation of idiopathic
 pulmonary fibrosis/usual interstitial pneumonia (II) 59
 6.4 The expression of the thioredoxin system in interstitial lung diseases (III) 61
 6.5 Cell specific regulation of gamma-glutamylcysteine synthetase in human
 interstitial lung diseases (IV) ... 63
7 Conclusions .. 65
References
Original publications
1 Introduction

Interstitial lung diseases (ILD), including interstitial pneumonias (IP), represent disorders with variable parenchymal inflammation and/or fibrosis. The increase in the oxidant burden offers an ideal model to investigate the histopathological features in relation to the course of the diseases and the significance of the antioxidant enzymes in vivo. IPs include idiopathic pulmonary fibrosis (IPF)/usual interstitial pneumonia (UIP) a disease with aggressive fibrogenetic remodelling, non-specific interstitial pneumonia (NSIP) with uniform histopathology and a more favourable prognosis, desquamative interstitial pneumonia (DIP), which is a macrophage associated interstitial pneumonia, related to smoking in the majority of cases, cryptogenic organizing pneumonia (COP), rapidly progressive acute interstitial pneumonia (AIP), respiratory bronchiolitis associated interstitial lung disease (RB-ILD) and lymphoid interstitial pneumonia (LIP) with diffuse lymphocytic interstitial infiltrates (American Thoracic Society (ATS) & European Respiratory Society (ERS) 2002). Table 1.

Table 1. Classification of idiopathic interstitial pneumonias modified by American Thoracic Society and European Respiratory Society (ATS & ERS 2002).

<table>
<thead>
<tr>
<th>Clinical diagnosis</th>
<th>Pathologic pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td>Idiopathic pulmonary fibrosis (IPF)</td>
<td>Usual interstitial pneumonia (UIP)</td>
</tr>
<tr>
<td>Nonspecific interstitial pneumonia (NSIP)</td>
<td>Nonspecific interstitial pneumonia (NSIP)</td>
</tr>
<tr>
<td>Desquamative interstitial pneumonia (DIP)</td>
<td>Desquamative interstitial pneumonia (DIP)</td>
</tr>
<tr>
<td>Cryptogenic organizing pneumonia (COP)</td>
<td>Organizing pneumonia (OP)</td>
</tr>
<tr>
<td>Acute interstitial pneumonia (AIP)</td>
<td>Diffuse alveolar damage (DAD)</td>
</tr>
<tr>
<td>Respiratory bronchiolitis interstitial lung disease (RBILD)</td>
<td>Respiratory bronchiolitis interstitial lung disease (RBILD)</td>
</tr>
<tr>
<td>Lymphoid interstitial pneumonia (LIP)</td>
<td>Lymphoid interstitial pneumonia (LIP)</td>
</tr>
</tbody>
</table>

Granulomatous lung diseases such as sarcoidosis and allergic alveolitis represent ILDs with well preserved lung architecture. IPF with the histopathological finding of UIP is the most common type of idiopathic interstitial pneumonias (IIP). Furthermore a UIP like histopathological pattern can be detected in several connective tissue diseases (Nicholson
et al. 2002a). The prevalence of IPF is estimated at 20 per 100 000 males and 13 per 100 000 females (Coultas et al. 1994). In Finland the estimates for prevalence range 16 to 18 per 100 000 population with the familial form of the disease explaining 3.3 % to 3.7 % of the cases (Hodgson et al. 2002). The incidence per year is at 10.7 per 100 000 for males and 7.4 per 100 000 for females (Coultas et al. 1994). The diagnosis of IPF is based on the clinical findings, the presence of the typical features of IPF in high-resolution computed tomography (HRCT) and exclusion of other diseases, but histopathological samples may be needed in atypical cases (ATS & ERS 2002).

The safety and utility of surgical lung biopsy (SLB) have been debated for over two decades in spite of the fact that verified histopathological diagnosis not only reduces unnecessary “overmedication” but it also helps with other therapeutic decisions and their planning, one example being lung transplantation (Gaensler et al. 1980, Utz et al. 2001). IPF/UIP has often a chronic and progressive nature, but findings of unpredictable rapid exacerbations that lead to the death of most patients within a few weeks have been described (Martinez et al. 2005). The special pathological features associated with these terminal events are poorly understood (Kondoh et al. 1993, Ambrosini et al. 2003, Rice et al. 2003).

ILDs, especially IPF/UIP, represent disorders where free radicals participate in the pathogenesis, i.e. there is an increased oxidant burden (Cantin et al. 1987a, Schaberg et al. 1993). A free radical is any molecule with one or more unpaired electrons. These can be produced by oxygen metabolism, inflammation or photochemical air pollution etc. (Freeman & Crapo 1982). Reactive oxygen species (ROS) include free radicals like superoxide anion (O2 -) and hydroxyl radical (OH -), molecules like hydrogen peroxide (H2O2) and ions (Halliwell et al. 1992). Nitric oxide (NO) and nitrogen dioxide (NO2) are also free radicals (Gaston et al. 1994). The impacts of ROS are especially important in the lung, because of its great surface area and its exposure to higher concentrations of oxygen than other tissues (Kinnula et al. 1995). In addition to the endogenous oxidant stress, the lung is exposed to a large amount of exogenous oxidants like pollutants and cigarette smoke. ROS are known to be associated with the progression of many lung disorders, both in experimental animal models and in humans, including IFD and asthma (Freeman & Crapo 1982, Saleh et al. 1997, Kinnula et al. 2005). They participate in multiple signalling pathways and in the induction of the cellular antioxidant defense system (Thannikal & Farnburg 2000). Biochemical defense mechanisms of human lung may therefore have a central role, not only in protection against ROS, but also as indicators of oxidant stress, markers of disease activity or repair processes in the diseased lung.

The most widely investigated antioxidant enzymes include the superoxide dismutases (SOD) and the H2O2 scavenging enzymes such as catalase and glutathione peroxidases (Halliwell et al. 1992, Kinnula & Crapo 2003). In addition to these classical antioxidant enzymes, the cellular antioxidant defense includes thiol (SH) containing proteins such as thioredoxins, thioredoxin peroxidases (peroxiredoxins), glutaredoxins and gamma-glutamylcysteine synthetase (GCS) also called glutamate-cysteine ligase (GLCL) which is the rate-limiting enzyme in the biosynthesis of one major antioxidant in the lung, glutathione (GSH). These thiol-proteins participate in the regulation of the cellular redox state, cell proliferation and the control of apoptosis (Holmgren 1985, Tu & Anders 1998, Rahman & MacNee 2000a).
The purpose of this study was to evaluate the safety of lung biopsy, to examine the prognostic factors and special histopathological features in the most common interstitial pneumonia, IPF/UIP and to investigate the redox regulated thiol proteins, thioredoxin (Trx), thioredoxin reductase (TrxR) and GCS in ILDs.
2 Review of the literature

2.1 Interstitial lung diseases

2.1.1 Idiopathic pulmonary fibrosis

IPF is the most common type of IIP with the histopathological pattern of UIP (Coultas
et al. 1994, Lettieri et al. 2005). The diagnosis of IPF requires exclusion of other known
causes of ILD, like drug toxicities, environmental exposures and connective tissue
disorders with no features to support an alternative diagnosis from transbronchial lung
biopsy (TLB) or bronchoalveolar lavage (BAL) samples (ATS & ERS 2002). The other
major criterion for IPF consist of abnormal pulmonary function tests, including evidence
of restriction and impaired gas exchange, as well as detecting bibasilar reticular
abnormalities with minimal ground glass opacities on HRCT (ATS & ERS 2002).

2.1.1.1 Pathology of IPF

A definite histopathological diagnosis of IPF requires SLB exhibiting an UIP pattern
(ATS & ERS 2002). The appearance of UIP is heterogeneous and patchy, with alternating
areas of normal lung, fibrosis that causes architectural destruction with honeycombing
and only moderate interstitial inflammation (Katzenstein & Myers 1998, ATS & ERS
2002). The fibrosis in UIP is temporally non-uniform, with older, dense scarring,
honeycombing and fibroblast foci (FF) scattered at the edges of the scars (ATS & ERS
2002). FF are one of the major features, but not unique, in UIP, consisting of a loose type
of fibrosis with myofibroblasts and few collagen fibers in the stroma (Travis et al. 2002).
The fibrosis extends inwards until the alveolar walls are replaced by the fibrosis, resulting
in honeycombing (Heppleston 1956, Liebow 1975). The honeycomb changes are
enlarged air spaces lined by bronchiolar and bronchial epithelium, type II pneumocytes
and occasionally metaplastic squamous epithelium (Liebow 1975, Travis et al. 2002).
The honeycomb cysts are separated by thick walls, which contain collagen with varying degrees of inflammation (Katzenstein & Myers 1998). The septal inflammation is characterized by infiltration of lymphocytes and plasma cells with hyperplastic type II pneumocytes (ATS & ERS 2002, Travis et al. 2002).

The studies evaluating the histopathological changes in UIP including the analyses between FF and survival related to IPF have been done by semiquantitative scoring systems (Cherniack et al. 1991, Hyde et al. 1992, King et al. 2001a, Nicholson et al. 2002b). Nicholson and colleagues described a correlation between increasing extent of FF score and mortality, and there were also correlations between decreased diffusion capacity for carbon monoxide (D_{LCO}) and forced vital capacity (FVC) with the FF score (Nicholson et al. 2002b). King and co-workers showed that in semiquantitative grading of histopathological features in UIP, the factor of granulation/young connective tissue including the grading results of the amount of FF, was associated with survival (King et al. 2001a, King et al. 2001b).

Squamous metaplastic alveolar epithelium has been observed in either SLB or autopsy samples of IPF patients after acute exacerbation (Ambrosini et al. 2003). In addition these types of cells are detected in fibrotic lung tissue related to lung cancer (Myer & Liebow 1965, Haddad & Massaro 1968). In animal models metaplastic squamous cells appeared in bleomycin induced lung injury (Adamsson & Bowden 1979). Fukuda and co-authors induced pulmonary fibrosis in monkeys after paraquat treatment and found fibrotic alveolar walls lined by metaplastic squamous cells, which were related to the regeneration process of the epithelium in the remodelling of alveolar structure (Fukuda et al. 1985, Fukuda et al. 1989). The presence of squamous metaplasia in alveoli of rodents after viral infections has been reported (Baskerville et al. 1974).

Neutrophils and eosinophils represent inflammatory cells observed in lung tissue of IPF/UIP patients (Katzenstein & Myers 1998, Obayashi et al. 1997, Travis et al. 2002). Increased percentages of eosinophils and especially neutrophils have been reported also in bronchoalveolar lavage fluid (BALF), but the relationships between BALF profiles and clinical outcome as well as to the response to therapy have not revealed any consistent results (Haslam et al. 1980, Wells et al. 1994, Tabuena et al. 2005). The focal accumulation of intra-alveolar macrophages is also an unspecific finding in IPF/UIP, with no proved relationship to the stage of the disease (Katzenstein & Myers 1998, Travis et al. 2002, Daniil et al. 2005).

2.1.1.2 Pathogenesis of IPF

The mechanisms underlying the development of IPF are unknown, however the current opinion is that repeated or ongoing episodes of acute lung injury are associated with a dysfunctional epithelial repair process and a lack of appropriate re-epithelization. The risk of IPF is consistently increased for a number of environmental and occupational exposures suggesting that diverse epithelial injuries can trigger this disease. The potential role of viruses, like hepatitis C, adeno and Epstein-Barr, as etiological factors is under investigation (Egan et al. 1997). Tobin et al. revealed that the IPF patients had more gastroesophageal reflux without typical symptoms like heartburn or regurgitation.
compared to the patients with ILD other than IPF (Tobin et al. 1998). Metal dust is significantly associated with the risk of IPF (Hubbard et al. 1996, Baumgartner et al. 2000, Miyake et al. 2005). Other significant associations include exposures to stone/sand dust, livestock, farming/agricultural areas, hairdressing and raising birds (Baumgartner et al. 2000). Ultrastructural studies of patients with IPF have demonstrated alveolar epithelial cell injury and apoptosis, illustrating that these could be important in the pathogenesis of IPF (Katzenstein 1985). In animal models, alveolar epithelial cell damage is sufficient to promote the fibrotic process (Adamson et al. in 1988, Dai et al. 1998). Maeyma et al. reported increased immunoreactivity of proapoptotic proteins in alveolar epithelial cells in a IPF patient (Maeyma et al. 2001). The development of experimental fibrosis induced by bleomycin was prevented by inhibiting epithelial cell apoptosis via T lymphocytes and natural killer cells in animal models (Kuwano et al. 1999). The loss of integrity of the subepithelial basement membrane, leading to denudation of the basal lamina is another major feature in UIP (Katzenstein 1985). One reason for this could be apoptosis, since alveolar type II cells from lung biopsy samples of IPF/UIP patients undergo programmed cell death (Uhal et al. 1998, Lappi-Blanco et al. 1999a, Barbas-Filho et al. 2001) Figure 1.

Repetitive alveolar epithelial injury

Dysregulated repair

- Loss of epithelial cells
- Accumulation of mesenchymal cells

Apoptosis

Angiogenesis

Fibrosis

MMPs = Matrix metalloproteinases
TIMPs = Tissue inhibitors of matrix metalloproteinases

Fig. 1. Progressive pulmonary fibrosis results from alterations in the alveolar microenvironment promoting loss of alveolar cells and accumulation of activated fibroblasts/myofibroblasts. The alterations include activation of profibrotic cytokines, growth factors and chemokines, overproduction of TIMPs relative to MMPs, elevated oxidative stress enhancing epithelial cell apoptosis modified after Thannikal et al. (Thannikal et al. 2004).

Accelerated epithelial cell proliferation with hyperplastic alveolar type II cells is prevalent after injury (Honda et al. 2002, Qunn et al. 2002). In IPF, the re-epithelisation
can be heterogenous and delayed or disturbed, which may contribute to fibroblast proliferation (Lappi-Blanco et al. 2002). FF are the primary sites of ongoing injury and repair, where fibroblasts increase their collagen synthesis in association with myofibroblasts (Kuhn et al. 1989, Katzenstein & Myers 1998). Collagen and elastin fiber density is higher in UIP than in normal lung (Negri et al. 2000). One of these extracellular matrix glycoproteins is tenasin-C which exhibits increased expression underneath the metaplastic bronchiolar epithelium and patients with this characteristic have shortened survival compared to those with lower amount of tenasin-C at injury sites (Kaarteenaho-Wiik et al. 1996). The number of myofibroblast is increased in bleomycin induced lung injury, contributing to the synthesis of new collagen (Zhang et al. 1994).

In vitro studies suggest that fibroblasts/myofibroblasts from IPF lung exhibit altered phenotypes and growth rates with a tendency to undergo spontaneous apoptosis (Raghu et al. 1988, Ramos et al. 2001).

Epithelial cells in IPF are the main sources of cytokines and transforming growth factors such as transforming growth factor beta1 (TGFβ1) and tumour necrosis factor alpha (TNFα) (Khalil et al. 1991, Nash et al. 1993). Khalil et al. documented enhanced expression of cytokine TGFβ1 by immunohistochemistry in lung tissue of IPF patients and Piquet et al. also detected elevated expression of TNF (Khalil et al. 1991, Piquet et al. 1993). TGFβ1 functions as a chemoattractant for the fibroblasts involved in cellular proliferation and differentiation (Raghow et al. 1987). Hagimoto et al. described the effect of TGFβ1 to promote epithelial cell apoptosis in vitro and TGFβ1 induces also the extracellular matrix production by fibroblasts (Khalil et al. 1991, Hagimoto et al. 2002, Hetzel et al. 2005). TNF is a cytokine with both inflammatory and fibrogenic activities (Piquet et al. 1990, Takizawa 1998). It enhances also apoptosis in alveolar epithelial cells (Wang et al. 2000).

Increased angiogenic activity has been described in the lung tissue of IPF patients (Keane et al. 1997, Lappi-Blanco et al. 1999b). Lappi-Blanco et al. documented increased expression of vascular endothelial growth factor (VEGF) in the areas of undergoing fibrogenesis in IPF patients, emphasizing the role of angiogenesis in the pathogenesis of IPF (Lappi-Blanco et al. 2002). Figure 1.

The loss of the protective basement membrane leads to exposure to oxidative injury. In addition pulmonary inflammatory cells of IPF patients generate higher levels of oxidants than control patients emphasizing the importance of cellular redox imbalance in pulmonary fibrosis (Cantin et al. 1987a, Kinnula & Crapo 2003, Kinnula et al. 2005). Mitochondria are the most important cellular source of ROS and Kuwano et al. studied the susceptibility of mitochondria to oxidative stress and they found that mitochondrial generation of ROS in lung epithelial cells from IPF may be associated with apoptosis of these cells (Richter 1992, Kuwano et al. 2002, Kuwano et al. 2003). Montuschi et al. reported also 5-fold elevated levels of 8-isoprostane, a marker of oxidative stress, in BALF samples of IPF patients compared to normal subjects (Montuschi et al. 1998). ROS enhances the release of TGFβ1 from human alveolar epithelial cells in vitro, which further induces human lung fibroblasts to produce oxidants (Thannikal & Fanburg 1995, Bellocq et al. 1999). Inflammatory cells, bronchial epithelial cells and endothelial cells all produce nitric oxide (NO) via two enzymes, inducible NO synthase (iNOS) or endothelial NO synthase (eNOS), leading to cell damage (Gaston et al. 1994, Kinnula et al. 1995). In UIP iNOS is expressed in alveolar macrophages and alveolar epithelium (Lakari et al. 1989, Kinnula et al. 1995).
These studies suggest that the change in the redox state of the lung might be one of the “initiative triggers”, resulting in alveolar epithelial cell injury in IPF.

SODs are one of the most significant and best characterised enzyme systems for protecting the lung against oxidant stress by converting superoxide radicals to H$_2$O$_2$ (Crapo & Tieney1974, Kinnula et al. 1995, Kinnula & Crapo 2003). In particular, mitochondrial manganese SOD (MnSOD) together with the H$_2$O$_2$ scavenger, catalase, are expressed in acute fibromyxoid lesions of UIP, which consist of myofibroblasts and fibroblasts (Lakari et al. 2000). Alveolar epithelial type II cells, which are resistant to oxidant stress, and alveolar macrophages express both these enzymes at high levels in contrast to alveolar type I cells which are sensitive to the injury evoked by oxidative stress (Kinnula et al. 1995, Pietarinen-Runtti et al. 2000, Kinnula & Crapo 2003).

Neutrophils together with macrophages and lymphocytes dominate the inflammatory cell population in IPF (Reynolds et al. 1977, Katzenstein & Myers 1998, Daniil et al. 2005, Tabuena et al. 2005). Activated neutrophils generate high levels of oxidants, causing cell damage (Cantin et al. 1987a, Weiss 1989, Halliwell et al. 1992). Myeloperoxidase (MPO) is a protein produced by neutrophils and mononuclear phagocytes (Clark et al. 1976). It can interact with H$_2$O$_2$, forming highly toxic compounds (Clark et al. 1976). IPF patients have elevated MPO concentrations in their BALF samples indicating a local neutrophilic activation, which might be associated with epithelial cell injury in this disorder (Cantin et al. 1987a, Hallgren et al. 1989). Neutrophils and macrophages are also the sources of matrix metalloproteinases (MPPs) in lung inflammation and injury (Lemjabbar et al. 1999, Shapiro & Senior 1999). MPPs are mediators of matrix degradation and are capable of degrading extracellular matrix components (Birkedal-Hansen et al. 1993). Two of them, collagenase-1 (MMP1) and matrilysin (MMP7) exhibit increased immunoreactivity in fibrotic lung, furthermore, matrilysin knockout mice were protected from pulmonary fibrosis in response to intratracheal administration of bleomycin (Zuo et al. 2002). MPPs also modulate the activity of growth factors and cytokines (Winkler & Fowlkes 2002). Additionally, fibroblasts express monocyte/neutrophil chemotactic activity by altering their synthesis of proinflammatory cytokines and chemokines (Hogaboam et al. 1999). MPPs activity is blocked by specific inhibitors like tissue inhibitor of metalloproteases (TIMPs) among others (Birkedahl-Hansen et al. 1993). Figure 1.

It was previously thought that IPF was a result of chronic inflammation, which was partly based on the expression of inflammatory cells in BALF of IPF patients, however, treatment with corticosteroids has shown no significant long-term therapeutic efficacy (Merrill & Reynolds 1983, Flaherty et al. 2001). The possible role of the inflammatory response in modulating tissue injury and/or fibrosis in IPF/UIP needs to be studied further, since Daniil et al. did document an association between a lymphoid subpopulation in lung tissue and functional parameters of the disease severity (Gross & Hunninghake 2001, Daniil et al. 2005).

Familial clustering of individuals with IPF has brought on the attempts to define gene expressions profiling this disease. The mutation in the gene encoding surfactant protein C, hydrophobic protein that enhances the surface tension in lung, was found in familial cases of ILDs (Nogee et al. 2001). Hodgson et al. revealed a novel candidate gene, ELMOD2, for susceptibility in familial IPF (Hodgson et al. 2006).
These are just some of the mechanisms leading to fibrosis accompanied by a progressive deterioration of lung function parameters and a restriction or impaired gas exchange, which ultimately leads to respiratory insufficiency and death.

2.1.1.3 Survival and treatment of IPF

The prognosis of this disease is poor with a median survival of only 2.8 years after diagnosis (Bjoraker et al. 1998). One out of two patients died within 5 years after the onset of dyspnoea (du Bois & Wells 2001). Several studies have described various prognostic factors related to survival, including age at the time of diagnosis, smoking status, response to initial steroid therapy and the finding of pulmonary hypertension on chest radiography (Tukiainen et al. 1983, Gay et al. 1998, King et al. 2001b). Severity of lung volume reduction and the desaturation during the 6 minutes walking test predict the survival as well as the extent of reticulation and honeycombing on HRCT (Flaherty et al. 2003, Hallstrand et al. 2005, Lynch et al. 2005).

There are no unequivocal therapies for IPF. Corticosteroids are the mainstay of therapy, but there are no reports indicating that corticosteroids would alter the survival after 3 years (Flaherty et al. 2001). Cyclophosphamide, a highly toxic immunosuppressor, has been used in combination with corticosteroids, although there is no statistically significant data of any favourable effect on pulmonary function tests or survival (Johnson et al. 1989, Collard et al. 2004). The combination of corticosteroid and the less toxic azathioprine indicated some marginal benefit in one study (Raghu et al. 1991). The consensus statement recommends this combination therapy as first line therapy for IPF (ATS & ERS 2002). One report on therapy with interferon-gamma1b (IFNγ1b), a cytokine having antifibrotic effect, suggests that the treatment might have some benefits on survival among patients with mild or moderate forms of the disease (Raghu et al. 2004). However acute pulmonary failure leading to death, which were temporally related to the IFNγ1b -therapy, have also been reported (Honore et al. 2003). Trial of pirfenidone, a novel compound with anti-inflammatory, antioxidant and antifibrotic effects, showed that the treatment group had no acute exacerbations of IPF and less decrease in the change of vital capacity (VC), although treated patients had significantly more adverse effects (Azuma et al. 2005). At present, N-acetylcysteine (NAC) is the only therapy that has been shown to slow down the deterioration of pulmonary functions in IPF (Behr et al. 1997, Demedics et al. 2005). NAC is a cysteine donating thiol compound and it acts as a cellular precursor of GSH releasing cysteine as a deacetylation product (Rahman & MacNee 2000b). This emphasizes the importance of the ROS/antioxidant imbalance in the pathogenesis of IPF and the possibility that thiol compounds have a protective role in this disease. Lung transplantation supports survival, but only few patients are eligible for transplantation (Hosenpud et al. 1998).
2.1.1.4 Safety of the lung biopsy in UIP

SLB is needed for diagnosing IPF when there are non-specific findings from radiographs, spirometry or clinical examination. The majority of IPF is diagnosed without biopsy, but the clinical diagnosis has proved to be accurate in only two thirds of the suspected IPF cases (Raghu et al. 1999). In a study of 91 new patients suspected of having IPF, histological verification of UIP was documented in 54 cases, i.e. 59 % (Hunninghake et al. 2001). In another study of 26 patients, who met ATS/ERS criteria for IPF, 14 individuals had UIP in their SLB samples, so the accuracy of these criteria was 54 % (ATS & ERS 2002, Peckham et al. 2004).

Histological samples are taken either by open lung biopsy (OLB) or VATS. The safety of performing SLB in ILD, especially IPF, has been controversial. Gaensler et al. studied 502 OLBs including 64 UIP cases and reported that 1 death attributable to carcinoma occurred within 30 days after the operation (Gaensler & Carrington 1980). The highest reported short-term mortality (i.e. in 30 days followed by biopsy) of UIP patients is 21.7 % (Utz et al. 2001). Ayed et al. compared the safety of OLB and VATS in diagnosing 61 ILD cases, one patient died 21 days after the operation due to progressive pulmonary fibrosis and one other patient died 60 days after the procedure due to malignancy (Ayed & Raghunathan 2000). The studies judging the safety of VATS as a method in diagnosing ILD have shown similar results. Zeghi et al. described 19 IPF patients in a material consisting of 64 ILD cases and found 2 short-term deaths related to IPF, one patient had also leukemia (Zeghi et al. 1998). Yamaguchi et al. found no operative mortality after VATS in 30 ILD patients including 12 IPF cases (Yamaguchi et al. 2004). Ooi et al. studied 55 ILD patients who underwent VATS and found one in-hospital death due to pulmonary malignancy and post-operative adult respiratory distress syndrome (Ooi et al. 2005). Furthermore, one in every four (27.1 %) of the patients had histopathological findings different to their pre-operative clinico-radiological diagnosis (Ooi et al. 2005).

Those patients with immunodeficiency and those who require mechanical ventilation (MV) preoperatively have increased risk of death following SLB. Lettieri et al. studied 83 ILD cases including patients who needed MV or who were immunosuppressed prior to SLB and found that the short-term mortality among 42 IPF patients was 3 subjects, but this included only one immunocompetent patient who was not receiving MV (Lettieri et al. 2005).

In view of the heterogeneity of the previous results considering the safety of SLB in diagnosing UIP, this issue needs to be addressed in a large enough patient group, focusing especially on IPF/UIP. Furthermore, the lung biopsy samples are not only essential in improving the diagnostic accuracy, but they are also valuable for the research purposes which is an important issue in studying a disease with an unknown etiology.

2.1.1.5 Acute exacerbation in IPF

IPF/UIP has often a chronic and progressive nature, but findings of unpredictable rapid exacerbations that lead to death of many patients within a few weeks have been described (Hamman & Rich 1935, Kondoh et al. 1993, Akira et al. 1997, Ambrosini et al. 2003,
Martinez et al. 2005, Parambil et al. 2005). The criteria of acute exacerbation of IPF, which is also known as accelerated deterioration of IPF, include exacerbation of dyspnoea within one month, new diffuse pulmonary opacities on chest radiography, a decrease in arterial oxygen tension (PaO₂) by more than 10 mmHg (i.e. 1.33 kPa) under similar conditions and the absence of apparent infection agents and heart failure (Akira et al. 1997). Kohdoh et al. described deterioration of hypoxemia using the ratio of PaO₂ and fractional concentration of oxygen in inspired gas (FIO₂) (Kohdoh et al. 1993).

There are no definite predicting factors that contribute to the acceleration of IPF, and the distinct pathological features associated with these terminal events are also poorly understood (Kohdoh et al. 1993, Ambrosini et al. 2003, Rice et al. 2003). Previous studies have described the histopathology of diffuse alveolar damage (DAD) in the lung samples of UIP patients consisting of variable numbers of autopsy samples included in the materials (Saydain et al. 2002, Ambrosini et al. 2003, Rice et al. 2003, Parambil et al. 2005). The histopathology of DAD includes hyaline membranes as a hallmark, scant interstitial infiltrates of mononuclear cell in the exudative phase and fibroblast proliferation with pneumocyte II hyperplasia in the organizing phase (Hamman & Rich 1935, Travis et al. 2002). The studies investigating DAD and UIP have reported variable results. Saydian et al. studied IPF patients admitted to an intensive care unit (ICU) and found that in 9 lung samples including 2 autopsy specimens UIP was present in every case and DAD in 6 cases, but the writers did not describe a detailed analysis of pre- and postmortem lung samples (Saydian et al. 2002). Ambrosini et al. studied 5 cases of acute exacerbation of IPF including 3 SLBs and autopsy samples from all those 4 patients who died and detected the occurrence of UIP/DAD in every 7 samples (Ambrosini et al. 2003). Rice et al. investigated the presence of DAD in 15 autopsy samples, and found that DAD was associated with IPF/UIP history in 12 cases, but only one patient had a histopathologically confirmed premortem diagnosis of UIP (Rice et al. 2003). In one recent study where 7 IPF patients underwent SLB due to acute exacerbation, a combination of UIP and DAD was present in 5 cases, only UIP was present in one case and DAD alone in another case (Parambil et al. 2005). In that study, one patient survived to hospital discharge but the authors did not specify his SLB histology (Parambil et al. 2005). Kondoh et al. found no hyaline membranes on the 3 OLBS performed during the accelerated phase of IPF and all 3 patients survived (Kondoh et al. 1993).

The previous studies consisting of SLB and autopsy samples in a variety of combinations suggest that DAD is frequently associated with UIP, but the systematic comparison between pre- and postmortem lung specimens from the same patient is lacking. It would also be important to obtain more accurate information about the prevalence of UIP and DAD in relation to the course of the disease.

2.1.2 Desquamative interstitial pneumonia

The major histological finding in DIP is the presence of an increased number of alveolar macrophages (Katzenstein & Myers 1998, Travis et al. 2002). The uniform histologic pattern is diffuse and the alveoli septas are thickened by inflammatory infiltrates (ATS & ERS 2002). DIP is closely associated with to smoking, i.e. 60–90 % of DIP patients have
a smoking history (Carrington et al. 1978, Craig et al. 2004). When macrophages are spared in more distal air spaces, the term, respiratory bronchiolitis interstitial lung disease (RB-ILD), is used (Myers et al. 1987, Katzenstein & Myers 1998, ATS & ERS 2002). Myer et al. suggested that DIP and RB-ILD could be distinct disorders and Craig et al. found significantly more interstitial fibrosis and eosinophilic infiltration in DIP than in RB-ILD (Myers et al. 1987, Craig et al. 2004). Increased number of alveolar macrophages with granules of “smokers pigment” consisting of intracellular yellow to black particles is the predominant histological feature of RB-ILD (Niewoehner et al. 1974, King 1993, Travis et al. 2002).

The treatments for DIP are cessation of smoking and therapy with corticosteroids (Gaensler et al. 1966, Carrington et al. 1978). The median survival of 5.6 years is significantly better than that of UIP (Carrington et al. 1978). Craig et al. found no significant difference in survival between smokers and never smokers in their study of 25 DIP patients (Craig et al. 2004).

2.1.3 ILD associated with collagen vascular diseases

Heterogeneous group of collagen vascular diseases (CVD) is associated with different type of ILDs including UIP, DIP, bronchiolitis obliterans organizing pneumonia (BOOP) and NSIP (Lamblin et al. 2001, Kim EA et al. 2002). The NSIP pattern consists of varying degrees of alveolar wall inflammation and fibrosis (Katzenstein & Fiorelli 1994, Travis et al. 2000, Travis et al. 2002). Two histologic types of NSIP can be recognized: a cellular pattern with chronic interstitial inflammation including type II pneumocyte hyperplasia and a fibrotic pattern with temporally homogenous fibrosis (Travis et al. 2000, ATS & ERS 2002). The uniform type of fibrosis is the difference between NSIP and UIP (Katzenstein & Fiorelli1994, Nagai et al. 1998, Travis et al. 2000, ATS & ERS 2002). The major histological type of ILD in scleroderma is NSIP (Bouros et al. 2002, Kim DS et al. 2002). Surgical lung biopsies of 70 polymyositis-dermatomyositis patients revealed NSIP as the most common ILD also in this CVD (Douglas et al. 2001). On the other hand recent studies report that the UIP pattern is prevalent in rheumatoid arthritis associated ILD (Tansey et al. 2004, Lee et al. 2005).

With respect to of the idiopathic types of the diseases, those patients with NSIP enjoy a better survival than the patients with idiopathic UIP (Bjoraker et al. 1998, Nagai et al. 1998, Daniil et al. 1999, Nicholson et al. 2000, Travis et al. 2000). The data before the recognition of NSIP revealed that other types of ILDs associated with CVDs had a more favourable prognosis than UIP (Hakala et al. 1990, Tazelaar et al. 1990). Recent studies have found no difference in the survival between NSIP and UIP associated with CVDs (Bouros et al. 2002, Nakamura et al. 2003). The prognosis and response to therapy are determined by the histological pattern of ILD and by the underlying CVD.
2.1.4 Sarcoidosis

Sarcoidosis is a systemic disease of unknown etiology affecting the lung and lymphatic systems characterized by non-caseating granulomas, accumulation of T-cells and mononuclear phagocytes at the site of inflammation (Mitchell & Scadding 1974, Thomas & Hunninghake 1987, Dai et al. 1998). According to a population based study in the United States, the rates for sarcoidosis were 5.9 per 100 000 person years for men and 6.3 per 100 000 person years for women (Henke et al. 1986).

The pathogenesis of sarcoidosis includes granuloma formation beginning with the tissue deposition of poorly soluble antigen material, which is phagocytosed by mononuclear phagocytes and processed into peptide-complexes (Alacron et al. 1988). The complexes are then displayed on the surface of antigen-presenting cells for analysis by helper T-lymphocytes (Th) possessing cluster of differentiation 4+ (CD4+) -surface antigen (ATS 1999). Granulomatous inflammation can express both Th 1, such as interferon gamma (IFN\(\gamma\)), and Th 2, such as interleukin (IL) 4, cytokines by activated CD4+ Th-cells (Kunkel et al. 1996, Moller 1999). Alveolar macrophages of sarcoidosis patients have been demonstrated to release TNF, which is an important mediator in granulomatous inflammation (Baughman et al. 1990). Circulating immune complexes have been detected in sarcoidosis (Hedfors & Norberg 1974, Selroos et al. 1980).

IFN\(\gamma\) and IL4 are two important factors involved in the development of fibrosis in sarcoidosis. IFN\(\gamma\) is antifibrotic, i.e. it inhibits the growth of fibroblast and collagen synthesis (Jimenez et al. 1984, Clark et al. 1989). It has been shown to downregulate TGF\(\alpha\) gene expression in bleomycin induced lung fibrosis in animal model (Gurujeyalakshmi & Giri 1995). In contrast to IFN\(\gamma\), IL4 has a profibrotic effect by stimulating collagen synthesis in fibroblasts (Serpier et al. 1997). Fibrotic changes in granulomas are initially expressed at the periphery (Travis et al. 2002).

The epithelioid cell granulomas consist of highly differentiated mononuclear phagocytes and lymphocytes (Dail & Hammar 1994, Travis et al. 2002). CD4+ lymphocytes are located in the center of the granuloma whereas CD8+ lymphocytes are present in its peripheral regions (Dail & Hammar 1994). T-cells are the most numerous lymphocytes at the site of granuloma formation, but B-cells and plasma cells are also present (Semenzato et al. 1984). B-lymphocytes are the source of the immunoglobulins present in sarcoidosis (Hunnnighake & Crystal 1981).

The lungs are affected in more than 90 % of sarcoidosis patients with dyspnoea, dry cough and chest pain being the main symptoms (ATS 1999). Radiological findings are classified into five stages from no visible intrathoracic changes up to advanced fibrosis with honeycombing (ATS 1999). There are many extrapulmonary manifestations of sarcoidosis, so the findings and symptoms are related to the organ involved (Roberts et al. 2004). Corticosteroids produce relief of the respiratory symptoms, which often reappear after the discontinuation of treatment (Sharma et al. 1966, Johns et al. 1974, Harkleroad et al. 1982). Cytotoxic agents like methotrexate have been used to suppress sarcoidosis achieving a favourable response (Lower & Baughman 1990, Lower & Baughman 1995). The use of systemic therapy in pulmonary manifestations has been limited to patients with severe disease.
2.1.5 Allergic alveolitis

Allergic alveolitis, also known as hypersensivity pneumonitis (HP) is immunologically induced granulomatous and inflammatory lung disease caused by the inhalation of a variety of environmental agents (Salvaggio & Millhollon 1993, Travis et al. 2002). Bird-related HP is induced by exposure to the excrement and protein material from dispersed dust from birds (Perez-Padilla et al. 1996). Farmer’s lung results from repeated exposure to a high concentration or prolonged exposure to low concentration of inhaled antigens from moldy hay or straw (Erkinjuntti-Pekkarinen et al. 1999, Roussel et al. 2004). Exposure to aerosols of environmental opportunistic nontuberculous mycobacteria have caused HP in metalworkers doing grinding work operations, attendants in swimming baths and inhabitants of water-damaged buildings (Falkinham 2003). Isocyanates can cause chemically induced HP (Baur 1995).

The disease may be present as an acute form lasting 4 to 8 hours after antigen exposure, with flu-like symptoms, which gradually decline over the next days but recur after the revealed inhalation of the causative agent (Dickie & Franklin 1958, Travis et al. 2002). The subacute form develops gradually within weeks or months, with symptoms such as dyspnoea, cough, fatigue and weight loss (Emanuel et al. 1964, Travis et al. 2002). The chronic form may develop through long-term, low-level antigen exposure or due to recurrent undiagnosed acute or subacute episodes (Yoshizawa et al. 1999, Ohtani et al. 2003). Chronic HP can be progressive, irreversible and result in lung fibrosis (Pérez-Padilla et al. 1993). HP patients with pulmonary fibrosis have diminished survival compared to those without fibrosis (Pérez-Parilla et al. 1993, Vourlekis et al. 2004).

Both immune-complex mediated and T cell mediated immune responses are involved in HP (Suga et al. 1997). The histopathology in acute HP includes neutrophilic infiltration in the alveoli and respiratory bronchioles, sometimes with the pattern of DAD (Travis et al. 2002). The histological features of the subacute and chronic forms are a bronchiolocentric interstitial granulomatous pneumonitis with lymphocytes, plasma cells and macrophages (Emanuel et al. 1964, Coleman & Colby 1988, Travis et al. 2002). Lymphocytic alveolitis is a major finding in BALF (Costabel et al. 1984, Yoshizawa et al. 1999). Avoidance of organic antigen exposure is the most important factor in the management of HP and corticosteroids are indicated for the treatment of severe acute and progressive forms (Yoshida et al. 1989, Kokkarinen et al. 1992, Kusaka et al. 1993).

2.2 Oxidants and antioxidant-oxidant imbalance in the pathogenesis of interstitial lung diseases

Oxidants are free radicals that scavenge electrons from other molecules (Schaufstätter & Cochrane 1991). Exogenous factors like cigarette smoke, air pollutants and drugs are capable of inducing increased production of oxidants and of activation inflammatory cells including neutrophils, alveolar macrophages and eosinophils to generate free radicals (Kleinerman 1977, Kinnula et al. 1995, Rahman et al. 1995, Yamazaki et al. 1998, Tao et al. 2003). ROS such as H$_2$O$_2$, OH$^-$ and O$_2^-$ are powerful oxidants which can be formed in
human lung by mitochondrial electron transport chain, MPO, nicotinamide-adenine dinucleotide phosphate (NADPH) oxidase, eosinophilic peroxidase and xanthine oxidase (Kinnula et al. 1995). In addition to ROS, reactive nitrogen species (RNS) can also be formed by the reaction of O$_2^-$ and NO (Beckman & Koppenol 1996). ROS/RNS are toxic by-products of cellular metabolism but they also participate in cell signalling and regulation (Finkel 1998, Rhee et al. 1999). The pathways of ROS signalling can lead to oxidative modification of proteins or alterations in the intracellular redox state, where Trx and GSH are important intracellular thiols acting as “redox buffers” (Thannikal & Fanburg 2000).

Antioxidant enzymes represent the main protective mechanism against free radicals mediated lung injury by detoxifying ROS (Kinnula et al. 1995). Antioxidant response element (ARE) mediated expression and coordinated induction of genes encoding detoxifying enzymes are one crucial mechanism involved in the cellular protection against oxidative stress (Rushmore et al. 1991). ARE is in turn regulated by nuclear-factor-E2-related factor (NRF2) (Venugopal & Jaiswal 1998). Animal studies suggest that the genes encoding antioxidant enzymes are not inducible in NRF2 knockout animals (Ramos-Gomez et al. 2001, Cho et al. 2004). In the study of Cho et al., NRF2 knockout mice and wild type mice were exposed to bleomycin to induce pulmonary fibrosis, and the knockout mice expressed severe fibrosis and inflammation in lung histopathology compared to wild type ones suggesting that NRF2 represents a protective factor against pulmonary fibrosis (Cho et al. 2004). Furthermore, bleomycin caused significantly higher up regulation of mRNA for Trx and both subunits of γGCS in wild type mice (Cho et al. 2004). Accumulation of neutrophils and increased expression of MMPs were also reported in the knockout mice (Cho et al. 2004). Neutrophil oxidants like hypochlorous acid (HOCl), O$_2^-$ and H$_2$O$_2$ are able to cleave SH bonds and release complexed zinc, which is required for the activation of MMPs to regulate the formation of extracellular matrix protein (Fliss & Menard 1992, Parks & Mecham 1998).

The antioxidant enzymes include three different SODs, which decompose superoxide radicals to H$_2$O$_2$ (Marklund 1984, Kinnula et al. 1995). Intracellular copper-zinc SOD (CuZnSOD) is located in bronchial epithelium in healthy lung but also in lung of sarcoidosis patient (Lakari et al. 1998). MnSOD is highly expressed in the granulomas of pulmonary sarcoidosis and allergic alveolitis (Lakari et al. 1998). In UIP and DIP, alveolar type II epithelial cells and macrophages showed moderate expression of MnSOD, but the immunoreactivity was low or absent in old fibrotic areas in UIP (Lakari et al. 2000). Extracellular SOD (ECSOD) protects the cells from extracellularly produced ROS and it is found in the extracellular matrix in UIP (Fattman et al. 2003). ECSOD is found in UIP in interstitial mast cells, but as with the expression of two other SODs, there were no immunohistochemical signs of ECSOD expression in the fibrotic areas (Kinnula et al. 2006). One of the most important H$_2$O$_2$ scavenging enzymes is catalase, which is found in the same areas in UIP and DIP as MnSOD (Simon et al. 1989, Lakari et al. 2000). The other major H$_2$O$_2$ scavenging antioxidant enzyme is glutathione peroxidase (GPx) which utilizes reduced GSH to reduce H$_2$O$_2$ and lipid peroxides to their corresponding alcohols (Meister 1988). Extracellular GPx gene expression is upregulated in bronchial epithelial cells as a result of oxidative stress in asthma and in those who have been exposed to an exogenous oxidant such as cigarette smoke (Comhair et al. 2000, Comhair et al. 2001). In addition to these enzymes already investigated in ILDs, human
lungs contain other enzymes with an H_2O_2 consuming capacity, which participate in regulating redox system including Trx, thioredoxin peroxidases (peroxiredoxins) and glutaredoxin (Grx). Trx scavenges ROS by itself or together with Trx-dependent peroxiredoxin (Kang et al. 1998a). Koura et al. found elevated expression of Trx in the granulomas of pulmonary sarcoidosis (Koura et al. 2000). Grx is also a thiol-disulfide oxidoreductase expressed in alveolar macrophages in normal lung, sarcoidosis and UIP, whereas fibrotic lesions in UIP showed no expression (Rhee et al. 1999, Peltoniemi et al. 2004). The protective antioxidant role of GSH also in lungs is well documented (Rahman & Mac Nee 2000b). The only study on human IPF that has shown some therapeutic favourable effect was done with the precursor of GSH, acetylcysteine. In this study IPF patients who were treated with this thiol compound experienced a lesser deterioration of VC and D_{LCO} at 12 months, although there was no effect on survival (Demedts et al. 2005).

Fig. 2. Major antioxidant pathways of the lung.

In view of the important results emerging from the studies of Cho et al. and Demedts et al. in conjunction with the fact that GSH is a monothiol and γGCS as well as Thx are thiol proteins indicate that further investigation of this system in ILDs, including IPF, is needed (Meister & Anderson 1983, Holmgren 1985, Cho et al. 2004, Demedts et al. 2005).
2.2.1 Thioredoxin system proteins

Mammalian Trx is a small (12 kDa) ubiquitous multifunctional protein containing an oxidation-reduction-active cysteine disulfide sequence: -Cys-Gly-Pro-Cys- (Holmgren et al. 1975, Arner & Holmgren 2000). The other members of the thioredoxin system are the major electron donors NADPH and TrxR, which reduce the oxidized thioredoxin (Trx-S\textsubscript{2}) (Holmgren 1985). Reduced Trx (Trx- (SH)\textsubscript{2}) in turn reduces protein disulfides, generating Trx-S\textsubscript{2} (Holmgren 1985, Arner & Holmgren 2000). Figure 3.

![Thioredoxin system diagram](image)

Fig. 3. Thioredoxin system modified from that described by Arner and Holmgren (Holmgren 1985, Arner & Holmgren 2000).

Trx- (SH)\textsubscript{2} functions as a powerful general disulfide reactant, protecting cytosolic proteins via oxidative formation of disulfides and oxidoreductant carrying electrons for catalytic cycles including scavenging ROS (Holmgren et al. 1975, Holmgren 1985). Trx functions also as an electron donor for peroxiredoxins, which catalyse the reduction of H\textsubscript{2}O\textsubscript{2} (Kang et al. 1998a). Trx is a physiological inhibitor of apoptosis signal regulating kinase (ASK) 1, protecting cells against apoptosis (Saitoh et al. 1998, Arner & Holmgren 2000). Trx has a central role in thiol redox control of cell functions by modulating the gene transcription of nuclear factor kappa beta (NF\textbeta), which controls expression of several inflammatory genes. NF\textbeta is a heterodimer consisting of 50 kDa DNA-binding subunit that associates with 65 kDa subunit bond to an inhibitor protein (IB) in the cytoplasm (Baldwin 1996). In response to a variety of stimuli IB dissociates from NF\textbeta allowing NF\textbeta translocation to nucleus (Baueuerle & Baltimore 1988). Trx is responsible for DNA-binding properties of NF\textbeta by reducing disulfate bond of the 50 kDa subunit (Matthews et al. 1992, Qin et al. 1995). Trx exhibits cytokine-like activities such as augmenting the production of TNF, IL6 and IL8 (Schenk et al. 1994, Yoshida et al. 1999). IL6 is a cytokine capable of stimulating fibroblast growth and production of collagen and it is secreted by fibroblasts in fibrotic lesions (Kondo et al. 2001). The overexpression of IL6 evokes interstitial pneumonia in rats (Yoshida et al. 1995). IL8 is a monocyte- and
macrophage derived cytokine that can activate macrophages and increased expressions of IL8 have been documented in BALF of IPF patients (Carre et al. 1991).

Trx is induced by a variety of stress conditions like exposure to H2O2, X-ray irradiation, exposure to ultraviolet (UV) light, ischemic insult and viral infections (Nakamura et al. 1997). Diesel exhaust particles (DEP) induce Trx expression in animal models and also in cultured normal human bronchial epithelial cells, exposure to DEP evoked the generation of oxidants and lead to cell necrosis (Matsuo et al. 2003, Kaimul et al. 2005). ROS are considered to be involved in bleomycin induced lung injury, which has been suppressed by Trx in animal models (Jamieson et al. 1987, Tamagawa et al. 2000, Hoshino et al. 2003).

The first observations of human Trx came from human T cell leukemia virus type 1-transformed T cells (Tagaya et al. 1989). Elevated plasma Trx levels have been reported in patients with acute exacerbation of asthma, rheumatoid arthritis, human immunodeficiency virus (HIV) -infection and after a cardiopulmonary bypass operation (Nakamura et al. 1996, Nakamura et al. 1998, Yoshida et al. 1999, Yamada et al. 2003). Influenza viruses can cause the global epidemic and therefore the observation that transgenic mice with overexpression of Trx are more resistant to the influenza virus - induced pneumonia is interesting (Nakamura et al. 2002).

TrxR is a selenocysteine-containing flavoprotein composed of two identical 57 kDa subunits, with a broad substrate specificity since it can also reduce non-disulfide substrates such as lipid hydroperoxides, selenite and H2O2 (Kumar et al. 1992, Björnstedt et al. 1995, Zhong & Holmgren 2000). TrxR is the only enzyme known to reduce oxidized Trx, and thus it might have regulatory activities on the same functions as Trx (Mustacich & Powis 2000). TrxR can directly remove apoptotic inducers like H2O2 or indirectly via anti-apoptotic activity of Trx- (SH)2 (Zhong & Holmgren 2000, Liu & Min 2002). A positive correlation between the inactivation of TrxR and growth/proliferation inhibition or apoptosis has been found in human lung cell lines (Zhao et al. 2005). The activity of TrxR responds to selenium supplementation in several cell lines in vitro (Berggren et al. 1997, Marcocci et al. 1997). The elevated expression of Trx and TrxR messenger ribonucleic acid (mRNA) in newborn baboons, which were exposed to high levels of O2 point to an important role of TrxR also in protecting the cell against oxidative stress (Kumuda et al. 1999). Exposure to cigarette smoke has induced elevated expression of TrxR mRNA in fibroblasts (Gebel & Muller 2001).

Several studies have investigated the overexpression of the Trx/TrxR system in human malignancies (Kahlos et al. 2001, Soini et al. 2001a). There are few reports about the localization of Trx and TrxR in normal conditions and in non-malignant disorders in humans. In atherosclerotic coronary arteries Trx was expressed in infiltrating macrophages and in nonatherosclerotic arteries it was found in medial smooth muscle cells, taking part in antioxidant protection (Okuda et al. 2001). In the endometrium, Trx was found in the ciliated cells of the luminal and glandular epithelium possibly protecting the epithelial cells from the apoptotic actions of the trophoblasts (Stavrēus-Evers et al. 2002). There are only a few published studies examining the expression of this system in non-malignant lung disorders (Koura et al. 2000, Kaarteenaho-Wiik & Kinnula 2004).
2.2.2 Glutathione related redox modulating pathways in human lung

The epithelial lining fluid of the airways contains over 100 fold higher concentrations of GSH compared to plasma, and the levels of GSH are reduced in patients with pulmonary fibrosis and allergic alveolitis (Cantin et al. 1987b, Behr et al. 1995, Behr et al. 2002). GSH is a thiol containing tripeptide synthesized from its constituent amino acids by the sequential action of γGCS and GSH-synthetase (Meister & Andersson 1983). Figure 4.

γGCS
L-Glutamate + L-Cysteine + MgATP
L-γ-Glutamyl-L-cysteine + MgADP +Pi
GSH-synthetase
L-γ-Glutamyl-L-cysteine + Glycine + MgATP
Glutathione + MgADP + Pi

Fig. 4. The synthesis of glutathione as described by Meister & Andersson (Meister & Andersson 1983).

Intracellular GSH is oxidized to glutathione disulfide (GSSG), which is reduced back to GSH by GSSG reductase at the expense of NADPH (Meister & Andersson 1983). GSH reaction pathways are linked to the reactions of other thiol containing proteins in scavenging of \(\text{H}_2\text{O}_2 \) and thus is involved in the regulation of the redox balance of the cells (Kinnula et al. 2004).

2.2.2.1 Gamma-glutamylcysteine synthetase

γGCS is the rate-limiting enzyme catalysing the generation of GSH, which is feedback inhibited by GSH (Meister & Andersson 1983, Franklin et al. 2002). Two subunits form γGCS: these are the catalytically active heavy subunit (γGCSH ≈ 73 kDa) which contains all of the substrate binding sites, and the light subunit (γGCSL ≈ 28 kDa) that modulates the affinity of the heavy subunit for substrates and inhibitors, this is presumably being mediated by a redox-sensitive disulfide bond between the two subunits (Huang et al. 1993, Griffith 1999).

The regulation of γGCS is complex. Oxidants, antioxidants and agents related to inflammatory processes modulate the intracellular redox state influencing the activity of key transcription factors such as NFκβ and activator protein-1 (AP-1) (Griffith 1999, Rahman & MacNee 2000b). Overexpression of γGCS inhibits NFκβ activation and gene expression in vitro (Manna et al. 1998). AP-1 is involved in the transcriptional up-regulation of γGCSH gene under oxidative stress including cigarette smoke (Rahman et al. 1996b, Rahman et al. 1998). NFR2 regulates also γGCS and in bleomycin induced lung...
injury, the expression of both subunits was significantly reduced in NFR2 knockout mice leading to pulmonary fibrosis (Cho et al. 2004). The activation of both NF and AP-1 by oxidative stress was inhibited by NAC in vitro (Schreck et al. 1991, Collart et al. 1995). Furthermore, in vitro studies indicate that the γGSH content in A549 cells is affected also by culture conditions even without exposure to oxidants (Post et al. 1983).

TNFα modulates chronic inflammatory changes also by inducing antioxidant levels in mammalian cells (Männel et al. 1980, Wong & Goeddel 1988). In vitro studies, oxidative stress imposed on A549 cells and on pulmonary mucopidermoid carcinoma cells by H$_2$O$_2$, menadione or TNFα, increased GSH, γGCS protein as well as the γGCS mRNA and the changes occured at 6-24 hours after exposure (Rahman et al. 1996a, Rahman et al. 1999, Ray et al. 2002). Conversely, treatment with the anti-inflammatory agent, dexamethasone, decreased the levels of γGCS and γGCS mRNA (Rahman et al. 1999). TGFβ1 is a chemoattractant for fibroblasts being the main mediator of fibrogenesis in lung (Raghow et al. 1987, Khalil et al. 1991). TGFβ1 causes depletion of GSH by down regulation of γGCS, at least partly, via decreased expression of γGCS mRNA (Arsalene et al. 1997, Jardine et al. 2002).

As with the Trx system, the levels of γGCS are highly elevated in lung and pleural malignancies such as mesothelioma and non-small cell carcinoma (Soini et al. 2001a, Soini et al. 2001b, Järvinen et al. 2002, Kinnula et al. 2004). Increased immunoreactivities for both subunits expressed in bronchiolar epithelium and alveolar macrophages of nonsmokers compared to those of smokers with or without chronic obstructive pulmonary disease (COPD) (Harju et al. 2002). In human lung, γGCS can be detected at the 17th gestational week (Kaarteenaho-Wiik & Kinnula 2004). No investigations of the cell specific expressions of both subunits of γGCS in ILDs are available.
3 Aims of the study

The aims of this study were to evaluate the safety of SLB, the histopathological features and prognostic factors of UIP, the most common idiopathic interstitial pneumonia. Another goal of the study was to investigate the role of the major thiol containing redox-regulated proteins of human lung in selected ILDs, including UIP.

The specific aims of the study were:
1. to evaluate the morbidity and short-term mortality of biopsied patients with UIP (I)
2. to assess the number of FF in premortem lung samples and to correlate this parameter with survival, and to evaluate the histopathological findings at autopsy and to associate them with the course of IPF/UIP (II)
3. to determine the expression and distribution of the thioredoxin system enzymes such as thioredoxin and thioredoxin reductase, in IPF/UIP and selected ILDs (III)
4. to investigate the expression and distribution of the rate-limiting enzyme in GSH synthesis, gamma-glutamylcysteine synthetase, in IPF/UIP and selected ILDs (IV).
4 Materials and methods

4.1 Clinical information (I, II, III, IV)

The clinical data was collected from Oulu University Hospital, Päivärinne Hospital, Oulaskangas Hospital, Central Hospital of Länsi-Pohja and Lapland Central Hospital. The first patient data was from September 1973 and the end points of these studies were the last visit before January 1st 2003 or the patient’s death. The clinical data of the 76 patients in studies I and II included age at the time of the biopsy, sex, smoking status, exposure to asbestos, other diseases, medication in general and for IPF/UIP, need for home oxygen therapy, date of biopsy, type of biopsy, major postoperative complications, date and causes of death. The delay between the first visit and biopsy was calculated as well as the survival time after the biopsy. The associated symptoms such as exertional dyspnoea and cough were noted. Pulmonary function tests included preoperative spirometry and DLCO. The radiology involved standard chest radiographs and HRCT.

The III study included 68 patients and the IV study 66 patients and their clinical data was obtained from the patient records of the University Hospital and Päivärinne Hospital including age at the time of biopsy, sex, pulmonary function tests and smoking habits. The end point of these studies was April 1999, when the last lung biopsy sample was gathered.

4.2 Human tissue specimens (I, II)

76 lung samples with typical UIP histopathology taken between January 1973 and January 2003 were gathered from the files of the Department of Pathology, Oulu University Hospital. OLB were performed from January 1973 to December 1992, after that time VATS was mainly used. The subjects fulfilled the UIP diagnosis based on the ATS/ERS criteria (ATS & ERS 2002). Biopsies were taken from different parts of the left or right lung. The biopsy material was fixed in 10 % formalin under vacuum in order to expand the tissue and to remove air bubbles or perfused by injecting the fixative, using a
small syringe, into the bronchioles as described by Dail and Hammar (Dail & Hammar 1994). The specimens were then dehydrated and embedded in paraffin.

In the second study where the number of FF in the lung biopsy sample were evaluated in relation to the course of IPF/UIP, 11 autopsy samples from the same patients were added to the material (II). Lung tissue samples were taken from all five lobes in all but one case, in that instance samples only from right lung lobes were taken.

4.3 Human tissue specimens (III, IV)

Histopathologically typical cases of interstitial lung diseases were retrieved from the files of the Department of Pathology, Oulu University Hospital, by re-evaluating lung biopsies taken either by open or thoracoscopic method between September 1973 and April 1999. The diagnoses were based on light-microscopic evaluations using the histological criteria of Katzenstein (Katzenstein 1997). 60 patients were included into study III and 62 into study IV representing UIP (n=15 (III, IV)), DIP (n=9 (III) and n=10 (IV)), sarcoidosis (n=18 (III) and n=19 (IV)), allergic alveolitis (n=8 (III, IV) and ILD-CVD (n=10 (III, IV)) whose biopsies were obtained from patients with rheumatoid arthritis (n=3 (III) and n=2 (IV)), scleroderma (n=3 (III, IV)), polymyositis (n=2 (III) and n=3 (IV)), systemic lupus erythematosus (SLE) (n=1 (III, IV)) and mixed connective tissue disease (n=1 (III, IV)). Six controls were available with uninvolved peripheral lung tissue. These were obtained from normal, healthy-looking lung of six patients operated on for carcinoid tumour of the lung. The biopsy material was handled as described in chapter 4.2.

4.4 Lung biopsies (I, II, III, IV)

Lung biopsies were performed under general anaesthesia. The site for the biopsy was selected on the basis of chest radiographic or computed tomography findings.

In OLB, the most common approach used was small anterior or lateral thoracotomy. The biopsy was usually obtained with an autosuture device (TA 30-60-90 or GIA) from the representative lung parenchyma, frequently the edge of the lobe was suitable. Chest tube and pleural suction or a Heimlich-valve was usually used for one to three days.

VATS was always performed with double lumen endotracheal intubation with single lung ventilation. The patient was placed in the full lateral position. Three access sites and 5.5 mm ports were used. The thoracoscope was introduced through the seventh or eighth interspace on the midaxillary line and the placement of the latter two additional ports was determined. An endostapler was used to perform the wedge resection. Chest tube insertion was accomplished and the other two sites were closed.

In studies I and II, the biopsies were taken from the right lower lobe in 32 cases, right middle lobe in 20 cases, left lower lobe in 13 cases, lingula in 8 cases and right upper lobe in 3 cases. Only one specimen was taken in 75 cases, and the mean size of biopsy was 13.7 cm². The size of the sample was large enough for the diagnosis of UIP in all cases.
4.5 Bronchoalveolar lavage (III)

Fiberoptic bronchoscopy for sampling of BALF was performed as recommended by the European Task Group on BAL (Klech & Hutter 1990) for 16 patients (UIP n=3, sarcoidosis n=5, allergic alveolitis n=4, control n=4). The control group consisted of nonsmoking patients, who had been investigated for minor respiratory symptoms of unknown etiology. The cell number and distribution as well as the chemical inflammatory parameters of BALF of the control subjects were normal. Lavage was carried out in the lingual or the right middle lobe. Aliquots of 20 ml of sterile saline of 37° C (for a total of 200 ml) were installed into the segment to be lavaged. The fluid recovered from the first aliquot was excluded from the study. The effluent was aspirated manually using a syringe. Cells were harvested from the BALF by centrifugation at 400xg for 15 min, fixed in 10 % formalin, embedded in 2 % agar, and after solidification, further embedded in paraffin prior to evaluation.

4.6 Cell culture and exposures (IV)

A549 cells (American Type Culture Collection, Rockville, MD, USA) were grown in monolayer in Ham’s Nutrient mixture F-12 with L-glutamine supplied with 15% fetal bovine serum (FBS), 100 U/ml penicillin and 100µg/ml streptomycin (all from Gibco BLR, Life Technologies, Paisley, UK). The cells were exposed to TGFβ1 (2 ng/ml) or TNFα (50 ng/ml) for 24, 48 and 72 hours and the expressions of γGCSH and γGCSI were determined by Western blot analyses where the cell pellets were melted with the electrophoresis sample buffer, and boiled for 5 min at 95 °C. TGFβ1 and TNFα were selected for the challenge test since they are known to express in IPF (Piquet et al. 1993, Khalil et al. 1996). Furthermore they promote infiltration of inflammatory cells and proliferation of fibroblasts (Broekelmann et al. 1991, Zhang et al. 1993) The protein concentration of samples was measured using the Bio-Rad protein assay (Bio-Rad, Hercules, CA) and 50 g of cell protein per lane was applied to a 12 % sodium dodecyl sulfate polyacrylamide gel. The gel was electrophoresed for 1.5 h (90V), and then transferred (45 min, 100 V) onto Hybond ECL nitrocellulose membrane (Amersham, Buckinghamshire, UK) in Mini Protean II Cell (Bio-Rad).

The blotted membranes were incubated with antibodies to recombinant MnSOD (a gift from Prof JD Crapo, Jewish Medical and Research Center, Denver, CO, USA) (dilution 1:10 000), γGCSH or γGCSI peptides (dilutions 1:10 000 and 1:5000, respectively) or -actin (Sigma Aldrich, St Louis, MO, USA) (dilution 1:5000) followed by treatment with horseradish peroxidase-conjugated anti-rabbit or anti-mouse secondary antibodies (both from Amersham).

The antibodies directed against the γGCSH or the γGCSI peptides were from a rabbit and were a gift from D.T. Kavanagh, University of Washington, Seattle, WA, USA.

The regulation of well characterized antioxidant enzyme, MnSOD was used as a positive control in both situations, since its regulation in human lung has been intensively investigated and documented to express strongly in the granulomas of pulmonary
sarcoidosis and allergic alveolitis, but the expression is weak in old fibrotic areas of the lung (Kinnula et al. 1995, Lakari et al. 1998).

4.7 Histopathological evaluation (I, III, IV)

Lung biopsy samples with typical UIP histopathology were re-evaluated independently by two pathologists (Riitta Kaarteenaho-Wiik, Paavo Pääkkö) with a light microscope based on the criteria presented by Dail & Hammar and Katzenstein (Dail & Hammar 1994, Katzenstein 1997). The same criteria were used when DIP, sarcoidosis and allergic alveolitis were re-evaluated in studies III and IV (Dail & Hammar 1994, Katzenstein 1997).

4.8 Histopathological evaluation (II)

The histopathology of UIP was re-evaluated as previously described (Chapter 4.7). Sections 4 µm thick lung tissue samples were stained with haematoxylin/eosin (HE) - and alcian blue periodic acid schiff (AB-PAS) -methods. The total numbers of FF were analysed independently by two pathologists (Riitta Kaarteenaho-Wiik, Paavo Pääkkö). The surface area of lung tissue in one slide of each case was defined by image-analysis (MC ID – M4 for Windows 3.0 Rev 1.1, Imaging Research Inc., Brock University, St Catharines, Ontario, Canada) and the numbers of FF were divided into two subgroups (50 or less FF/ 1 cm² or more than 50 FF/ 1 cm²) (See statistical analyses).

Autopsy was carried out in 11 UIP cases and the lung samples were re-analysed by HE-staining. The histological features including UIP, squamous-type metaplastic alveolar epithelium, accumulation of intra-alveolar neutrophils and hyaline membranes were classified (RK-W, PP) independently as either negative (-) or positive (+). The quantifying of DAD in the lung specimen referred to the extent of lung tissue involvement as follows: no evidence of DAD (-), focal patches of DAD (+) or widely spread DAD (++).

4.9 Immunohistochemistry and evaluation of immunoreactivity (III, IV)

Four micrometers thick sections were cut from representative paraffin blocks. The sections were first deparaffinized in xylene and rehydrated in descending ethanol series. In order to enhance the immunoreactivity, the sections were incubated in 10 mM citrate buffer (pH 6.0), boiled in a microwave oven for 2 min at 850 W, and then for 8 min in 350 W. Endogenous peroxidase activity was eliminated by incubation in 0.1% hydrogen peroxide in absolute methanol for 10 min. After incubation at +4°C overnight with the
affinity purified goat anti-human Trx antibody at a dilution of 1:2000 (American Diagnostica, Greenwich, CT), a biotinylated secondary anti-goat antibody was applied (dilution 1:400) followed by the avidin-biotin-peroxidase complex (both from Dakopatts, Glostrup, Denmark).

The antibody to TrxR was the gammaglobulin fraction of a polyclonal rabbit antibody directed against rat cytosolic thioredoxin reductase and was a gift from A. Holmgren, Karolinska Institutet, Stockholm, Sweden. The antibodies directed against the γGCSh and γGCSI were from rabbit and were a gift from D.T. Kavanagh, University of Washington, Seattle, WA, USA. The dilutions used were all 1:1000.

Replacement of the primary antibody by phosphate buffered saline (PBS) at pH 7.2 and rabbit primary antibody isotype control (Zymed Laboratories, Inc, San Francisco, CA) was used as a negative control. The colour was developed using aminoethylcarbazole (AEC), and the sections were lightly counterstained with hematoxylin and mounted with Eukitt (Kindler, Freiburg, Germany).

The scoring of the cytoplasmic staining was evaluated semiquantitatively by two pathologists independently from one tissue section (roughly 1 cm²) in alveolar, metaplastic alveolar, bronchial and bronchiolar epithelium, macrophages, fibroblast foci and old fibrotic lesions. The results were classified into four groups: 0, no immunostaining; +, weak positive staining; ++, moderate staining and ++++, strong staining.

4.10 Immunoelectron microscopy (III, IV)

Fresh lung tissues of sarcoidosis and UIP patients were obtained from surgical operations and small pieces were fixed in 4 % paraformaldehyde in 0.1 M phosphate buffer with 2.5 % sucrose, pH 7.4, for 2 hours, immersed in 2.3 M sucrose and frozen in liquid nitrogen. Thin cryosections were cut with a Leica Ultracut UCT microtome (Leica Microsystems, Vienna, Austria). For immunolabelling, the sections were first incubated in 0.05 M glycine in PBS and then in 5 % bovine serum albumin (BSA) with 0.1 % cold water fish skin gelatin (Aurion, Wageningen, The Netherlands). Antibodies and gold conjugate were diluted in 0.1 % BSA-C (Aurion) in PBS. All washings were performed in 0.1 % BSA-C in PBS. The sections were then incubated with antibodies to Trx, TrxR, γGCSh γGCSI which were the same as previously described (Chapter 4.6 and 4.9) for 60 min followed by protein A-gold complex (size 10 nm) for 30 min, made according to Slot (Slot & Geuze 1985). The controls were prepared by carrying out the labelling procedure without the primary antibody. The sections were embedded in methylcellulose and examined with a Philips CM 100 transmission electron microscope (FEI Company, Eindhoven, the Netherlands). Images were captured by a CCD camera equipped with TCL-EM-menu version 3 from Tietz Video and Image Processing Systems mbH (Gaunting, Germany).
4.11 Statistical analyses (I, II, III, IV)

The statistical analyses were performed with the SPSS for Windows software (SPSS for Windows, Rel. 11.5.1 2002.Chicago). The significance of the associations was determined using Fisher’s exact probability test which is designed for small sample groups. P-values less than 0.05 were considered statistically significant.

In the studies I and II the median survival was used, whenever possible comparing the survival between different groups, but if this could not be calculated, then the mean survival was used. Cumulative survivals were estimated using the Kaplan-Meier method, the log-rank test was used to compare survival of different groups.

In the studies II, III and IV, the inter-observer reliability between two pathologists was investigated using Cohen’s kappa statistics (Cohen 1960, Landis & Koch 1977). Since no linear correlation between the number of FF and survival was observed, receiver operating characteristics (ROC) -curve was used to find the cut-off value (i.e. the number of FF) on which basis the material was divided into two subsets (Armitage 2002).

In studies III and IV, the correlations between the groups were determined by Spearman correlation test.

4.12 Ethical considerations (I, II, III, IV)

The instructions of the National advisory board on research ethics were followed in all the studies included into this thesis. The personal data of the patients has not been used, instead serial numbers were used both in collecting and analysing the material. The personal identification registry is kept in the separate archive. The study material consisting of the lung biopsy specimens and BALF samples as well as the clinical patient information and test results were initially attained for diagnostic purposes only. The study protocols were approved by the Ethical committee of the Oulu University Hospital.
5 Results

5.1 Safety of the thoracoscopic and open lung biopsies (I)

5.1.1 Clinical findings and symptoms (I, II)

The study population consisted of 42 (55.3 %) men and 34 (44.7 %) women, with a mean age at the time of biopsy of 56.7 years (range, 21 to 77). The mean observation time after the first visit due to symptoms was 89.2 months (range, 2 to 336). A total of 42 patients (55.3 %) had open lung biopsy and 34 (44.7 %) underwent the thoracoscopic procedure. The mean observation period after the lung biopsy was 69 months (range, 1 to 296). There were 17 (22.4 %) current and 23 (30.3 %) former smokers with average 22.6 pack years, whose median survival was 60 months (95% confidence interval (CI) 51 to 69) considering those patients who died during the study period. Compared to the survival of never smokers, 49 months (95% CI 0 to 99), this 11 months difference was not statistically significant. The main symptoms were exertional dyspnoea in 40 patients (52.6 %) and non-productive cough in 26 cases (34.2 %). The physical examination revealed inspiratory crackle in 55 patients (72.4 %). Finger clubbing was seen in 24 cases (31.6 %) and 15 patients (36.6 %) who died of UIP exhibited this symptom. A family history of IPF like disease was found in 5 cases (6.6 %).

Bilateral reticular opacities (34 cases, 44.7 %) and fibrosis (50 cases, 65.8 %) were the main findings in the chest radiograph. Since the first biopsies were taken in 1973 and HRCT only came into general use during the 1990s, the preoperative HRCT was available in only 38 cases (50 %). The predominant pattern of HRCT was fibrosis in 32 cases (84.2 %) including 20 cases (52.6 %) of honeycombing, whereas ground glass opacities were observed in 11 cases (28.9 %).

Pulmonary function tests including forced vital capacity (FVC), forced expiratory volume (FEV₁) and DLCO were available in 73 cases (96 %). Those patients having DLCO 50 % or more of predicted value experienced a median survival of 85 months (95 % CI 56 to 114, p=0.009), while the group with less than 50 % of the predicted value lived only 49 months (95 % CI 37 to 61, p = 0.009).
5.1.2 Lung biopsy and survival (I)

By the end of the study, 51 patients (67.1 %) were dead. UIP was the main cause of death in 43 cases (56.6 %) including only 2 patients with CVD. Four patients (5.3 %) died of lung carcinoma (squamous cell carcinoma n = 2, small cell carcinoma n = 2), they all had idiopathic type of UIP. One patient died of ventricular bleeding due to an ulcer and 3 patients died of acute myocardial infarction. Table 2. The median survival after the first visit to hospital due to symptoms of the whole group was 91 months (95 % CI 62-120) and after lung biopsy, 59 months (95 % CI 44-74).

Table 2. Characteristics of the patients with idiopathic UIP and UIP with connective tissue disease.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Idiopathic UIP</th>
<th>UIP with connective tissue disease*</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of patients / %</td>
<td>64 (84.2 %)</td>
<td>12 (15.8 %)</td>
<td>76 (100 %)</td>
</tr>
<tr>
<td>Male</td>
<td>38 / 76 (50 %)</td>
<td>4 / 76 (5.3 %)</td>
<td>42 (55.3 %)</td>
</tr>
<tr>
<td>Female</td>
<td>26 / 76 (34.1 %)</td>
<td>8 / 76 (10.6 %)</td>
<td>34 (44.7 %)</td>
</tr>
<tr>
<td>Median age at the time of biopsy, Years (range)</td>
<td>58.9</td>
<td>45.3 (1-77)</td>
<td>56.7</td>
</tr>
<tr>
<td>Open lung biopsy</td>
<td>34</td>
<td>8</td>
<td>42</td>
</tr>
<tr>
<td>Thoracoscopic biopsy</td>
<td>30</td>
<td>4</td>
<td>34</td>
</tr>
<tr>
<td>Previous / Active smoker Pack Years</td>
<td>35 / 64 (54.7 %)</td>
<td>5 / 12 (41.7 %)</td>
<td>40 / 76 (52.6 %)</td>
</tr>
<tr>
<td>Median survival after diagnosis (Months (95% CI)</td>
<td>69 (47-91)</td>
<td>232** (182-281)</td>
<td>91(62-120)</td>
</tr>
<tr>
<td>Median survival after biopsy (Months (95 % CI)</td>
<td>49(40-58)</td>
<td>223**(167-280)</td>
<td>59(44-74)</td>
</tr>
<tr>
<td>Dead</td>
<td>47 / 64 (73.4 %)</td>
<td>4 / 12 (33.3 %)</td>
<td>51 / 76 (67.1 %)</td>
</tr>
<tr>
<td>Death due to UIP</td>
<td>41 / 64 (64.3 %)</td>
<td>2 / 12 (16.7 %)</td>
<td>43 / 76 (56.6 %)</td>
</tr>
</tbody>
</table>

UIP = usual interstitial pneumonia, CI = confidence interval, * rheumatoid arthritis (n = 4), scleroderma (n = 4), dermatomyositis (n = 3), mixed connective tissue disease (n = 1), ** mean survival was used since over half of the patients (4/6) were alive at the end of the study, median survival was used for those patients who were dead by the end of the study.

The biopsies in the 1970s (10 cases) and 1980s (23 cases) were all OLBs. After the 1990s, there were 9 open and 34 VATS lung biopsies. There was a 20 month difference in the median survival depending on the type of biopsy, in the open thoracotomy group it was 51 months (95 % CI 36 to 66) and in the thoracoscopic group 71 months (95 % CI 43 to 99). The median survival after the lung biopsy did not change significantly over these three decades. Eight patients died in the 1970s having median survival of 47 months (95 % CI 3-91), the corresponding numbers from the 1980s were 19 patients / 60 months (95 % CI 17-105) and from the 1990s 23 patients / 63 months (95 % CI 42-84). After the year 2000, only one patient has died with 10 months survival after the lung biopsy. Thirty-five patients (46 %) who had an open thoracotomy and 16 of the patients (21.1 %) who underwent thoracoscopic procedure were dead by the end of the study.
The histopathological verification of UIP led to a change in the treatment in 58 cases (76.8%) with no statistical effect on survival. The 58 patients with altered treatment had a median survival of 61 months (95% CI 37-85), those 9 patients (11.8%) who underwent no change in their medication had a median survival of 85 months (95% CI 38-132). Nine patients who received no treatment had a median survival of 49 months (95% CI 26-72). Corticosteroids were supplemented in 45 cases (59.2%) of these 16 cases received additional treatment with azathioprine, whereas cyclophosphamide was combined in 4 cases. Two patients underwent lung transplantation because of UIP.

The age of the patients at the time of the biopsy was a significant factor, with a correlation to the median survival after biopsy (Spearman \sim -0.228, $p=0.048$). The patients who were 50 years of age or younger had 211 months median survival (95% CI 109 to 313, $p = 0.006$) compared to 51 months (95% CI 42 to 60, $p = 0.006$) of the patients who were older than 50 years.

Four (5.3%) patients died within one month after the biopsy. All these patients underwent OLB due to atypical symptoms or radiological findings of IPF, and the histological features of UIP were found in all four cases. In addition to UIP, the organizing stage of diffuse alveolar damage (DAD) was observed at autopsy in all cases, one patient had also pneumonia in his autopsy samples. None of these individuals had connective tissue disease and only one had received corticosteroids prior to SLB and none of the four needed mechanical ventilation preoperatively.

The connective tissue disease patients with better survival were younger and smoked less than the idiopathic group (Table 2). The median age at the time of lung biopsy was 45.3 years for the patients with connective tissue disease compared to 58.9 years of idiopathic group. In the connective tissue disease group the median survival after diagnosis and biopsy was longer than the survival of patients with the idiopathic type UIP, 69 vs. 232 months and 49 vs. 223 months, respectively. Only 2 out of 12 patients (16.7%) with connective tissue disease had died of UIP by the end of the study whereas 41 out of 64 patients (64.3%) had passed away due to UIP in the idiopathic group. Table 2.

5.2 Fibroblast foci, diffuse alveolar damage and exacerbation of idiopathic pulmonary fibrosis/usual interstitial pneumonia (II)

5.2.1 Clinical features (II)

The clinical findings and symptoms are described in chapter 5.1.2, since the study material was same.

Seven patients (9.2%) fulfilled all the criteria of accelerated deterioration of IPF, and in two cases one criteria was missing, i.e. the PaO$_2$ value from the last visit was not available in one case, and in another case there were problems in assessing the chest x-ray and excluding infection (Akira et al. 1997). Six males and 3 females were included in this subgroup. Their mean age at the time of biopsy was 54.6 years (range, 21 to 69) and at the time of death 60.1 years (range, 45 to 80). The 2 years frequency of acute exacerbation
before death was 2 cases out of 76, i.e. 2.6 %, when only those patients who fulfilled the
criteria of Akira et al. were included (Akira et al. 1997). The total survival after the first
visit to hospital due to symptoms was 96 months (~ 8 years) (range, 10 to 247) and
survival after biopsy 75 months (~ 6.3 years) (range, 6 to 245). Acute exacerbation before
death was found in 20.9 % of the IPF/UIP related deaths.

5.2.2 Histopathologic findings of lung biopsies and their
correlation with survival (II)

FF were observed in all cases and the average size of analysed material was 1.64 cm².
The number of FF varied from 2 to 327 / 1 cm² and the average number of FF / 1 cm²
was 76 in patients with idiopathic UIP and 50 / 1 cm² in the patients with connective
tissue disease. The numbers of the idiopathic UIP patients with 1-50 and over 50 FF / 1
cm² were 28 and 36, respectively, and the numbers of those UIP patients with connective
tissue disease were 6 and 6, respectively. As expected, patients with lower numbers of FF
had better prognosis. Using Kaplan-Meier method the patients having 50 or less FF / 1
cm² (n=34) had median survival of 89 months (95% CI 38 to 140, p=0.0358) when that
of the patients with more than 50 FF / 1 cm² (n=42) was 49 months (95% CI 36 to 62,
p=0.0358) (Table 3). The 223 months (95% CI 167 to 280, p= 0.0002) survival after
biopsy of UIP-patients with connective tissue disease was significantly longer compared
to 49 months (95 % CI 40 to 58, p=0.0002) of idiopathic group. The interobserver
repeatability between the scoring results of the pathologists was moderate by using
Cohen’s kappa statistics (Kappa coefficient = 0.568).

There was a significant negative correlation between D LCO and the number of FF
(Spearman -0.302, p= 0.009) showing that the patients with diminished D LCO had more
often higher number of FF in their lung biopsy specimens.

According to our unpublished finding the median survival after biopsy of never
smoker was 116 months (95 % CI 23 to 209) having 50 or less FF / 1 cm² and 40 months
(95 % CI 20 to 60) when the number of FF / 1 cm² was over 50, the numbers of former
and active smokers were 60 months (95 % CI 55 to 65) and 56 months (95 % CI 36 to 76)
respectively. The correlations between the number of FF / 1 cm² and the subgroups of the
patients classified by smoking habits were not statistically significant

5.2.3 Histopathologic findings of autopsy samples (II)

Histopathologic findings of autopsy material revealed DAD with hyaline membranes in
10 out of 11 cases. However, the extent of DAD varied from case to case. In 3 cases DAD
was observed in focal patches while in 7 samples it was observed widely throughout the
whole lung tissue. In 6 cases DAD was so strong that it nearly obscured the typical
histological features of UIP. The post-mortem analysis revealed neutrophil infiltrates in 9
cases. Squamous-type metaplastic alveolar epithelium could be detected in 10/11 cases.
In 6 patients there were clinical signs of pneumonia, like chest x-ray findings or elevated CRP levels, but histopathological analyses of their autopsy samples revealed typical histopathological features of pneumonia in only 2 cases. On the other hand, 2 other patients with typical pneumonia in their autopsy lung samples did not have any changes in pre-mortem chest x-ray findings or elevated CRP levels. 3 patients had clinical signs of acute exacerbation before death (Akira et al. 1997). Table 3.

Table 3. Histopathological findings of autopsy samples and the occurrence of acute exacerbation of IPF/UIP before death of the 11 patients with UIP.

<table>
<thead>
<tr>
<th>Case number</th>
<th>DAD</th>
<th>Intra-alveolar neutrophils</th>
<th>Metaplastic squamous epithelium</th>
<th>Pneumonia at autopsy</th>
<th>Acute exacerbation before death</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>++</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>2.</td>
<td>+</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>3.</td>
<td>+</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>4.</td>
<td>++</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>5.</td>
<td>++</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>6.</td>
<td>-</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>7.</td>
<td>++</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>8.</td>
<td>++</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>9.</td>
<td>++</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>10.</td>
<td>+</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>11</td>
<td>++</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

DAD = diffuse alveolar damage
- = no evidence of DAD, + = focal patches of DAD
++ = widely spread DAD

5.2.4 The associations between FF, DAD and acute exacerbations before death (II)

When the existence of DAD was categorized and correlated with FF, there appeared to be no significant association between them. Generally DAD could be found both from those with low and high numbers of FF (Figure 5).
There was no correlation between the occurrence of the accelerated exacerbation of IPF/UIP and the extent of DAD, since 6 out of 11 autopsied patients had widely spread DAD in their autopsy samples without clinical sings of acute exacerbation before death (Table 4).

Degree of DAD
- = no evidence of DAD, + = focal patches of DAD, ++ = widely spread DAD, DAD = diffuse alveolar damage

No significant association was found between the number of FF and accelerated phase of the disease (Figure 6).
5.3 Expression of the Thioredoxin system in interstitial lung diseases (III)

5.3.1 Clinical features (III, IV)

The cases selected in the studies III and IV were similar including patients with UIP, DIP, interstitial lung disease associated with collagen vascular disease, sarcoidosis and allergic alveolitis. The mean age was 50 years (range 21 to 74 years), including 28 males (41.2 % (III), 42.4 % (IV)) in both studies and 40 (58.8 %) females in the III study and 38 (57.6 %) females in the IV study. In pulmonary function tests the mean FEV % was 78.2 % of the predicted value, FVC % was 66.8 % of the predicted value and DLCO was 70.8 % of predicted value in the III study, and the numbers were 77 %, 82 %, and 70 %, in the study IV, respectively. There were 23 active smokers in both studies.

5.3.2 Localization for Trx and TrxR by immunohistochemistry (III)

5.3.2.1 Trx and TrxR in normal lung (III)

Normal peripheral lung showed weak or moderate Trx and TrxR immunoreactivity in the epithelium of bronchus and bronchiolus, and in alveolar macrophages. Normal alveolar epithelium, consisting of type I and II pneumocytes, and lung fibroblasts were negative by immunohistochemistry (Table 5). The staining was mainly cytoplasmic, but some bronchial epithelial cells showed also nuclear immunoreactivity.

5.3.2.2 Trx and TrxR in UIP, DIP and ILD-CVD (III)

In UIP, metaplastic alveolar epithelium showed mainly moderate to strong expression for Trx and TrxR, this was observed in all three types i.e. alveolar cuboidal type II, bronchiolar and squamous type metaplastic epithelium (Table 5). The immunostainings were both cytoplasmic and nuclear, and especially strong in the nuclei of the bronchiolar-

Table 4. The numbers of IPF/UIP patients classified by the occurrence of acute exacerbation and the extent of DAD.

<table>
<thead>
<tr>
<th>Degree of DAD</th>
<th>Accelerated exacerbation of IPF</th>
<th>No accelerated exacerbation of IPF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Widely spread DAD</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>Focal patches of DAD</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>No evidence of DAD</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

type metaplastic and squamous-type metaplastic epithelium. Alveolar macrophages showed significantly higher immunostaining for Trx (p = 0.03) and TrxR (p = 0.04) than controls. The immunoreactivity was also increased in the epithelium of bronchus and bronchiolus both in the cytoplasmic and nuclear compartments. The epithelium of the fibrotic areas showed expression for Trx and TrxR, but fibroblasts and myofibroblasts were negative in the active fibroblastic foci and in the scar-like old fibrotic areas. Table 5.

In DIP, the strongest immunohistochemical expressions for both Trx (p = 0.002) and TrxR (p = 0.019) were in the alveolar macrophages compared to controls. The expression in the metaplastic alveolar epithelium was moderate to strong for Trx and weak for TrxR. As with UIP, the positivity was both cytoplasmic and nuclear, the latter being again detectable especially in the metaplastic alveolar epithelium. Table 5.

In interstitial lung diseases-collagen vascular diseases (ILD-CVD) the immunohistochemical reaction for Trx and TrxR appeared to be stronger when compared to the normal lung, but lower than in UIP and DIP. The cytoplasmic and nuclear compartments of the metaplastic alveolar epithelium showed occasionally moderate to strong expressions for both enzymes. Table 5.

5.3.2.3 Trx and TrxR in granulomatous diseases (III)

In sarcoidosis alveolar macrophages showed mainly moderate expression for Trx and TrxR. Most granulomas showed moderate or strong expression for Trx, and weak to moderate expression for TrxR. Bronchial epithelium was mainly weak for Trx and weak or moderate for TrxR. Table 5.

In allergic alveolitis, alveolar macrophages showed mainly weak or moderate stainings, granulomas had occasionally immunoreactivity for Trx, the staining for TrxR was weak or absent. The expressions in bronchial epithelium varied between negative to moderate, while normal alveolar epithelium showed no immunoreactivity. Table 5.
Table 5. The cytoplasmic and nuclear immunostainings for Trx and TrxR in controls, UIP, DIP, CVD-ILD and granulomatous diseases of the lung.

<table>
<thead>
<tr>
<th>Disease</th>
<th>Alveolar Epithelium</th>
<th>Metaplastic Alveolar Epithelium</th>
<th>Broncholar Epithelium</th>
<th>Macrophages</th>
<th>Nuclear Staining</th>
<th>Granulomas</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Trx/TrxR</td>
<td>Trx/TrxR</td>
<td>Trx/TrxR</td>
<td>Trx/TrxR</td>
<td>Trx/TrxR</td>
<td>Trx/TrxR</td>
</tr>
<tr>
<td>Controls 0</td>
<td>6/6</td>
<td>0/0</td>
<td>0/3</td>
<td>1/3</td>
<td>3/4</td>
<td>0/0</td>
</tr>
<tr>
<td>N = 6 +</td>
<td>0/0</td>
<td>0/0</td>
<td>3/3</td>
<td>5/3</td>
<td>2/2</td>
<td>0/0</td>
</tr>
<tr>
<td>++</td>
<td>0/0</td>
<td>0/0</td>
<td>3/0</td>
<td>0/0</td>
<td>1/0</td>
<td>0/0</td>
</tr>
<tr>
<td>+++</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>UIP 0</td>
<td>2*/0*</td>
<td>2/1</td>
<td>1/6</td>
<td>1*/0*</td>
<td>4/5</td>
<td>0/0</td>
</tr>
<tr>
<td>N = 15 +</td>
<td>7/5</td>
<td>6/3</td>
<td>4/3</td>
<td>5/6</td>
<td>3/1</td>
<td>0/0</td>
</tr>
<tr>
<td>++</td>
<td>5/4</td>
<td>4/4</td>
<td>7/3</td>
<td>5/5</td>
<td>8/7</td>
<td>0/0</td>
</tr>
<tr>
<td>+++</td>
<td>1/6</td>
<td>3/6</td>
<td>3/0</td>
<td>4/4</td>
<td>0/2</td>
<td>0/0</td>
</tr>
<tr>
<td>DIP 0</td>
<td>1*/1*</td>
<td>1/1</td>
<td>5/6</td>
<td>0*/1*</td>
<td>0/1</td>
<td>0/0</td>
</tr>
<tr>
<td>N = 10 +</td>
<td>3/4</td>
<td>2/4</td>
<td>1/0</td>
<td>1/2</td>
<td>8/4</td>
<td>0/0</td>
</tr>
<tr>
<td>++</td>
<td>3/2</td>
<td>2/3</td>
<td>2/2</td>
<td>1/5</td>
<td>1/3</td>
<td>0/0</td>
</tr>
<tr>
<td>+++</td>
<td>2/2</td>
<td>4/1</td>
<td>1/1</td>
<td>7/1</td>
<td>0/1</td>
<td>0/0</td>
</tr>
<tr>
<td>ILD-CVD 0</td>
<td>3/5</td>
<td>3/5</td>
<td>2/6</td>
<td>2/5</td>
<td>4/5</td>
<td>0/0</td>
</tr>
<tr>
<td>N = 10 +</td>
<td>3/3</td>
<td>3/3</td>
<td>4/2</td>
<td>4/5</td>
<td>4/1</td>
<td>0/0</td>
</tr>
<tr>
<td>++</td>
<td>2/2</td>
<td>2/0</td>
<td>4/1</td>
<td>0/4</td>
<td>4/1</td>
<td>0/0</td>
</tr>
<tr>
<td>+++</td>
<td>2/0</td>
<td>2/2</td>
<td>0/1</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
<tr>
<td>Sarcoiosis 0</td>
<td>18/17</td>
<td>0/0</td>
<td>6/3</td>
<td>4/0*</td>
<td>4/7</td>
<td>2/2</td>
</tr>
<tr>
<td>N = 18 +</td>
<td>0/1</td>
<td>0/0</td>
<td>11/10</td>
<td>11/13</td>
<td>14/11</td>
<td>3/9</td>
</tr>
<tr>
<td>++</td>
<td>0/0</td>
<td>0/0</td>
<td>1/5</td>
<td>3/5</td>
<td>0/0</td>
<td>8/7</td>
</tr>
<tr>
<td>+++</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>5/0</td>
</tr>
<tr>
<td>Allergic alveolitis 0</td>
<td>8/8</td>
<td>0/0</td>
<td>3/1</td>
<td>1*/0*</td>
<td>1/5</td>
<td>4/6</td>
</tr>
<tr>
<td>N = 8 +</td>
<td>0/0</td>
<td>0/0</td>
<td>3/5</td>
<td>4/7</td>
<td>7/3</td>
<td>1/2</td>
</tr>
<tr>
<td>++</td>
<td>0/0</td>
<td>0/0</td>
<td>2/2</td>
<td>3/1</td>
<td>0/0</td>
<td>2/0</td>
</tr>
<tr>
<td>+++</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>1/0</td>
</tr>
</tbody>
</table>

0 = no positive staining; + = <30 % of cells showing positivity, weak; ++ = 30-60 % of cells showing positivity, moderate; +++ = >60 % of cells showing positivity, intense, * p< 0.05 compared to the expression of the investigated enzyme in the corresponding cell type from normal looking, healthy lung of the patients with no interstitial lung disease.

The interobserver reactivity of the assessment of 2 independent investigators varied from moderate to almost perfect (Kappa coefficient 0.46-0.94).

5.3.3 Immunohistochemical analyses of BAL samples (III)

The BALF samples of healthy controls, patients with UIP, sarcoidosis and allergic alveolitis confirmed the expression of Trx and TrxR in alveolar macrophages and showed no expression for Trx or TrxR in the lymphocytes.
5.3.4 Ultrastructural distribution of Trx and TrxR in UIP (III)

Trx and TrxR were expressed in alveolar macrophages, metaplastic type II pneumocytes and bronchial epithelial cells. The staining was diffuse in the cytoplasm and occasionally in the nuclear compartment and along the plasma membranes. Bronchial epithelial cells showed prominent expression in the lateral cell protrusions. Trx and TrxR could also be detected in the apical areas of the ciliary epithelial cells. No labelling was seen in fibroblasts.

5.4 Cell-specific regulation of gamma-glutamylcysteine synthetase in human interstitial lung diseases (IV)

5.4.1 Localization of γ GCSH and γ GCSl by immunohistochemistry (IV)

5.4.1.1 γ GCSH and γ GCSl in normal lung (IV)

Both subunits of γ GCS were localized to bronchiolar epithelium, the intensity varied from weak to strong for γ GCSH and for γ GCSl was mainly weak. Alveolar macrophages were weakly positive for both subunits. Normal alveolar epithelium showed no immunohistochemical expression for either subunit. Table 6.

5.4.1.2 γ GCSl and γ GCSH in UIP, DIP and ILD-CVD (IV)

In UIP, the strongest expressions of both subunits were observed in bronchiolar epithelium (Table 6). The metaplastic alveolar epithelium, which was found only in the diseased lung, showed moderate to strong reactivity for both subunits, diffuse expression of both subunits could also be detected in fibrotic areas, but fibroblasts and myofibroblasts were negative in the active fibroblast foci and in the scar like fibrotic areas. In DIP the most intense expression for both γ GCS subunits was seen in alveolar macrophages, while bronchiolar epithelium and metaplastic alveolar epithelium showed mainly weak immunoreactivity. Table 6.

The alveolar epithelium in DIP showed increased intensities for both subunits compared to the control lung ($p = 0.007$ for γ GCSH and $p = 0.001$ for γ GCSl). In ILD-CVD the bronchiolar epithelium and metaplastic alveolar epithelium were variably positive for both subunits but once again fibroblasts, fibromyxoid lesions and the fibrotic areas were negative. Table 6.
5.4.1.3 γGCSh and γGCSl in granulomatous diseases (IV)

In sarcoidosis, the bronchiolar epithelium showed moderate to strong expression for γGCSh and weak to moderate expression for γGCSl in most cases. In the majority of the cases, alveolar macrophages were weakly to moderately positive for both subunits. Granulomas were from moderately to strongly positive for γGCSh and weakly positive for γGCSl. Table 6.

In allergic alveolitis the granulomas are in general less conspicuous and not so well developed as in sarcoidosis, the immunoreactivity of both γGCS subunits was mainly weak or negative except for a few cases with strong γGCSh expression. Bronchiolar epithelium and alveolar macrophages showed weak to moderate expression. Table 6.

Table 6. Immunoreactivities for γGCS heavy (h) and light (l) subunits in the lung.

<table>
<thead>
<tr>
<th>Disease</th>
<th>Alveolar Epithelium</th>
<th>Metaplastic Alveolar Epithelium</th>
<th>Bronchiolar Epithelium</th>
<th>Alveolar Macrophages</th>
<th>Granulomas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controls</td>
<td>0</td>
<td>6/6</td>
<td>0/0</td>
<td>6/6</td>
<td>0/0</td>
</tr>
<tr>
<td>N = 6</td>
<td>+</td>
<td>0/0</td>
<td>0/0</td>
<td>2/5</td>
<td>0/0</td>
</tr>
<tr>
<td></td>
<td>++</td>
<td>0/0</td>
<td>0/0</td>
<td>2/1</td>
<td>0/0</td>
</tr>
<tr>
<td></td>
<td>+++</td>
<td>0/0</td>
<td>0/0</td>
<td>2/0</td>
<td>0/0</td>
</tr>
<tr>
<td>UIP</td>
<td>0</td>
<td>0/0</td>
<td>0/0</td>
<td>1/1</td>
<td>7/11</td>
</tr>
<tr>
<td>N = 15</td>
<td>+</td>
<td>7/9</td>
<td>4/6</td>
<td>0/3</td>
<td>8/4</td>
</tr>
<tr>
<td></td>
<td>++</td>
<td>6/5</td>
<td>8/7</td>
<td>3/7</td>
<td>0/0</td>
</tr>
<tr>
<td></td>
<td>+++</td>
<td>2/1</td>
<td>3/2</td>
<td>11/4</td>
<td>0/0</td>
</tr>
<tr>
<td>DIP</td>
<td>0</td>
<td>2/1</td>
<td>2/1</td>
<td>3/1</td>
<td>0/0</td>
</tr>
<tr>
<td>N = 10</td>
<td>+</td>
<td>8/9</td>
<td>8/7</td>
<td>1/5</td>
<td>8/8</td>
</tr>
<tr>
<td></td>
<td>++</td>
<td>0/0</td>
<td>0/2</td>
<td>2/3</td>
<td>0/2</td>
</tr>
<tr>
<td></td>
<td>+++</td>
<td>0/0</td>
<td>0/0</td>
<td>4/1</td>
<td>2/1</td>
</tr>
<tr>
<td>ILD-CVD</td>
<td>0</td>
<td>1/1</td>
<td>2/1</td>
<td>1/0</td>
<td>1/0</td>
</tr>
<tr>
<td>N = 10</td>
<td>+</td>
<td>6/6</td>
<td>5/5</td>
<td>5/4</td>
<td>7/5</td>
</tr>
<tr>
<td></td>
<td>++</td>
<td>2/1</td>
<td>2/1</td>
<td>1/3</td>
<td>1/4</td>
</tr>
<tr>
<td></td>
<td>+++</td>
<td>1/2</td>
<td>1/3</td>
<td>3/3</td>
<td>1/1</td>
</tr>
<tr>
<td>Sarcoidosis</td>
<td>0</td>
<td>17/12</td>
<td>0/0</td>
<td>1/1</td>
<td>2/2</td>
</tr>
<tr>
<td>N = 19</td>
<td>+</td>
<td>1/4</td>
<td>0/0</td>
<td>5/9</td>
<td>11/12</td>
</tr>
<tr>
<td></td>
<td>++</td>
<td>0/2</td>
<td>0/0</td>
<td>7/9</td>
<td>6/5</td>
</tr>
<tr>
<td></td>
<td>+++</td>
<td>1/1</td>
<td>0/0</td>
<td>6/0</td>
<td>0/0</td>
</tr>
<tr>
<td>Allergic alveolitis</td>
<td>0</td>
<td>7/7</td>
<td>0/0</td>
<td>2/2</td>
<td>1/0</td>
</tr>
<tr>
<td>N = 8</td>
<td>+</td>
<td>0/1</td>
<td>0/0</td>
<td>3/5</td>
<td>4/7</td>
</tr>
<tr>
<td></td>
<td>++</td>
<td>1/0</td>
<td>0/0</td>
<td>3/1</td>
<td>3/1</td>
</tr>
<tr>
<td></td>
<td>+++</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
<td>0/0</td>
</tr>
</tbody>
</table>

0 = no positive immunostaining; ++ = < 30 % of cells showing positivity, weakly positive; ++ = 30-60 % of cells showing positivity; moderately positive; +++ = > 60 % of cells showing positivity, strongly positive
The interobserver reliability of the assessment of 2 independent investigators varied from fair to almost perfect (Kappa coefficient 0.33-1.0) (Cohen 1960, Landis & Koch 1977).

5.4.2 Ultrastructural localization for γGCSI and γGCSH in UIP and sarcoidosis (IV)

Immunolabeling for both subunits of γGCS was found in the metaplastic type II pneumocytes in UIP and macrophages in both diseases. Labeling of γGCSH was diffuse in the cytoplasm, whereas γGCSI appeared to concentrate to the near proximity of the plasma membrane.

5.4.3 In vitro experiments with A549 cells (IV)

To get more accurate insight to the regulation of γGCS in lung cells, A549 cells were exposed to TNFα and TGFβ1, since these cytokines are important pathogenic mediators of lung fibrosis (Agostini & Gurreri 2006). TNFα caused 131 % and 113 % increase in MnSOD (a positive control) after 24 h and 48 h. The corresponding values for γGCSH were 23 % (24 h) and 0 % (48 h) and for γGCSI 19 % (24 h) and 16 % (48 h), respectively. TGFβ1 caused 19 % (24 h) and 20 % (48 h) decrease in the expression of MnSOD, and 8 % and 47 % decrease after 24 h and 48 h for γGCSH, the corresponding percentages for γGCSI being 6 % and 9 %.
6 Discussion

6.1 Methodological aspects (I, II, III, IV)

Considering the fact that UIP is a rare disease our material consisting of 76 UIP patients who fulfilled the criteria of UIP collected over three decades is sufficient for comparing the results with previous studies were Utz et al. included 68 UIP patients and Riha et al. 59 UIP patients (Utz et al. 2001, Riha et al. 2002). We focused only on those patients with histopathologically confirmed UIP instead of including all kind of ILDs in the study (Gaensler & Carrington 1980, Rena et al. 1999, Zegdi et al. 1998, Ayed & Raghunathan 2000, Yamaguchi et al. 2004, Lettieri et al. 2005). Also the fact that we evaluated only the patients whose diagnosis was attained by SLB leaving out the diagnoses made by TLB helps drawing reliable conclusions from our material (Hunninghake et al. 2001). The assessment of the patient’s preoperative constitution is important issue in evaluating the impact of SLB on mortality. In the retrospective re-evaluation of the short-term mortality after SLB none of our patients fulfilled the criteria of acute exacerbation of IPF before lung biopsy in contrast to Utz et al. study where 4 cases of 10 IPF patients were biopsied because of accelerated decline in respiratory status (Utz et al. 2001).

The evaluation of predicting histopathological factors was carried out advisely by focusing on a single hallmark of UIP, that is FF, to achieve simple and repeatable method instead of determing several factors resulting in derivation of different scores (Cherniack et al. 1991, King et al. 2001a). The concern about the sufficiency of the lung biopsy sample for diagnosis must always notice, so the counting of the actual number of FF from the whole available sample makes the diagnosis reliable comparing to those results made from few standard areas (Nicholson et al. 2002b). Previous studies concerning the assessment of lung pathology in IPF have included four different stainings of biopsy samples, whereas only one staining was used in our study making our method simple and useful (Cherniack et al. 1991, Hyde et al. 1992, King et al. 2001a).

The possibility of comparing 11 lung biopsy specimens taken during lifetime and autopsy samples from the same patients is unique, since previous studies have investigated pre- and post-mortem cases in variable ratios. Ambrosini et al. had 5 IPF cases where 3 of them underwent SLB, autopsy was carried out in all 4 cases when
patient died (Ambrosini et al. 2003). Parambil et al. had 7 SLBs and 2 autopsy samples from the same patients (Parambil et al. 2005). Rice et al. had 12 autopsy cases with a single premortem SLB from one patients including into the study group (Rice et al. 2003).

Using human tissue samples, which were lung biopsies taken for diagnostic purposes, we could evaluate the remaining tissue structure and true localization of the enzymes studied, this would have not been possible with tissue homogenates. The expressions of Trx, TrxR and both subunits of γGCS have not been previously studied systematically in non-malignant lung diseases. In fact Koura et al. focused in describing the expression of Trx in granulomas and lymph nodes in sarcoidosis (Koura et al. 2000).

The heavy subunit of γGCS has been studied more, since it is considered to be functionally more imposing than the light one. However both subunits are induced by oxidant, so it is important to describe the observation concerning γGCSl too. To obtain better understanding the regulation of γGCS, lung cells were exposed to cytokine, TNFα, and growth factor TGFβ1, which are important factors especially in inflammatory and fibrotic disorders of the lung.

6.2 Survival and safety of SLB in usual interstitial pneumonia (I)

Our study material shares the characteristics of IPF patients previously described, the patients have passed their middle-ages, clinical features like clubbing and inspiratory crackle were common and chest x-ray findings were in line with former studies (Jonsthon et al. 1997, ATS & ERS 2002). Median survival after lung biopsy in our study for idiopathic UIP was 69 months, this equals well with another available composition were postoperative median survival was 78 months (Riha et al. 2002). The improved health care during three decades had no significant impact on survival after lung biopsy probably due to unresolved clinical tasks in treating IPF/UIP.

Age at the time of presentation is significantly related to the survival (Tukiainen et al. 1983, King et al. 2001a). This study indicates that the age at the time of the biopsy is also a significant predictive factor for survival. IPF is an independent risk for lung cancer, and there were 4 (5.3 %) lung cancers in our study, which is also in line with earlier reported risk for lung cancer (4.4 %) in pulmonary fibrosis (Hubbard et al. 2000).

According to our study UIP with CVD had better survival than idiopathic type of UIP. The reason for this could partly be due to the fact that the patients belonging to CVD subgroup were younger and they had better pulmonary function results, the both being independent prognostic factors for survival (Tukiainen et al. 1983, King et al. 2001b, Latsi et al. 2003). Since no histologic differences were found between UIP and UIP associated with CVD according to one previous study, where also NSIP cases were excluded, this interesting observation needs to study further (Nagao et al. 2001). On the contrary Kocheril et al. reported that ILDs connected with CVD compared to IIPs appeared to be associated with a worse prognosis when adjusted to age in study population without histological verification The recent study where CVD associated with ILDs were compared to IIPs without histologicical verification (Kocheril et al. 2005). The opposite results of these studies indicate the relevance of the histopathological findings in predicting response to therapy and prognosis also in patients with CVD.
The short-term postoperative mortality of IPF/UIP patients in our study was 5.3 %, which was substantially lower than that of Utz et al. 21.7 % (Utz et al. 2001). In that particular study, however, seven out of ten dead IPF/UIP patients were biopsied during the accelerated disease progression or sub-acute worsening of disease (Utz et al. 2001). The four patients in our study who died within 30 days after the biopsy exhibited a histological pattern of DAD in their autopsies, even though they did not fulfill the criteria of acute exacerbation (Akira et al. 1997). No DAD had been observed in their pre-mortem lung samples. On the other hand, Utz et al. found DAD on UIP in 2 cases of idiopathic IPF, who died within 30 days after SLB, one of them was biopsied because of an accelerated decline in respiratory status (Utz et al 2001). Our finding is consistent with previous studies, where the histopathological finding of the pre-mortem sample may differ from that obtained at autopsy after disease acceleration (Katzenstein & Myers 1998, Rice et al. 2003). In another recently published study, the accelerated exacerbation of IPF developed immediately after SLB in 2 cases of 11, and the authors concluded that the procedure could aggravate the rapid worsening of respiratory conditions in IPF (Kim et al. 2006). Whether SLB is justified at the time when the patients is showing a rapid deterioration of IPF when additional indications like exclusion of associated malignancy or infection are lacking needs to be considered critically if the major criteria of IPF fulfill otherwise.

The mortality of 5.3 % (4 cases of 76) within 30 days after the procedure in our study includes only patients who underwent OLB compared to the study of Utz et al. where the corresponding frequency was 12 % (7 cases of 60) concerning the patients subjected to thoracotomy and biopsy (Utz et al. 2001). The writers did not find any differences in surgical techniques that would account for the short-term survival, but detailed information about the SLB methods used in those 7 patients who were biopsied because of accelerated disease progression was not published (Utz et al. 2001). In the present study those patients who died within one month after the operation had undergone thoracotomy suggesting that the thoracoscopic lung biopsy is a safer method for diagnosing UIP.

IPF/UIP is a fatal disease with low prevalence. The prognosis has remained unchanged despite the latest diagnostic methods like HRCT. The requirement of the diagnostic accuracy indicate increasing utility for surgical lung biopsy, since in the 1990s the clinical diagnosis proved to be correct in two thirds of the suspected IPF cases and after the millennium the exact diagnosis of IPF was achieved in little over half of the cases (Raghu et al. 1999, Huninghake et al. 2001, Peckham et al. 2004). This could partly stem from more detailed classification of IIPs (Liebow 1974, ATS & ERS 2002).

The promising therapeutical approaches for IPF indicate the earlier histological verification of IPF/UIP to exclude it from other ILDs with better prognosis. This study documents the safety of VATS in diagnosing IPF and found no short-term mortality. Considering the insufficient accuracy of ATS/ERS criteria for clinical diagnosis of IPF in routine pulmonary practice, it needs to be re-evaluated if these criteria are acceptable alternatives for SLB. In addition to that this procedure provides lung samples which can subsequently be used for scientific investigations and which may clarify the pathogenesis of UIP.
6.3 Fibroblast foci, diffuse alveolar damage and exacerbation of idiopathic pulmonary fibrosis/usual interstitial pneumonia (II)

The present study was done by analysing the number of FF in interstitial tissue and in intra-alveolar spaces from the whole morphometrically defined tissue samples using AB-PAS-staining, in contrast to earlier studies where semiquantitative grading and several stainings have been used (Cherniack et al. 1991, Cherniack et al. 1995, King et al. 2001a, Nicholson et al. 2002b). As expected, a subclass having a lower number of FF / 1 cm2 enjoyed better survival, which is in line with previous studies (King et al. 2001a, Nicholson et al. 2002b). Nicholson et al. scored the number of FF from one to three standard areas creating an overall index and found a correlation between the increase in the extent and mortality (Nicholson et al. 2002b). Our results are line with the study of Kaarteenaho-Wiik et al. who found increased tenascin-C expression especially under metaplastic bronchiolar type epithelium, which was associated with shortened survival (Kaarteenaho-Wiik et al. 1996). These two studies suggest that it might be possible to find distinct histological features of UIP that reliably predict survival.

We focused on FF, which is a single fairly well demarcated key feature of pulmonary fibrosis at sites of active fibrosis using AB-PAS-staining since this is better at detecting loose fibrotic tissue of FF with proteoglycans and glycoproteins than HE-methodology (Anderson et al. 1991). The simplicity of our method makes it repeatable and reliable.

Earlier studies have shown that there is no critical degree of abnormality of pulmonary function values that predicts diminished survival, although D_{LCO} is the single value that reflects the severity of IPF also over longer observation periods (Turner-Warwick et al. 1980, Tukiainen et al. 1983, Schwartz et al. 1994, Xaubet et al. 1998, Latsi et al. 2003). This is the first study revealing the negative correlation between the D_{LCO} of predicted value and the number of FF / 1 cm2. Our results are in line with the study of King et al. who found a significant relationship between the fibrosis factor including FF and a scoring system comprising clinical, radiological and physiological determinants including D_{LCO} (King et al. 2001b). Nicholson et al. reported also the association between increasing FF score done assessed semiquantitatively and decline of D_{LCO} (Nicholson et al. 2002b). Cherniack et al. found no significant correlation between the scoring results including FF and physiological parameters like D_{LCO} (Cherniack et al. 1995). These discrepancies may be due to differences in the analytical approach and scoring of the histological alterations, so our use of a simple and repeatable method is justified.

Cigarette smoking is a risk factor for IPF, and 52.6 % of our patients were current or ex-smokers, but their median survival after lung biopsy was better than never smokers (Baumgartner et al. 1997). Our results considering the extended survival of active smokers is in line with the study of King et al., where they found longer survival time from the initial visit associated with lower scoring results of granulation/young connective tissue in semiquantitative grading of lung biopsy samples of IPF patients who were active smokers (King et al. 2001b). This histopathological finding could reflect increased inflammation secondary to accumulation of macrophages as a result of smoking (King et al. 2001b). In a multivariate analysis adjusting for smoking among other factors, a positive smoking history was a protective parameter in predicting survival (Flaherty et al. 2002). Previously the degree of fibrotic changes including FF has not shown any
correlation to smoking in agreement with our results (Cherniack et al. 1995, King et al. 2001a). Since one published study has documented altered histopathology of IPF/UIP according to smoking habits this discrepancy needs to be clarify in further investigations (King et al. 2001b).

There were 9 cases of acute exacerbation of IPF/UIP among those 43 patients who had UIP as the main cause of death in our study. The percentage found here of acute exacerbations (20.9 %) is less than 47 % reported by Martinez et al. (Martinez et al. 2005). Substantial differences between these two studies can be identified. All our patients were biopsy-proven UIP cases whereas only 58 % of the study population underwent SLB in Martinez et al. study (Martinez et al. 2005). The observation time was 247 months in our study compared to 19 months in the referred study (Martinez et al. 2005). We did not include in our study any patient showing clinical sings of pneumonia or cor pulmonale. If we scrutinize the cases in the Martinez et al. study and include only those patients who seem to fulfil the criteria of acute exacerbation according to Akira et al., we can identify 6 patients, which is 18.8 % of the IPF-related deaths in the study and rather similar to our results (Akira et al. 1997, Martinez et al. 2005). The 2 year frequency of acute exacerbation of IPF before death in our study was 2.6 %, which is clearly lower than that reported by Kim et al. study (18 %) evaluated by the criteria of Akira et al. where the mortality rate was 81.8 % compared to ours where all patients with acute exacerbation of IPF/UIP were dead by the end of the study (Akira et al. 1997, Kim et al. 2006). These results underline the importance of reporting the acute exacerbations of IPF/UIP if one wishes to evaluate the lifelong history of acute deteriorations in these patients.

This is the first study where the number of FF in premortem lung samples was compared systematically with the histological findings at autopsy and acute exacerbations of IPF/UIP before death. Previous studies investigating the pre- and post-mortem histopathological changes of IPF patients have been done mainly during the acute deterioration of the disease, so the finding of DAD also in premortem SLB is not surprising (Saydain et al. 2002, Ambrosini et al. 2003, Rice et al. 2003, Parambil et al. 2005). In our study, there were no signs of DAD in the premortem SLB samples in agreement with Kim et al. results with respect to these SLB histopathological findings prior to the acute exacerbation of IPF (Kim et al. 2006). Furthermore the DAD in the autopsy samples could be so extensive that the correct diagnosis of the underlying UIP might have been overlooked if no premortem pulmonary biopsies had been available. There are no reports about the histopathological features in the stable phase of IPF/UIP and their correlation to the acute deterioration of the disease, thus our findings for a lack of any correlation between the number of FF in premortem sample and DAD at autopsy or appearance of acute exacerbation of IPF/UIP before death has not previously described.

The finding of an accumulation of intra-alveolar neutrophils in most (9/11) autopsied cases compared to histopathological verification of pneumonia in only 4 cases is interesting. There are very few reports, which have examined the expression of neutrophils in lung tissue of IPF/UIP patients, but Rice et al. has described honeycomb changes containing aggregates of neutrophils in acute exacerbation of IPF (Rice et al. 2003). In our autopsied patients only 2 out of those 3 who fulfilled the criteria of acute exacerbation of IPF had intra-alveolar neutrophils in their lung samples (Akira et al.
In view of the complex role of neutrophils in the pathogenesis of IPF the interrelationship between inflammatory cells and the course of IPF must be studied further. This study is evidence of the practicality of the AB-PAS-method in quantifying the number of FF from lung samples of UIP and illustrates the interrelationship between the detected number of FF and survival. Furthermore DAD is a common and frequently intense feature in the autopsy sample of UIP patient without acute exacerbation before death, but this cannot be predicted by counting FF from the premortem SLB samples.

6.4 The expression of the thioredoxin system in interstitial lung diseases (III)

As oxidant/antioxidant imbalance is a potential feature in ILDs, this study investigated two pathways that had not been earlier described in parenchymal diseases. Theoretically these two enzymes, thioredoxin and gamma-glutamylcysteinesynthetase, are of major importance in the regulation of cellular redox state. Both enzymes have thiol groups in their active centers or in the reactions in which they participate, e.g., GSH metabolism. Both enzymes are regulated by NRF2 and the inhibition of NFR2 has recently been demonstrated to be associated with pulmonary fibrosis (Kim et al. 2003, Cho et al. 2004, Sakurai et al. 2005).

Trx was generally weakly expressed in bronchial epithelium and alveolar macrophages as also found earlier (Soini et al. 2001a, Soini et al. 2003). The finding of Trx and TrxR in normal bronchial epithelium is not surprising, since it is the first barrier against the exogenous oxidant stress.

The levels of expression of both Trx and TrxR in the metaplastic alveolar epithelium of UIP were positive to strong. This finding is very similar to the previous findings in specimens from premalignant and malignant lung lesions with increased proliferation and apoptosis (Soini et al. 2001a, Soini et al. 2003). Our findings suggest that Trx might have a role also in the pathogenesis of IPF. One potential mechanism could be via mitogen activated proteins (MAP) kinases which are enzymes linking cell-surface receptors to intracellular regulatory targets, and their activation is known to occur in lung tissue of IPF patients e.g. in epithelial cells and fibroblasts (Yoshida et al. 2002). One in vitro study has indicated that ASK1, which has Trx as a physiological inhibitor, participates in the signalling cascade activating the MAP kinases leading to apoptosis (Ichijo et al. 1997). The absence of both Trx and TrxR in old fibrotic areas is in line with the studies showing low or absent expression of other antioxidant enzymes such as MnSOD and hemeoxygenase 1 (HO-1) in old fibrotic lesions of UIP (Lakari et al. 1998, Lakari et al. 2001). TGFβ1 is present in the lung of IPF patients and it is capable of inhibiting epithelial cell proliferation and in that way can regulate the extent of fibrosis and influence remodelling in IPF (Khalil et al. 2001). TGFβ1 downregulates HO-1 in rat lung as well as decreases gene and protein expression of TrxR in vitro (Pellacani et al. 1998, Zhao et al. 2004). The possibility that this down-regulation is one mechanism affecting
the natural defence by Trx/TrxR in fibrotic lung disorders contributing to the progression of the disease needs to be studied further.

CVDs with confirmed UIP histopathology were included in this study. The expressions of both Trx and TrxR were elevated in the same locations as in UIP, but the intensities were weaker. This could partly reflect from less active fibrogenesis, since we found less FF / 1 cm² in the UIP patients with CVD than in the idiopathic group in the previous study (II).

The increased expressions of both Trx and TrxR in metaplastic alveolar epithelium and macrophages emphasize the importance of these enzymes also in protection against oxidant stress in IPF. This is in agreement with the study of Kuwano et al., who investigated mitochondria, the most important cellular source of ROS, and found elevated mitochondrial mass in hyperplastic epithelial cells in UIP (Kuwano et al. 2003). In previous studies where nitrotyrosine and nitric oxide synthases (NOS) were used as parameters of oxidant stress in IPF elevated expressions were detected also in alveolar epithelium and macrophages (Saleh et al. 1997, Lakari et al. 2002).

Trx has been studied in sarcoidosis, where it appeared in and was produced by granulomas (Koura et al. 2000). Our study confirms this finding, we found expression of Trx and TrxR in several macrophage associated diseases not only sarcoidosis, but also allergic alveolitis and especially DIP, where we detected the highest intensity of both enzymes in alveolar macrophages suggesting also increased oxidant resistance of alveolar macrophages in vivo. In ILDs, alveolar macrophages express high levels of other antioxidant enzymes such as MnSOD and HO-1, in addition to the fact Trx can induce both MnSOD and HO-1 (Das et al. 1997, Lakari et al. 1998, Wiesel et al. 2000, Lakari et al. 2001).

The ultrastructural localization of Trx and TrxR was mainly cytoplasmic. This is in agreement with a previous study where Trx was localized by indirect immunofluorescence predominantly in the cytoplasm of isolated HeLa cells (Hirota et al. 1997). TrxR was detected also along the plasma membrane, which has been reported previously for melanoma cells (Söderberg et al. 2000). The reason for occasional detection in nuclear compartment might be due to the antibody used, which though directed towards the cytosolic TrxR, has been shown to detect also TrxR from the isolated mitochondrial fraction of cultured lung cells (Soini et al. 2001a). On the other hand, the occasional mitochondrial location could mean that TrxR might be involved in the protection of aerobic cells against oxidant stress (Soini et al. 2001a). The verification of the ultrastructural localizations of both enzymes in nonmalignant cells is also new additional information.

Trx and TrxR are redox active, cytoprotective proteins that act in synergy, but they also may have role in proliferative and regenerative changes occurring in lung disorders. In our study, the endothelial lining and macrophages expressed increased immunoreactivity emphasizing the importance of Trx and TrxR in the primary antioxidant defence in the human lung. The highest expressions of both enzymes were in alveolar macrophages in DIP and metaplastic epithelium in UIP, but fibrotic areas in UIP were mainly negative, thus Trx and TrxR could act as markers of inflammation and of ongoing cell regeneration.
6.5 Cell specific regulation of gamma-glutamylcysteine synthetase in human interstitial lung diseases (IV)

There are no previous systematic studies about the expression of GCS in human parenchymal lung diseases. According to our study normal lung expresses significant immunoreactivity for both subunits in bronchiolar epithelium, alveolar macrophages were stained weakly, and there was no staining in alveolar epithelium in agreement with the results of Harju et al. (Harju et al. 2002). In developing human lung, both subunits have been also detected in bronchial epithelium (Kaarteenaho-Wiik & Kinnula 2004). Previous findings have pointed to the importance of γGCS as a first-line defence also in normal lung against oxidants, preserving an optimal level of GSH in the airways with the present results being in full agreement.

The involvement of alveolar macrophages in antioxidant protection of lung was demonstrated also in this study, since the expression of both γGCS_h and γGCS_l was elevated in DIP, sarcoidosis and allergic alveolitis. An in vitro study revealed that activated macrophages produce ROS in response to endogenous and exogenous oxidative stress (Rochelle et al. 1998). This leads to a depletion of GSH, resulting in increased expressions of γGCS both subunits.

In UIP and ILD-CVD with UIP histopathology, the strongest expressions of both subunits were observed in bronchiolar epithelium especially in the metaplastic epithelium. Previous studies have also documented the strongest expression of γGCS_h in metaplastic alveolar epithelium where it was attributed to malignant transformation of lung epithelial cells (Harju et al. 2002, Soini et al. 2003). The elevated expressions in UIP, might be related to apoptosis and proliferation, since in UIP the alveolar type II cells have an important role in re-epithelialization and they are the main site of synthesis of TGFβ1 and TNFα, which also promote apoptosis in epithelial and alveolar epithelial cells (Khalil et al. 1991, Kapanaci et al. 1995, Wang et al. 2000, Hagimoto et al. 2002).

The expressions of both GCS subunits were negative in new and old fibrotic lesions. Previously the fibroblasts in COPD have been demonstrated to exhibit no immunoreactivity for γGCS (Harju et al. 2002). This may be partly due to down-regulation of γGCS caused by TGFβ1 (Arsalene et al. 1997). This was confirmed also in the in vitro part of our study. The immunoreactivities in UIP highlight the importance of oxidative stress in the pathogenesis of the disease, since ROS enhance the release of TGFβ1 in vitro studies (Belloq et al. 1999). In addition, the decreased GSH levels in IPF may have direct consequences for fibroblasts, since low GSH levels in BALF of IPF patients may facilitate fibroblast proliferation (Cantin et al. 1990).

The studies of γGCS regulation have focused on the heavy, catalytic subunit, which contains all the substrate binding sites, but the light, regulatory, subunit modulates the affinity of the heavy subunits for substrates and inhibitors, so we examined the regulation of both heavy and light subunits exposed to TGFβ1 and TNFα (Huang et al. 1993, Morales et al. 1997, Griffith 1999, Kondo et al. 1999, Järvinen et al. 2000, Jardine et al. 2002). A549 cells were chosen since they are known to express moderate levels of γGCS_h (Järvinen et al. 2000). TGFβ1 decreased in the activity of catalytic γGCS_h, which is in agreement with the study of Arsalene et al. (Arsalene et al. 1997). The activity of heavy subunit is modulated by γGCS_l, and there was a minor decrease in the immunoreactivity...
of light subunit by TGFβ₁, which has not been described previously. The reason for this is unclear, but Jardine et al. proposed a mechanism of γ GCSh gene down-regulation where a negative gene modulator was recruited into the active AP-1 complex in response to TGFβ₁ in epithelial cells (Jardine et al. 2002). The human γ GCSh gene contains AP-1 binding sites, but also the γGCSI gene has AP-1 binding sites (Moinova & Mulchany 1998, Griffith 1999). According to our study, TNF produced only a modest increase in the immunoreactivities of both γGCS subunits, this being in line with a previous study where TNFα produced a significant elevation of γGCSh and mRNA (Rahman et al. 1999). There are several reasons for the variability of intensities including cultural conditions, availability of GSH needed for cell activation and Haddad et al. documented that TNFα is a redox-sensitive cytokine itself (Post et al. 1983, Poot et al. 1995, Ray et al. 1999 Haddad et al. 2002). Another sequence of AP-1 might be a key factor also in the up-regulation of γGCS subunits in TNFα treated cells (Rahman et al. 1999).

This study provides novel information about the cell specific expression of both subunits of γGCS, which were simultaneously expressed in the alveolar macrophages as an adaptive response to oxidative stress in UIP and to a lesser degree in DIP and CVD-ILD, and in metaplastic epithelium induced by cell proliferation. The old fibrotic areas in UIP were mainly negative, possibly due to downregulation by TGFβ₁, which was confirmed also in the in vitro part of our study.
7 Conclusions

This study provides new information on the histopathology of the most common interstitial pneumonia, IPF/UIP, and the clinical course of the disease as well as data on the safety of histopathological verification by lung biopsy. The analysis of the expression of selected antioxidant enzymes related to thiol metabolism and maintenance of cellular redox state in ILDs is important, since they may play a central role in the progression of these diseases. The following conclusions can be drawn.

1. When non-invasive interventions cannot confirm the diagnosis of IPF, VATS is a safe method for diagnosing IPF/UIP, in the early and stable stages of the disease.

2. In IPF/UIP counting the number of FF represents a repeatable and reliable method for predicting the survival, but the number of FF cannot predict the course of the disease, including acute exacerbation before death of IPF/UIP.

3. Trx and TrxR are important thiol containing redox regulated proteins that are expressed in bronchial and alveolar epithelium and macrophages, emphasizing their role in the antioxidant defence of the human lung. The elevated expression of Trx and TrxR in the metaplastic epithelium and the absence of both enzymes in fibrotic areas point to the possibility of Trx and TrxR serving as markers of ongoing cell regeneration.

4. The expression of γGCS, the rate-limiting enzyme in GSH synthesis in metaplastic alveolar epithelium and macrophages emphasizes its role in antioxidant defense in ILDs. Both subunits of γGCS were absent in the fibrotic areas of the lung, probably due to downregulation by TGF. The overall decline of this major defensive enzyme in human lung may further contribute to the progression of these diseases, by enhancing oxidant injury.
References

Travis WD, Colby TV, Koss MN, Rosado-de Christenson ML, Muller NL & King TE (2002) Non-plastic disorders of the lower respiratory tract. 2nd edition, American Registry of Pathology and Armed Forces Institute of Pathology, Washington DC.

Original publications

This thesis is based on the following publications, which are referred to in the text by their Roman numerals:

Original publications are not included in the electronic version of the dissertation.

878. Laurila, Jouko (2006) Surgically treated acute acalculous cholecystitis in critically ill patients

884. Erkinaaro, Tiina (2006) Fetal and placental haemodynamic responses to hypoxaemia, maternal hypotension and vasopressor therapy in a chronic sheep model

885. Lähdesmäki, Raja (2006) Sex chromosomes in human tooth root growth. Radiographic studies on 47,XY males, 46,XY females, 47,XXY males and 45,X/46,XX females

888. Tenhunen, Olli (2006) Mitogen-activated protein kinases and transcription factors during increased cardiac workload and remodelling

889. Elo, Satu (2006) Teoria pohjoissuomalaisten kotona asuvien ikääntyneiden hyvinvointia tukevasta ympäristöstä

890. Vierimaa, Heidi (2006) Salmon cardiac peptide as a model for natriuretic peptide secretion. The role of mechanical load, temperature and endothelin-1
Leena Tiitto

HISTOPATHOLOGICAL FEATURES IN THE PROGRESSION OF IDIOPATHIC PULMONARY FIBROSIS/USUAL INTERSTITIAL PNEUMONIA WITH SPECIAL EMPHASIS ON THE REDOX MODULATING ENZYMES OF THE HUMAN LUNG