Marika Harila

HEALTH-RELATED QUALITY OF LIFE IN SURVIVORS OF CHILDHOOD ACUTE LYMPHOBLASTIC LEUKAEMIA
MARIKA HARILA

HEALTH-RELATED QUALITY OF LIFE IN SURVIVORS OF CHILDHOOD ACUTE LYMPHOBLASTIC LEUKAEMIA

Academic dissertation to be presented with the assent of the Faculty of Medicine of the University of Oulu for public defence in Auditorium 12 of Oulu University Hospital, on 17 June 2011, at 12 noon

UNIVERSITY OF OULU, OULU 2011
Harila, Marika, Health-related quality of life in survivors of childhood acute lymphoblastic leukaemia.
University of Oulu, Faculty of Medicine, Institute of Clinical Medicine, Department of Paediatrics, Department of Neurology, P.O. Box 5000, FI-90014 University of Oulu, Finland; Verve, P.O. Box 404, FI-90101 Oulu, Finland
Oulu, Finland

Abstract

Leukemia treatment has been implicated to be responsible for a diversity of long-term adverse effects (Pui 2008), which can occur even years after diagnosis and can seriously impair survivors' performance status and quality of life (Campbell et al. 2007, Zeltzer et al. 2008). The aim of the present work was to assess health-related quality of life in long-term survivors of acute lymphoblastic leukemia (ALL), and to find out whether vocational rehabilitation can promote the coping at work of young people who take part in a training intervention or help them find employment. Neuropsychological testing was performed on 64 survivors. Cranial irradiation had been administered to 44 of the survivors, while 20 survivors had been treated solely with chemotherapy. A control group consisted of 45 healthy young adults. We found that young adult survivors of childhood ALL treated with cranial irradiation had clear progressive deficits in their neurocognitive functioning at a mean of 20 years after diagnosis compared with healthy controls. Non-irradiated ALL survivors performed significantly better, but even they had statistically significant impairments in some of the neuropsychological test scores compared with the controls. Rand-36-Item health Survey (RAND-36) was used to assess subjective HRQoL, depressive symptoms were assessed with Beck Depression Inventory (BDI-21), and mental distress with General Health Questionnaire (GHQ-12) in 74 survivors of ALL. The control group consisted of 146 healthy young adults selected from local population registry. ALL survivors showed good HRQoL scores in comparison to the control group. Patients who had been treated for an ALL relapse and had received the most intensive chemo- and radiotherapy had significantly higher scores on mental health and vitality than the controls. Survivors of ALL report fewer depressive symptoms and equal mental well-being compared to healthy controls. Survivor's subjective experience of well-being is possibly affected by a repressive adaptive style.

Keywords: acute lymphoblastic leukemia, childhood cancer survivor, depressive symptoms, follow-up, health-related quality of life, mental distress, neurocognitive functioning, occupational rehabilitation
Harila, Marika, Terveyteen liittyvä elämänlaatu lapsuusiässä sairastetun akuutin lymfaattisen leukemian jälkeen.
Oulun yliopisto, Lääketieteellinen tiedekunta, Kliinisen lääketieteen laitos, Lastentaudit, Neurologia, PL 5000, 90014 Oulun yliopisto; Verve, PL 404, 90101 Oulu
Oulu

Tiivistelmä

Asiasanat: akuutti lymfaattinen leukemia, ammatillinen kuntoutus, henkinen hyvinvointi, kognitiivinen suorituskyky, lapsuusiän leukemian selvinnee, masennusoireet, seuranta, terveyteen liittyvä elämänlaatu
Acknowledgements

This thesis work was carried out at the Department of Pediatrics and Adolescence and the Department of Neurology of Oulu University Hospital. During the process of conducting this study, preparing the articles and writing the thesis I have received much valuable help, and I would not have been able to do this research alone.

I wish to express my most sincere gratitude to Docent Arja Harila-Saari for introducing me to the world of research. She has always been ready to give me her expert guidance and warm support during this project. She has been an indispensable supervisor and friend. My special gratitude goes to the late former head of Pediatrics and Adolescence Unit, Professor Marjatta Lanning, for providing the facilities for the study.

I also want to thank Professor Kari Majamaa, head of the Department of Neuology, Oulu University, who supported me in my research project.

I also wish to express my sincere gratitude the late former head of the Medical Rehabilitation Unit, Professor Tapani Kallanranta for supportive guidance and great encouragement.

I am also grateful to Ilpo Vilkkumaa Lic.Soc. Sc, who has always been ready to give me his expert guidance.

I express my special acknowledgements to my co-author Satu Winqvist Ph.D., for her expert practical guidance and her never-failing encouragement. I also wish to thank my other co-authors, Tomi Niinivirta M.Sc., Jarmo Salo M.D. and Eija Haapala M.Sc, for their valuable contributions. Their contribution and comments have been crucial for the completion of the original publications.

I am also grateful to statistics expert Risto Bloigu M.Sc., for his kind support in all areas of statistical tasks and his interest in discussing all the challenges within the context of scientific research. I also wish to thank computer expert Rauno Paavola for technical assistance.

I am grateful to Anna Vuolteenaho, M.A., for revision of the English language.

I want to express my gratitude to Docent Tuula Lönqvist and Docent Krister Boman for their careful and precise reading of my work, and for their valuable comments concerning my thesis.

I would like to express my gratitude to the participants whose involvement in the studies made the thesis possible. I would also like to thank Director Matti Anttonen for his support and for giving me the opportunity to carry out the
rehabilitation intervention associated with this study at the Merikoski Rehabilitation and Research Centre (currently known as Verve). My heartfelt thanks go to the rehabilitation team who implemented the intervention.

I especially want to express my thanks to my workmates Laura Vaskivuo, Leena Ervast and Jukka Loukkola, whose flexibility with the work made this thesis possible.

I also want to thank my dear friends for bringing joy to my life and for giving me energy and strength for this research process as well. I wish to express my warm gratitude to my friend Liisa Paavola for her encouragement and never-ending optimism, for our jogging excursions and many other memorable moments in and outside of work. I owe my special thanks to Marjo Lukkari and Satu Soini for the countless relaxing moments and discussions we have had.

I want to express my thanks to my godfather Risto Uusitalo who believed in me and supported me all my life.

I am deeply grateful to my mother and my late father for their love and support during these years. I also thank my brother Antti for reminding of the meaning of life in general.

Finally, my warmest gratitude belongs to my dearest ones: my husband Tapio and my two beloved children Aurora and Aaron, who have had to be understanding towards a wife and mother whose thoughts have sometimes been far away from the everyday activities of life. Without the loving support of my husband Tapio this thesis would never have been completed. Aurora and Aaron - thanks for reminding me of the most important and valuable things in the world. Thank you all three for making my life so meaningful.

This research project has been supported by Nona and Kullervo Väre Foundation, Finland; Foundation for Pediatric Research, Finland; Finnish Cancer Society; Cancer Society of Northern Finland; KEVO funding of Oulu University Hospital.

Oulu, May

Marika Harila
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALL</td>
<td>Acute Lymphoblastic leukemia</td>
</tr>
<tr>
<td>ANCOVA</td>
<td>Univariate analyses of covariance</td>
</tr>
<tr>
<td>BDI</td>
<td>Beck Depression Inventory</td>
</tr>
<tr>
<td>CCSS</td>
<td>Childhood Cancer Survivor Study</td>
</tr>
<tr>
<td>CNS</td>
<td>Central nervous system</td>
</tr>
<tr>
<td>CR</td>
<td>Complete remission</td>
</tr>
<tr>
<td>CRT</td>
<td>Cranial irradiation therapy</td>
</tr>
<tr>
<td>CTCAEv3</td>
<td>The Common Terminology Criteria for Adverse Events, Version 3</td>
</tr>
<tr>
<td>FACT-G</td>
<td>Functional Assessment of Cancer Therapy-General</td>
</tr>
<tr>
<td>GHQ</td>
<td>General Health Questionnaire</td>
</tr>
<tr>
<td>HRQoL</td>
<td>Health-related quality of life</td>
</tr>
<tr>
<td>EORTCQLQ-30</td>
<td>European Organization for Research and Treatment on Cancer QLQ-C-30</td>
</tr>
<tr>
<td>IQ</td>
<td>Intelligence quotient</td>
</tr>
<tr>
<td>MCID</td>
<td>Minimally clinically importance difference</td>
</tr>
<tr>
<td>PIQ</td>
<td>Performance intelligence quotient</td>
</tr>
<tr>
<td>QOL</td>
<td>Quality of life</td>
</tr>
<tr>
<td>RAND-36</td>
<td>Rand-36-Item health Survey</td>
</tr>
<tr>
<td>SDRB</td>
<td>Socially desirable response bias</td>
</tr>
<tr>
<td>SF-36</td>
<td>Short-Form Health Survey</td>
</tr>
<tr>
<td>SII</td>
<td>The Social Insurance Institution</td>
</tr>
<tr>
<td>SN</td>
<td>Second neoplasm</td>
</tr>
<tr>
<td>SPSS</td>
<td>Statistical Package for the Social Sciences</td>
</tr>
<tr>
<td>VIQ</td>
<td>Verbal intelligence quotient</td>
</tr>
<tr>
<td>WHO</td>
<td>The World Health Organization</td>
</tr>
</tbody>
</table>
List of original publications

This list is based on the following publications, which are referred to in the text by their Roman numerals I-IV:

Contents

Abstract

Tiivistelmä

Acknowledgements

Abbreviations

List of original publications

Contents

1 **Introduction**

2 **Review of the literature**

 2.1 Epidemiology and etiology of childhood ALL .. 17
 2.2 Treatment of childhood ALL... 18
 2.3 Treatment-Related Late-effects.. 19
 2.3.1 Physical long-term late effects ... 19
 2.3.2 Neuropsychological long-term late effects..................................... 20
 2.4 Health related quality of life (HRQoL)... 24
 2.4.1 Definition.. 24
 2.4.2 Measuring HRQoL outcomes ... 25
 2.4.3 Model to explain the results of HRQoL 26
 2.5 Quality of life among ALL survivors .. 27
 2.5.1 Social outcomes .. 30
 2.5.2 Employment ... 31
 2.5.3 Vocational rehabilitation ... 32

3 **Aims of the study**

4 **Subjects and methods**

 4.1 Study design.. 37
 4.2 Subjects... 40
 4.3 Measure... 41
 4.3.1 Neuropsychological Tests (I).. 42
 4.3.2 Health related quality of life (HRQoL) (II).................................... 43
 4.3.3 Depressive symptoms and mental distress (III)............................ 43
 4.3.4 Physical late-effects and physical performance (II, IV).............. 44
 4.3.5 The efficacy of the rehabilitation (IV).. 44
 4.4 Statistical methods .. 45

5 **Results**

 5.1 Neuropsychological Tests (I) ... 47
5.1.1 Comparison of IQ at the end of Treatment, 5 Years After Treatment and a Mean of 17 Years After Completion of Therap

5.2 HRQoL

5.2.1 Physical late-effects

5.2.2 Emotional and social well-being

5.2.3 HRQoL in ALL survivors after an average of 20 years after the diagnosis

5.2.4 The occupational rehabilitation course

6 Discussion

6.1 Discussion on results

6.1.1 Neuropsychological functioning

6.1.2 Depressive symptoms, well-being and health-related quality of life

6.1.3 The occupational rehabilitation intervention

6.2 General discussion

6.3 Methodological considerations

6.3.1 Strengths and weaknesses of the study

6.3.2 Future perspectives

7 Conclusions

References

Original publications
1 Introduction

Acute Lymphoblastic leukemia (ALL) is the most common malignancy in children. Due to improvement of cancer treatments, today it has a greatly improved survival rate of approximately 80% (Gatta et al. 2005; 2003, Gustafsson et al. 2000, Harras et al. 1996, NOPHO 2000, Pui & Evans 2006). Treatment of the central nervous system (CNS) with cranial irradiation and/or chemotherapy has been an important factor contributing to the increased survival rate. However, leukaemia treatment has been implicated to be responsible for a diversity of long-term adverse effects. (Pui 2008). CNS treatment has been suspected of being responsible for long-term neurocognitive deficits, especially when cranial irradiation is used (Campell et al. 2007, Gaynon et al. 2000, Moore 2005). The awareness of the harmful effects of cranial irradiation therapy (CRT), especially among young children, has led to the practice of replacing it with CNS-directed chemotherapy. This includes mainly high dosage iv methotrexate and intrathecal methotrexate (Butler et al. 1994). Whether or not CNS chemotherapy has harmful effects on learning, and to what extent, is still controversial.

Another major concern is physical, psychosocial and educational deficits after cranial irradiation and central nervous system-directed chemotherapy, which can occur even years after diagnosis and can seriously impair survivors’ performance status and quality of life (Campbell et al. 2007, Hill et al. 1998, Katon & Sullivan 1990, Moore 2005, Schultz et al. 2007, Zeltzer et al. 1997). These deficits may increase the possibility of mental distress and depression. A growing number of studies have documented the substantial impact of childhood cancer treatment which may cause impairments that diminish social functioning, including obtainment or retention of employment (Pang et al. 2008).

The number of ALL survivors among young adults is increasing rapidly, and the need to improve their health-related quality of life is becoming increasingly important and topical issue. Numerous studies have examined these aspects of childhood cancer, but the overall quality of life especially in long term survivors of ALL is not so well studied (Apajasalo et al. 1996, Elkin et al. 1997, Meeske et al. 2005, Pemberg et al. 2005, Stam et al. 2006, Zebrack & Chesler 2002). The aim in this study was to assess neuropsychological functioning, well-being, depressive symptoms and health-related quality of life and evaluate the efficacy of occupational rehabilitation on employment and coping at work in long-term survivors of acute lymphoblastic leukemia.
2 Review of the literature

2.1 Epidemiology and etiology of childhood ALL

Acute lymphoblastic leukemia (ALL) is the most common malignancy in children, accounting for 76–80% of all diagnoses of childhood leukemia (Gatta et al. 2005;2003, Gustafsson et al. 2000, Harras et al. 1996, Pui & Evans 2006, NOPHO 2000) and approximately 30% of all pediatric malignancies (NOPHO 2000).

In the Nordic countries the yearly incidence of total childhood cancer has been close to 15–20 cases per 100 000 children under 15 years of age (Gustafsson et al. 2000). In Finland, the yearly incidence of ALL is 50 cases per year. The incidence of childhood ALL in the Nordic countries has been stable during recent years (NOPHO 2000). The incidence of acute leukemias in Finland is about 240 new patients/year. About 20% of these are children. The peak incidence is seen at 2–5 years of age (4–5 patients/100 000). (Engholm et al. 2009). Boys have a higher leukemia risk than girls, but leukemia diagnosed in the first year of life is more common in girls than in boys. The incidence of ALL in white children is 3–4 per 100 000, while in African/Americans children it is consistently about half of that. (Gurney et al. 1995). There are substantial geographic differences in the incidence of childhood leukemia. In developed countries, the incidence rates for childhood ALL are two- to four-fold compared to the rates in developing countries, which could represent differences in environmental factors, genetic factors and diagnostic accuracy. (Greaves & Alexander 1993). In developed countries, there is a significant peak in the incidence of childhood ALL between the ages of two and five years, and one subtype, referred to as common ALL, accounts for the high incidence in this age group (Greaves 1999).

ALL is a biologically heterogeneous disorder, and its specific etiology is unknown. The causes appear to be multifactorial. Some of the factors involved in the pathogenesis of ALL include exposure to ionizing radiation or certain drugs, certain chromosome abnormalities and congenital or acquired immune deficiencies (Golub & Arceci 2002).
2.2 Treatment of childhood ALL

The cure rate for pediatric ALL has improved from 15% in the late 1960s to approximately 80% today (Gatta et al. 2005, Margolin et al. 2002). This improvement can largely be attributed to the development of more effective chemotherapeutic regimens in well-designed clinical trials, improvements in combined chemotherapy, diagnostic, surgical and radiotherapeutic techniques, refined supportive care and pediatric cancer studies and services.

Acute leukemia is treated with chemotherapy, and the specific treatment is based on the specific leukemia subtype. ALL treatment protocols also include CNS-directed therapy in the form of intrathecal administration of methotrexate and/or ARA-C given throughout the systemic chemotherapy. Chemotherapy may be supplemented with radiation therapy if there is evidence of central nervous system (CNS) leukemia or testicular leukemia. (Margolin et al. 2002, Pui 2008). ALL with a poor prognosis or children who suffer a recurrence of ALL may be treated with a bone marrow transplant (Margolin et al. 2002).

The duration of treatment varies from 24 to 36 months. A good prognosis is associated with female gender, age at diagnosis between 2 and 10 years, a low white blood cell count, and an early positive response to treatment. Children with a poor prognosis receive the most aggressive chemotherapy. ALL treatment is divided into main treatment elements: induction, consolidation and maintenance therapy. (Margolin et al. 2002).

Induction Treatment Phase

The first phase of ALL treatment is called induction, and it lasts 4–5 weeks. The goal of treatment is generally indicated with the term “complete remission” (CR). This is defined as resolution of the sign and symptoms of leukemia, a return to normal blood and bone marrow values, and leukemia cell kill resulting in fewer than 5% lymphoblasts in the bone marrow. The basic regimen for induction therapy includes at least a glucocorticoid (prednisone, prednisolone, or dexamethasone) and vincristine. (O’Reilly et al. 1996, Pui & Evans 1998). The rate of complete remission is 98% in the Nordic countries (Gustafsson et al. 2000).
Consolidation Treatment phase

This is the second phase of childhood ALL treatment which begins once the leukemia is in remission. Treatment includes a combination of aggressive multiagent chemotherapy, and lasts up to 6 months. Chemotherapy consists of repeated cycles of drug combinations to prevent the remaining leukemia cells from developing resistance, e.g. methotrexate and 6-mercaptopurine or 6-thioguanine, vincristine, L-asparaginase, and/or prednisone. Intrathecal therapy is continued at this time. (Margolin *et al.* 2002, O`Reilly *et al.* 1996).

Maintenance therapy

If a patient stays in remission after induction and consolidation therapy, maintenance therapy begins. The goal is to destroy any disease cells that remain so that the leukemia is completely gone. Patients at higher risk may receive more intensive maintenance chemotherapy and intrathecal therapy. Chemotherapy continues for 2–2.5 years in girls and 2.5–3 years in boys. (Margolin *et al.* 2002, O`Reilly *et al.* 1996).

2.3 Treatment-Related Late-effects

Chemotherapy, radiation therapy and stem cell transplantation can cause long-term late-effects, which are secondary conditions that arise following certain cancer treatments. Children are especially sensitive and susceptible to side effects because their tissues are still growing and developing. Side effects vary depending on which drugs are being used, how the drugs are given, and how long the drug treatment lasts. (Margolin *et al.* 2002).

Awareness of the harmful effects of cranial irradiation therapy (CRT), especially in young children, has led to the practice of replacing it with CNS-directed chemotherapy. This includes mainly high dosage and intrathecal methotrexate. (Butler *et al.* 1994, Campell *et al.* 2007, Gaynon *et al.* 2000, Moore 2005, Mulhern & Palmer 2003, Oeffinger *et al.* 2006).

2.3.1 Physical long-term late effects

Reports in the literature indicate that approximately 75% of survivors have one or more late effects (Cardous-Ubbink *et al.* 2004). The most common late effects are
those of growth and development, including linear growth velocity, intellectual development, and sexual maturation (Adan et al. 2001). A recent study of adult survivors of childhood cancer reported that 62% have at least one chronic health condition, with 25% reporting conditions considered to be severe or life-threatening (Oeffinger et al. 2006), which may not be manifest until many years later.

The Childhood Cancer Survivor (CCSS) study cohort provides the largest and most comprehensive assessment of the health of childhood ALL survivors, and in this analysis spanning more than 20 years from diagnosis adult survivors – including nonirradiated, nonrelapsed ones – reported excessive chronic health issues and poor health status, with ALL survivors being one of the highest risk groups for late mortality and morbidity. (Mertens et al. 2001, Mody et al. 2008).

These morbidities include second neoplasms, cardiac toxicity, infertility, neurologic toxicity, growth failure and neurocognitive dysfunction. Second neoplasms (SNs) are one of the most serious and devastating morbidities associated with cancer therapy and have been strongly associated with the use of therapeutic radiation for treatment of the original cancer. (Jenkinson et al. 2004, Mertens et al. 2001, Mody et al. 2008, Neglia et al. 2001). MacArthur et al. (2007) showed that survivors whose ALL had recurred within 5 years of diagnosis had a 61-fold higher likelihood of dying compared with the general population. Mody et al. (2008) also found mortality risk – higher in the relapsed group – but they found lower overall likelihood of death.

Several recent studies have shown that survivors of leukemia have an increased risk of developing CNS tumors that are associated with radiotherapy (Banerjee et al. 2009, Goshen et al. 2007, Neglia et al. 2006;1991, Phillips et al. 2005, Pui et al. 2003, Paakko et al. 1994). Meningiomas and gliomas appear to be the most common latent brain tumors in leukemia survivors. In the study of Banerjee et al. (2009) meningiomas occurred in more than one-fifth (22%) of the 49 cranially irradiated long-term survivors of childhood leukemia who had been followed for a median of 21 years. Goshen et al. (2007) reported a 17% incidence of meningiomas in irradiated patients.

2.3.2 Neuropsychological long-term late effects

More effective and aggressive medical treatments are often associated with neurocognitive morbidity. Long-term survivors of leukemia treated during childhood are at risk of neuropsychological late effects, which represent an
Higher dose of CNS radiation, therapy with high-dose systemic or intrathecal methotrexate or cytarabine, younger age at treatment and female gender are generally associated with great risk of neurocognitive late effects. (Fouladi et al. 2005, Hertzberg et al. 1997, Ochs et al. 1991, Waber et al. 1995). Different mechanisms have been postulated to explain the underlying neurological basis of neurocognitive dysfunction. Hippocampal dysfunction may be a causal mechanism underlying aspects of these neuropsychological sequelae. Located in the medial temporal lobes, the hippocampal formation plays a central role in learning and memory - functions prominently affected by radiation. (Zola-Morgan & Squire 1993). Recent studies have brought up damage to cortical and subcortical white matter (Mulhern et al. 2000, Steen et al. 2001). Iuvone et al. (2002) reported that up to 50% of children treated with a combination of CRT and IT methotrexate show changes in white matter that are generally progressive and do not resolve.

Two seminal studies set the stage for three decades of research on the neurocognitive impact of irradiation and chemotherapy applied to the CNS. Initially, Soni et al. (1975) reported that CNS prophylactic treatment for patients with Acute Lymphocytic Leukemia (ALL) did not impact intellectual functioning. The dose of cranial radiation therapy (CRT) in this study was 24 Gy, the standard prophylaxis at that time. Soon after that, Meadows et al. (1981) reported results that were diametrically opposed to the previous study. At the same dose of CRT, it was noted that pediatric ALL patients suffered declines in intellectual development. These two studies stimulated intensive research efforts designed to identify whether or not irradiation and chemotherapy to the brain resulted in neurocognitive impairment in pediatric patients. As research progressed, risk factors began to become apparent, and at present we understand the likely nature of neurocognitive involvement in this population. (Meadows et al. 1981).

Adverse neurocognitive outcomes reported in the literature are declines in overall intellectual ability (Mulhern et al. 1992), academic performance (Anderson et al. 2000), memory and learning (Hill et al. 1997), attention and concentration (Lockwood et al. 1999), information processing speed (Cousens et al. 1991), visuospatial skills (Espy et al. 2001), psychomotor functioning (Kaleita et al. 1999), and executive functioning (Anderson et al. 1997).

The majority of the cross-sectional studies report that combined prophylactic treatment, CNS chemotherapy and cranial irradiation is associated with intellectual impairment. Children who have survived leukemia typically obtain lower IQ scores than matched healthy children. (Anderson et al. 1994, Dowell et
A meta-analysis by Cousens et al. (1988) reviewed 30 studies reporting cognitive function in children after cranial irradiation for ALL. Decrements were found in intellectual function, amounting to around 2/3 of a standard deviation (10 IQ points) in ALL survivors treated with cranial irradiation compared to controls (Cousens et al. 1988). Prospective studies, in which children were assessed at diagnosis and follow-up intervals (Berg et al. 1983, Meadows et al. 1984;1981, Mulhern et al. 1991, Rubenstein et al. 1990, Stehbens & Kisker, 1984), have given mixed results. These studies differ on a number of dimensions, which may explain their variable findings.

Combined prophylactic treatment has also been linked to deficits in fine motor skills, visual-spatial abilities, verbal and nonverbal memory, psychomotor speed and shifting of attention, auditory perception, word fluency, contingency naming, and the ability to follow directions (e.g., Cousens et al. 1991, Dowell et al. 1991, Jannoun & Chessells 1987, Mulhern et al. 1988). Academic difficulties are evident in parent and teacher reports of school performance and scores on standardized tests of achievement (Mulhern et al. 1991).

Findings support the idea that the cognitive deficits of CNS chemotherapy given without cranial irradiation are less harmful, but it is still controversial (Dowell et al. 1991, Pfefferbaum-Levine et al. 1984, Rowland et al. 1984). Evidence suggests that children who received combined prophylactic therapy should perform more poorly on measures of cognitive and academic functioning than those who received CNS chemotherapy only. Some studies have failed to find any evidence of lower IQ, deficits in neuropsychological functioning, or academic difficulties (e.g., Copeland et al. 1996, MacLean et al. 1995, Mulhern et al. 1992). Other studies report lower Verbal and Full Scale IQ scores, memory problems, impaired performance on tasks involving simultaneous processing, deficits in the areas of motor performance, attention, and symbolic manipulation, and poorer academic performance (Brown et al. 1992a, Ochs et al. 1991).

Randomized studies have been unable to find a difference between irradiated and non-irradiated ALL patients (Waber et al. 2007), while several non-randomized controlled studies have shown impairments in cognitive functions compared with controls. The defects have been milder when chemotherapy has been used without cranial irradiation. (Copeland et al. 1996, Moleski 2000, Waber et al. 2000, Butler & Copeland 1993).

Reviews of studies suggest that at least 30% of the survivors exhibit some degree of impairment. Deficits involve vigilance attention, working memory, spatial awareness, processing speed, self-monitoring (Butler et al. 1999;1994,
Mulhern & Butler, 2004; 2006, Moleski 2000, Spiegler et al. 2004), performance IQ (PIQ) (Raymond-Speden et al. 2000), fine motor skills and nonverbal memory (Peterson et al. 2008). Campbell et al. (2007) performed a meta-analysis of 28 studies published up to 2004, including studies in which CNS treatment for childhood ALL involved cranial irradiation, as well as studies in which treatment consisted of chemotherapy only. Clinically significant deficits were reported in specific neurocognitive abilities, such as attention and speed of information processing and areas of executive functioning. (Campbell et al. 2007). A meta-analysis of chemotherapy-treated subjects by Peterson et al. (2008) indicated defects in intelligence, academic achievement, information processing speed, verbal memory, executive functioning and fine motor skills compared with controls. Mennes et al. (2005) concluded that children treated for ALL with chemotherapy are only impaired in selective aspects of cognitive functioning: attention, concentration and information processing speed. Buizer et al. (2009) reviewed twenty-one studies published since 1997 that included an ALL group treated with chemotherapy only and a control group. There is evidence of subtle long-term neurocognitive deficits in survivors of childhood ALL after treatment with chemotherapy only. The deficits are mainly present in basic neuropsychological processes of attention and executive functioning, while global intellectual function is relatively well preserved. (Buizer et al. 2009).

Adverse effects typically emerge within 1 to 2 years of administration, but some studies have observed that cognitive disturbances may be delayed up to 10 years after treatment (Jankovic et al. 1994, Kato et al. 1993). A decline in intellectual functioning has been shown 4–8.5 years after treatment with 18-24 Gy of CRT, whereas some longitudinal evaluations did not support the expected hypothesis that ALL treatment results in cognitive deterioration over time. Patients who have been treated with cranial irradiation have been reported to have a significant decline in full-scale IQ, the decline of IQ being more prominent with time from diagnosis. (Cousens et al. 1988, Jankovic et al. 1994). The only previous study on very-long-term ALL survivors after more than 10 years of cranial irradiation reported significant neuropsychological deficits compared with healthy controls (Kato et al. 1993). Link et al. (2006) investigating 44 adults with a mean age of 25 years treated for childhood ALL showed impaired neuropsychological capacity in the period 8–27 years after CRT. A decline in one or more aspects of cognitive functioning after treatment with chemotherapy is reported in only approximately two thirds of ALL studies (Moleski 2000).
2.4 Health related quality of life (HRQoL)

2.4.1 Definition

In the last three decades, the quality of life of children treated for cancer has become a major focus in the field of pediatric oncology (Levi 2006). There is no consensus on the definition of quality of life. Definitions range from describing the quality of life impact of a person’s health on his or her ability to lead a fulfilling life (Bullinger 1993) to those with a holistic emphasis - social, emotional, and physical well-being (Greer 1984). A number of definitions proposed by various authors as to the exact nature of QoL are shown in Table 1.

Table 1. Definitions of QoL.

<table>
<thead>
<tr>
<th>Number</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>QoL is defined as an individual’s overall satisfaction with life and general sense of personal well-being (Schipper & Clinch 1988).</td>
</tr>
<tr>
<td>II</td>
<td>QoL is the state of well being that is a composite of two components: the ability to perform everyday activities that reflect physical, psychological, and social well-being; and patient satisfaction with levels of functioning and control of the disease (Gotay et al. 1992).</td>
</tr>
<tr>
<td>III</td>
<td>QoL refers to patients' appraisal of and satisfaction with their current level of functioning compared to what they perceive to be possible or ideal (Cella 1992).</td>
</tr>
<tr>
<td>IV</td>
<td>QoL is patient perception of their position in life in the context of the culture and value systems in which they live and in relation to their goals, expectations, standards, and concerns (WHOQOL 1994).</td>
</tr>
</tbody>
</table>

The World Health Organization (WHO) defines quality of life as “the individual’s perception of his/her position in life, within the cultural context and the values in which he/she lives, as well as relation to his/her objectives, expectations, standards and concerns”. According to WHO, QoL consist of physical, mental/emotional and social domains, which is referred to as health-related quality of life (HRQoL) (WHOQOL Group 1994). The WHO definition has influenced the notion of HRQoL as a multidimensional concept.

As well taking into account the impact of health on QoL, HRQoL includes other domains of life functioning that are also affected by health/illness states. In HRQoL dimensions, physical functioning refers to one’s ability to perform various activities at the most basic level of daily living. Social functioning typically refers to a person’s ability to interact with family and friends and to maintain social roles. Emotional functioning is commonly assessed as the
negative effects of illness, such as depression or anxiety. Cognitive functioning refers to memory or the ability to concentrate. Life satisfaction represents a person’s overall sense of well-being. (Aalto 1999).

2.4.2 Measuring HRQoL outcomes

The assessment of quality of life is used when studying the impact of various health problems and illness on different domains of life, when monitoring the health status of population groups and assessing alternative health-care methods and their costs (Aalto 1999).

In accordance with the WHO definition, HRQoL indicators often have at least three main dimensions: physical, mental and social well-being (WHOQOL Group 1994). Different indicators also contain complementary dimensions, such as self-perceived health, energy/vitality (Aalto 1999, Hays et al. 1993, Ware & Sherbourne 1992), sexual functioning, spiritual well-being and vocational or role performance (Dibble et al. 1998, Ness et al. 1998, Osoba et al. 1994).

In health-related quality of life research, the indicators that are used are usually divided into disease-specific indicators and those assessing general HRQoL (e.g. Kind 2001). Disease-specific indicators assess the domains of quality of life that are of key significance for a specific disease. General indicators can be used to assess differences in QoL between different population groups, patient groups and in unselected population. (Kind 2001). QoL indicators can also be classified, according to measurement level, to one-dimensional indicators, which only assess one dimension of QoL; global indicators describing QoL on a general level, for example on a scale from 0 to 100 or with the aid of a single question (e.g. "How would you assess your quality of life?"); multidimensional profile indicators, which describe QoL with several dimensions, with the results given as QoL profiles, and single preference indicators, where different QoL domains are expressed with a single index. (Coons et al. 2000).

Since the 1980s, several indicators have been developed for the measurement of functional and health-related QoL (Cieza & Stucki 2005, Gill & Feinstein 1994). The most widely used indicators in Finland are 15D (Sintonen 2001), Nottingham Health Profile (Koivukangas et al. 1995) and the Rand 36-item Health Survey 1.0 (Aalto et al. 1995, Hays et al. 1993). Some of the more commonly used measures in cancer patients are Short Form 36 (SF-36), European Organization for Research and Treatment on Cancer QLQ-C-30 (EORTC QLQ-C-30), Functional Assessment of Cancer Therapy-General (FACT-G). It is thought
that the internationally most commonly used HRQoL measure, RAND-36 (SF-36) works reliably among the Finnish population. (Aalto 1999).

2.4.3 Model to explain the results of HRQoL

Good levels of physical and mental functioning and general health status have long been associated with well-being and overall quality of life, while illness has the opposite effect (Bowling 1995). A common assumption of HRQoL research is that the HRQL of survivors will decline as a function of late effects of medical treatment (Spieth & Harris 1996, Varni et al. 2002). It is supposed when adverse outcomes increase, the patient’s quality of life will decrease. However, because self-report of HRQoL is subjective, there are a number of individual factors that might contribute to the observed outcomes, and adaptive style is hypothesized to be one of a significant determinant of HRQoL. (Phipps 2007).

Almost a decade ago Albrecht and Devlieger (1999) addressed the question: “Why do many people with serious and persistent disabilities report that they experience a good or excellent QoL (quality of life) when to most external observers these people seem to live an undesirable daily existence?” (Albrecht & Devlieger 1999, p 977). This is known as the “disability paradox.” The authors assumed that those who experience suffer and lost replace their losts with new meanings in their lives. Living becomes thus richer and more satisfying. Childhood experiences lead to better appreciation of being alive and to considering possible impairments of the present health status less important. Especially those survivors who perceived their health as better than what would be expected based on objective medical findings (“paradox of satisfaction”), could belong to the so-called repressors who tend to presents themselves in a favourable light. The results could possible be explained by denial mechanism of the long-term cancer survivors compensating and overcompensating extant late effects. (Albrecht & Devlieger 1999). Some authors suggest that defensiveness is a combination of self-deception, which represents an intrapsychic process associated with defensiveness and impression management reflects the motivation to present oneself in a positive manner, rather than real defensiveness (O’Learly 2007).

Response shift theory (the idea that the terms of reference by which quality of life is judged change over time) helps in understanding the so-called disability paradox. Response shift is a natural way in which individuals who are confronted with a serious illness adapt and cope with changes in physical health (eg.
Postulart & Adang 2000, Lepore & Eton 2000), and it influences the measures of change of HRQoL. People actively construct meaning from the environment, and display a range of cognitive mechanisms to continually adapt to changing circumstances. People can adjust the way they think about their life when they encounter relevant new information. Response shift refers to a change in the meaning of one’s evaluation of a construct as a result of a change in one’s internal standards of measurement, a change in one’s values, or a change in one’s definition of the construct. (Sprangers & Schwartz 1999).

The majority of published studies have shown that children with cancer report low depressive symptom levels, in many cases even significantly lower than either test norms or healthy controls. Canning et al. (1992) were the first to assess adaptive style in children with cancer as a possible explanation for bias in self-report. They documented a high prevalence of repressive adaptive style in children with cancer, which explained, in part, the low levels of self-reported depressive symptoms in their cancer sample. In a large cross-sectional sample of children and adolescents with cancer, Phipps (1997) show that the incidence of repressive adaptive style in the cancer group was double that of healthy controls (36–18%), conversely cancer group demonstrated low levels of a “high anxious” style relative to healthy controls. These findings have been replicated several times by others research, both in children with cancer and long-term childhood cancer survivors (Erickson & Steiner 2001, Jurbergs et al. 2007, Phipps et al. 2001).

2.5 Quality of life among ALL survivors

Research has suggested that the perception of psychosocial well-being influences physical functioning and treatment outcomes among adolescents with cancer, and those experiences during treatment and individual responses to treatment have an effect on HRQoL in survivorship.

Survivors who report physical late effects also demonstrate less positive psychosocial outcomes (Zebrack & Chesler 2002). Depression is associated with increased functional impairment and poorer quality of life over the course of chronic illness (Katon & Sullivan 1990, Weitzer et al. 1990). Long-term survivors of childhood leukemia have been reported to have increased risk for psychological problems, depression, anxiety and negative mood compared with siblings (Schultz et al. 2007, Zebrack & Chesler 2002, Zeltzer et al. 1997). However, a recent study found that the majority of survivors do not appear to
suffer mentally from their illness (McDougall & Tsonis 2009). Many studies report equal or only small differences in psychological well-being between survivors and control group (Eiser 2004, Kazak et al. 2010, Stam et al. 2001). For example, in a large, sibling-controlled study of young adult survivors of childhood leukemia, Hodgkin’s disease and non-Hodgkin’s lymphoma, Zebrack et al. (2002) found that survivors had a significantly increased risk for reporting symptoms of depression and somatic distress, but the rates fell within the population norms. Some studies report even higher psychological well-being compared to general population. In a report from the Childhood Cancer Survivor Study Zelzer et al. (2008) found that the survivors had better scores for depression, anxiety and global distress compared to the population norms. Pemberger et al. found (2005) less depression in a group of 78 childhood cancer survivors than the population norms. An increased risk for emotional problems in childhood cancer survivors has been shown to be associated with female gender, older age at follow-up, cranial irradiation, a greater number of relapses and the presence of severe functional impairment (Stam et al. 2006).

Chronic adverse health effects of the disease and treatment are common among long-term survivors (Geenen et al. 2007, Hudson et al. 2003, Robison et al. 2005, Stevensen 1998). A recent study by Oeffinger et al. (2006) found that 62% have at least one chronic health condition, 25% reporting conditions considered to be severe or life-threatening. Despite physical late effects, the majority of survivors do not appear to suffer negatively from their illness experience (Zebrack & Chesler 2002).

Reviews by Langeveld et al. (2002) and Eiser et al. (2000) indicated that survivors are in good physical health and functioning well psychologically and socially. Survivors do not differ in terms anxiety or depression when compared with population norms and matched controls (Eiser et al. 2000). Some studies reported that long-term childhood cancer survivors show comparable or even higher-than-average positive subjective rating of the various areas of HRQoL (Pemberger et al. 2005, Apajasalo et al. 1996, Gray et al. 1992, Langeveld et al. 2004, Maunsell et al. 2006). A review by McDougall & Tsonis (2009) shows that in general, cancer survivors score similarly to controls on the physical, psychological and social domains of QoL/HRQoL, the greatest differences being found in physical well-being.

Maunsell et al. (2006) compared 1334 survivors aged 15 to 37 years to an age-and sex-matched comparison group, and found small significant differences with respect to general health and physical functioning, but no significant
differences in psychological functioning. Survivors had significantly poorer ratings than population samples or matched comparison groups with respect to role limitations due to physical functioning, as was also seen in the studies by Stam (2006). Using a sample of 7147 cancer survivors aged 18 to 54 years, Zeltzer et al. (2008) found that survivors had an increased risk of lower HRQoL than US population norms regarding physical functioning, general health, vitality and overall physical functioning. Survivors had higher scores than the general US population on a mental health subscale and did not differ from the norm on a mental health component summary. Survivors reported significantly poorer ratings regarding role limitations due to emotional functioning. Langeveld et al. (2004) reported that 400 survivors aged 16 to 49 years scored significantly lower for physical functioning than an age-matched comparison group, but scored higher on vitality and general health. Blaauwbroek et al. (2007), Stam et al. (2006) and Zeltzer et al. (2008) showed that survivors scored significantly poorer on subscales of social well-being.

Previous studies on long-term ALL survivors have reported lower (Stam et al. 2006, Blaauwbroek et al. 2007, Grant et al. 2006), higher (Apajasalo et al. 1996, Pemberger et al. 2005, Zeltzer et al. 2008) or similar (Langevelt et al. 2004, Maunsell et al. 2006) ratings for HRQoL/QoL when compared with population norms or matched comparison groups. Despite the varying results of the previous studies among long-term ALL survivors, generally the survivors’ measured HRQoL is considered good. In a large Childhood Cancer Survivor Study (CCSS) Zeltzer et al. (2008) found lower scores among leukemia survivors compared to U.S. population norms on all other subscales in SF-36 except mental health, where the survivors obtained higher scores. Instead, a large Canadian study found very little difference in QoL scores between leukemia survivors and population controls. Significantly lower scores were found only in the SF-36 subscale of physical role (Maunsell et al. 2006). Meeske et al. (2005) found better HRQoL measured by RAND-36 in non-fatigued ALL survivors, but lower HRQoL in fatigued survivors in comparison to population norms. Significantly higher scores were found on the subscales of vitality, mental health and role limitations due to emotional problems. Survivors who suffered from fatigue had lower QoL than population norms. (Meeske et al. 2005).

Blaauwbroek et al. (2007) reported no difference in HRQoL measured by RAND-36 in long-term ALL survivors compared to population norms. Very long-term follow-up had significantly lower scores than population sample on physical and social functioning, vitality and general health (Blaauwbroek et al. 2007). In
their long term (25 years) study based on a CCSS cohort, Mody et al. (2008) found that ALL survivors reported more adverse general health and mental health, functional impairments, and activity limitations compared with siblings. Survivors who received radiation in their treatment or had a leukemia relapse were found to be at greatest risk for adverse outcome (Mody et al. 2008).

2.5.1 Social outcomes

The results of a recent study suggest that childhood cancer survivors generally have similar high school graduation rates as their sibling counterparts (Gurney et al. 2009). Some studies reported no difference in scholastic achievement between leukemia patients and healthy controls (Haupt et al. 1994, Koch et al. 2004), whereas others found irradiated leukemia patients to have more in need of special education, compared with their siblings, controls or nonirradiated survivors (Barrera et al. 2005, Gurney et al. 2009, Mitby et al. 2003). Mitby et al. (2003) reported that the use of special education services among 12,430 participating survivors was 23%, in contrast to only 8% among 3,410 siblings. College graduation rates were also lower among 25- to 49-year-old survivors of acute lymphoblastic leukemia (ALL; 38%) than in the sibling group of comparable age (48%) (Mitby et al. 2003). Harila-Saari et al. (2007) found that nearly ALL leukemia survivors complete basic education in Finland, but that patients treated with cranial irradiation and females treated with chemotherapy under the age 7 had lower grades.

The survivors at greatest risk for use of special education services were those diagnosed at 5 years of age or younger, while the use of intrathecal methotrexate and/or cranial radiation significantly increased the likelihood that a survivor would later use special education services. Survivors are slightly less likely than expected to attend college, and are more likely to be unemployed and not married as young adults. (Gurney et al. 2009, Mitby et al. 2003, Frobisher et al. 2007). An analysis of 1,206 survivors of ALL survivors aged 25 to 49 years revealed that only 55% had ever been married, compared to 69% of CCSS siblings (P < .001). Females treated with cranial radiation therapy were at increased risk of never having married. (Mody et al. 2008). Unmarried/divorced survivors report significantly higher limitations in functioning and lower quality of mental health than do survivors who are married. A lower quality of mental health was also reported more commonly by those survivors who did not graduate from high school. (Zeltzer et al. 2008).
2.5.2 Employment

Result from the CCSS study indicate that chronic medical conditions increase the risk for unemployment (Pang et al. 2008), which may result in a lower quality of life. Zeltzer et al. (2008) found that survivors seeking work or who are unable to work were at increased risk for symptoms of depression, anxiety and somatic distress compared with employed survivors.

According to one estimate, 16.8% of working-age survivors are unable to work because of physical, mental or emotional problems; of those who can work, 7.4% were limited in the kind or amount of work they could do (Hewitt et al. 2003). A recent meta-analysis showed that adult survivors of childhood cancer are twice as likely to be unemployed compared to healthy controls (de Boer et al. 2006). In a large Childhood Cancer Survivor Study (CCSS) Kirchhoff et al. (2010) found that childhood cancer survivors reported health-related unemployment more often (10.4%) than siblings. Meta-analysis of controlled studies the unemployment rate was average 22%, respectively uncontrolled studies 30% for leukemia survivors (de Boer et al. 2006). Several studies show that especially survivors of CNS cancer are at risk of unemployment; they are nearly 5 times more likely to be unemployed as adults than the control group, but no difference was found between patients and controls in Europe (de Boer et al. 2006). Zeltzer et al. (1997) found that survivors of ALL had not enjoyed higher education, were unemployed or were working less than half the time compared to sibling controls. Higher unemployment rates were found among the women in the irradiated group than in the age- and sex-matched general population (Zebrack & Chesler 2002).

In a cross-sectional case-control study, 30 young-adult survivors of childhood cancer -mainly lymphoma and ALL- did not differ from vocational and educational adjustment compared to healthy controls and general population norms (Boman & Bodegår 2004). A Swedish national cohort study found that non-central nervous system (CNS) cancer survivors had similar education and employment status as the general population, in contrast survivors of CNS tumors (Boman et al. 2010).

To summarize the findings, adult childhood cancer survivors are at elevated risk for unemployment. Consistent with education risk, the risk of unemployment is potentiated among those who were treated with high doses of cranial radiation, those diagnosed at a young age, females, and those with chronic medical conditions.
2.5.3 Vocational rehabilitation

In recent years, the scope of the concept of rehabilitation has widened to encompass promotion of life control, in addition to improved work and functional ability. In the Government Resolution on Rehabilitation (2002, 2) rehabilitation is described as a “process of changes of a person, or a person and the environment, which aims at promoting functional ability, independent coping, well-being and employment. Rehabilitation is planned and multiprofessional, often long-term action aimed at helping rehabilitees to control their own life situation”.

With the aid of vocational rehabilitation measures, the aim is to improve rehabilitees’ vocational skills and work ability and promote their employment and integration into the job market and society. Rehabilitation is implemented as a long-term process, either individually or in a group, based on individual rehabilitation needs.

In Finland, the Social Insurance Institution (SII) has a key role in arranging vocational rehabilitation. This is based on the 1991 Act, which was last amended in 2005 (Act 15 July 2005/566). According the Act, those insured have the right to appropriate vocation rehabilitation if illness, damage or injury poses a threat of disability, or if the person’s work ability and earning possibilities must be considered to be significantly impaired due to illness, damage or injury. Threat of work disability refers in legislation to a situation where it is likely, without vocational rehabilitation, that the insured person will in the near future be granted disability pension, even when taking into account the possibilities provided by treatment and medical rehabilitation. (Act 15 July 2005/566).

"The aim of rehabilitation arranged by SII is to provide such medical or vocational rehabilitation which responds to the rehabilitee’s needs and society’s demands, is reliable and sage, and with the aid of which eligible rehabilitees’ work and functional ability can be maintained and promoted” (SII 2003. 2).

Understanding rehabilitees’ rehabilitation needs calls for comprehensive and versatile clarification of the individuals’ situation as a whole (Järvikoski 2008, Suikkanen and Lindh 2001a, Talo et al. 1992). Based on this, individuals’ physical, mental and social preconditions for coping at work are charted, in addition to their state of health (Talo et al. 1992), and considered in relation to their life situation. The starting point of rehabilitation need may be the individual’s subjective assessment of need of change or a self-perceived problem.
The starting point of expert evaluation is assessing whether the problem is of such type and severity that it warrants launching rehabilitation measures. Individual subjective rehabilitation need and expert evaluation of rehabilitation need are not always compatible. (Järvikoski 2008, Järvikoski & Härkäpää 2005e; 2001a). Identifying rehabilitation need may also be based on a multiprofessional joint assessment of the individual’s situation conducted in collaboration with the applicant, where indicators measuring physical, mental and social functioning are used in addition to interviews (Mäkitalo et al. 2008, Rissanen 2008).

Vocational rehabilitation interventions have not been conducted earlier among long-term ALL survivors. There is only one study looking at the effects of rehabilitation (chiropractic services) on physical functioning and HRQoL among all childhood cancer survivors with severe late effects. The study concluded that long-term childhood cancer survivors do not appear to utilize rehabilitation services to optimize their physical functioning and to increase their HRQoL. (Montgomery et al. 2011).
3 Aims of the study

The main purpose of this study was assess the longitudinal adverse treatment related neuropsychological late-effects and Health related quality of life (HRQoL) among long-term ALL childhood cancer survivor. The numbers I-IV hereafter refer to the original publications. The specific aims of the individual studies were:

1. To assess neuropsychological functioning in a population-based cohort of young adult childhood ALL survivors. (I)
2. To assess Health-related quality of life (HRQoL) in a cohort of long-term childhood acute lymphoblastic leukemia (ALL) survivors. (II)
3. To examine the prevalence of depressive symptoms and mental well-being in adult long-term survivors of childhood acute lymphoblastic leukaemia (ALL) at a mean of 20 years after the cessation of therapy. (III)
4. To evaluated efficacy of occupational rehabilitation on employment and coping at work in long term survivors of acute lymphoblastic leukemia who had psychosocial or/and employment problems. (IV)
4 Subjects and methods

4.1 Study design

This study is a substudy of a larger research project on the late effects of childhood leukemia treatment being conducted at the Department of Pediatrics in Oulu University Hospital during the years 2002–2005.

The survivors and controls were invited to participate in the study by a letter. If they agreed they were invited to the clinic for a two-day late-effect study, which included neuropsychological/psychological examination and an interview performed by a psychologist (M.H.) and a careful review of medical history and clinical examination to evaluate the physical late effects performed by a paediatrician. The participants brought copies of their medical records if they had been treated in other hospitals. When needed, copies of patient files were ordered from other hospitals with the participant’s permission. Before the visit the participants filled in several questionnaires, which were sent to them by mail. Participants who were unable to come to the hospital answered and sent the questionnaires by mail and took part in a telephone interview. For them no grading of physical late-effects was performed. Based on the responses the need for rehabilitation was evaluated by examiners and an expert group from a rehabilitation center. Survivors in need of rehabilitation due to occupational or psychosocial problems were provided a possibility to participate in occupational rehabilitation. Study population is presented schematically in Figure 1.

The rehabilitation course was planned in collaboration with pediatric oncology experts at the Department of Pediatrics and Adolescence, Oulu University Hospital, and Merikoski Rehabilitation and Research Center. The practical arrangement of the rehabilitation course was carried out by an occupational rehabilitation team at the Merikoski Rehabilitation and Research Center. The team consisted of a social worker, 2 rehabilitation nurses, a physiotherapist, a psychologist, two rehabilitation doctors, an occupational therapist and an IT-counsellor.
ALL Childhood cancer survivor 74 (85%)
46 cranial irradiation
28 chemotherapy

Two-day late-effect study
63 (72%) ALL survivors
44 cranial irradiation
19 chemotherapy
45 healthy controls

Neuropsychological test
Psychological examination
HRQoL
BDI-21
GHQ

Clinical examination by a paediatrician
CTCAEv3

A telephone interview
11 ALL survivors
HRQoL
BDI-21
GHQ

Occupational rehabilitation course/Verve
9 ALL survivors

The course consisted of the following elements:

A day for rehabilitees to get together and obtain information
1st Group Phase: duration four weeks
1st work training period: duration eight weeks
2nd work training period: duration four weeks
2nd Group Phase: duration one week
Group meeting: follow-up after one year

Fig. 1. Study population.
The course was carried out on an outpatient basis, so that rehabilitation resembled normal work. The course included an open group phase, work training and individual monitoring days. Overnight accommodation was arranged for participants coming from further away. Rehabilitation services were not available during weekends, but when needed, all-inclusive accommodation was available for rehabilitees coming from other areas.

The content of the rehabilitation program was dictated by a weekly plan that was initially drawn up jointly with the rehabilitees during a get-together and planning event, about one month prior to the onset of the course. A group meeting was arranged one year after the end of the rehabilitation course. The course comprised both group and individual sessions, with a focus on resources, activity and team spirit as some of the guiding principles. A personal tutor and rehabilitation nurse were in charge of one-on-one discussions. Individual work training took place in workplaces. The program also comprised phone counseling, workplace visits and home visits when needed. The course consisted of elements shown in Table 2.

<table>
<thead>
<tr>
<th>Duration</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>A day for rehabilitees</td>
<td>to get together and obtain information</td>
</tr>
<tr>
<td>1st Group Phase</td>
<td></td>
</tr>
<tr>
<td>Week 1</td>
<td>team building, the elements of functional ability (physical, mental and social)</td>
</tr>
<tr>
<td>Week 2</td>
<td>life control as a concept and in everyday life</td>
</tr>
<tr>
<td>Week 3</td>
<td>vocations in relation to one’s own wishes and abilities</td>
</tr>
<tr>
<td>Week 4</td>
<td>preparing for work training</td>
</tr>
<tr>
<td>1st work training period</td>
<td>duration eight weeks</td>
</tr>
<tr>
<td>Summer break</td>
<td></td>
</tr>
<tr>
<td>2nd work training period</td>
<td>duration four weeks, assessment by superior, rehabilitee’s own assessment</td>
</tr>
<tr>
<td>2nd Group Phase</td>
<td></td>
</tr>
<tr>
<td>Week 5</td>
<td>drawing up a plan for the future, plan drawn up by the rehabilitee, individual rehabilitation journal</td>
</tr>
<tr>
<td>Group meeting:</td>
<td>follow-up</td>
</tr>
</tbody>
</table>

The main purpose of the rehabilitation intervention was to improve, with the aid of occupational coaching, survivors’ possibility to become employed directly after occupational training or find suitable vocational education or employment through work training. Comprehensive evaluation of survivors’ rehabilitation preconditions and potential was performed. Based on the evaluations an
individual occupational rehabilitation plan was created, taking into account the survivor’s physical, psychological and social restrictions.

The course aimed at recognition of the rehabilitees’ own strengths and resources, better life control, social skills and activity, as well as increasing physical fitness and activity.

4.2 Subjects

This study included all young adult survivors of ALL treated at Oulu University Hospital in 1971–1994 who were at least 18 years old within 6 months of the invitation, and who had been diagnosed at least 10 years earlier, had no evidence of leukaemia at the time of the evaluation, and were living in Finland. Patients with Down’s syndrome (one), severe mental retardation (one), severe brain injury caused by an accident (one) or deficient Finnish language skills (one case) were excluded. A total of 87 young adult survivors fulfilled the inclusion criteria, two of whom were lost from the follow-up. From the 87 survivors that fulfilled the inclusion criteria 74 (85%) agreed to participate in the study. Sixty-three of them (72% of all who fulfilled the inclusion criteria) agreed to participate in a two-day examination visit at the hospital. The remaining 11 participants agreed to a telephone interview and filled in questionnaires. The study participants did not differ from the 13 non-participants in terms of gender, age at diagnosis or treatment. The study is part of a larger late-effect study. The study protocol was approved by the Ethics Committee of the Medical Faculty of the University of Oulu.

Of the 74 survivors (26 male), 46 had been treated with cranial irradiation and chemotherapy while 28 had solely been treated with chemotherapy. The mean follow-up time since diagnosis was 20 years (range 10–32 years). Ten patients had been successfully treated for a relapse and one patient had undergone bone marrow transplantation (BMT) in the first remission. The baseline characteristics of the study population are shown in Table 3.

The dose of cranial irradiation was 18-23 Gy (16 patients), 24-25 Gy (23 patients) or 30-48 Gy (7 patients, 4 of whom had been irradiated twice). The patients were treated according to several different ALL protocols used from 1972 to 1992. The common Nordic protocols were used from 1992 onwards. The CNS treatment in the non-irradiated patient group included mainly intrathecal methotrexate and high-dose intravenous methotrexate. The Nordic ALL protocols have previously been presented in detail (Gustafsson et al. 2000).
The controls

As a control group we had 45 (20 men) healthy persons. They were selected at random from the local population registry for our earlier study (Winqvist et al. 2001). The controls did not differ in age, gender or education from the ALL survivors. (I)

Table 3. Participants' characteristics.

<table>
<thead>
<tr>
<th>Variable</th>
<th>ALL Survivors (n=74)</th>
<th>Irradiated (n=46)</th>
<th>Non-irradiated (n=28)</th>
<th>Controls (n=146)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean age at study, years (range)</td>
<td>24 (17-37)</td>
<td>25 (17-37)</td>
<td>21 (17-32)</td>
<td>25 (17-37)</td>
</tr>
<tr>
<td>Mean age at diagnosis, years (range)</td>
<td>5 (0-15)</td>
<td>5 (0-15)</td>
<td>5 (0-15)</td>
<td>-</td>
</tr>
<tr>
<td>Time since diagnosis, years (range)</td>
<td>20 (10-32)</td>
<td>21 (10-32)</td>
<td>18 (11-24)</td>
<td>-</td>
</tr>
<tr>
<td>Male</td>
<td>26 (35%)</td>
<td>17 (37%)</td>
<td>9 (32%)</td>
<td>51 (35%)</td>
</tr>
<tr>
<td>Female</td>
<td>48 (65%)</td>
<td>29 (63%)</td>
<td>19 (68%)</td>
<td>95 (65%)</td>
</tr>
<tr>
<td>Marital status</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Married/cohabitation</td>
<td>17 (23%)</td>
<td>9 (20%)</td>
<td>8 (28%)</td>
<td>84 (58%)</td>
</tr>
<tr>
<td>Unmarried</td>
<td>57 (77%)</td>
<td>37 (80%)</td>
<td>20 (72%)</td>
<td>58 (40%)</td>
</tr>
<tr>
<td>Divorced</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>4 (2%)</td>
</tr>
<tr>
<td>Living arrangement</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Living with parents</td>
<td>18 (24%)</td>
<td>10 (22%)</td>
<td>8 (29%)</td>
<td>22 (15%)</td>
</tr>
<tr>
<td>Education</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No vocational education</td>
<td>27 (36%)</td>
<td>12 (26%)</td>
<td>15 (53%)</td>
<td>45 (31%)</td>
</tr>
<tr>
<td>Vocational school</td>
<td>34 (46%)</td>
<td>24 (52%)</td>
<td>10 (36%)</td>
<td>67 (46%)</td>
</tr>
<tr>
<td>Polytechnical university</td>
<td>10 (14%)</td>
<td>7 (15%)</td>
<td>3 (11%)</td>
<td>20 (14%)</td>
</tr>
<tr>
<td>University</td>
<td>3 (4%)</td>
<td>3 (7%)</td>
<td>-</td>
<td>14 (9%)</td>
</tr>
<tr>
<td>Employment status</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Employed</td>
<td>36 (49%)</td>
<td>23 (50%)</td>
<td>15 (54%)</td>
<td>87 (60%)</td>
</tr>
<tr>
<td>Student</td>
<td>14 (19%)</td>
<td>14 (30%)</td>
<td>9 (32%)</td>
<td>33 (23%)</td>
</tr>
<tr>
<td>Unemployed</td>
<td>4 (5%)</td>
<td>3 (7%)</td>
<td>2 (7%)</td>
<td>12 (8%)</td>
</tr>
<tr>
<td>Not student or unemployed</td>
<td>20 (27%)</td>
<td>6 (13%)</td>
<td>2 (7%)</td>
<td>14 (10%)</td>
</tr>
<tr>
<td>Treatment-related late effects (CTCAEv3) (n=63)</td>
<td>(n=44)</td>
<td>(n=19)</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>No late effect</td>
<td>19 (30%)</td>
<td>7 (16%)</td>
<td>12 (63%)</td>
<td>-</td>
</tr>
<tr>
<td>Low-grade effect</td>
<td>21 (33%)</td>
<td>15 (34%)</td>
<td>6 (32%)</td>
<td>-</td>
</tr>
<tr>
<td>High-grade effect</td>
<td>23 (37%)</td>
<td>22 (50%)</td>
<td>1 (5%)</td>
<td>-</td>
</tr>
</tbody>
</table>

A total of 370 healthy controls with no chronic somatic disease selected randomly from the local population registry controlled by age, gender and living area were contacted by a letter. Only 2% (7), a total of 370, healthy controls wanted to attend the study at the department of pediatrics for a two-day late-effect study. However, 146 healthy controls (response rate 39.5%) filled in several
questionnaires, which were sent to them by mail. Ninety-five (65%) were female and 51 (35%) were male, and their mean ages were 26 and 24, respectively. There was no statistically significant difference in gender distribution, mean age or living area between the survivors and the controls. (II, III)

4.3 Measure

4.3.1 Neuropsychological Tests (I)

The neuropsychological tests were divided into four different groups according to what functions presumably were measured.

Intellectual functions. Seven subtests were selected from the complete test battery of the Wechsler Adult Intelligence Scale. The WAIS subtests used were Information, Comprehension, Similarities, Digit Span, Digit Symbol, Picture Completion, and Block Design. The verbal intelligence quotient (VIQ) and performance intelligence quotient (PIQ) were estimated, and each subtest was also analyzed separately (Wechsler 1955).

Memory functions. Wechsler Memory Scale I was used (Wechsler 1945). In the Homogenous Interference Memory Test, the participants were asked to recall the first set of three isolated words that were presented in succession and then the second set. This was repeated three times with different words (Christensen 1975). The Verbal Learning Task included presenting the participants with a series of unrelated words, and then asking them to reproduce them in any order (Christensen 1975). In the Benton Visual Retention Test (BVTR), modified by Vilkki, the 10 cards of Form C were used, with the participant instructed to draw the figure(s) after the removal of the card (Vilkki 1989).

Orientation and attention. Trail-Making Tests A and B were used as previously described (Reitan 1971). The Stroop Color-Word Test consisted of instructing the participants to read aloud color words printed in black on the white card. After naming the colors the participants were asked to name the color of a circle. Finally, they were instructed to say the color of the written word, which was different from the color it names, without reading the words (Stroop 1935).

Motor performance. Instructions for the Purdue Pegboard Test were followed as previously reported (Lezak 1983). The Finger Tapping Test consisted of three 10-sec trials with the right and left hand separately (Lezak 1983). The Reaction Time Test required the use of a two-channel reaction time meter, where the
machine generates 200-msec light impulses at random interstimulus intervals (1–4 sec) on one or the other channel, left or right. The participants were instructed to push a button on the same side as the light was seen. The reaction time meter calculates means and variation rates of 10 light flashes (Winqvist et al. 2001).

4.3.2 Health related quality of life (HRQoL) (II)

We used the RAND-36 (Version 1.0) questionnaire to assess HRQoL. RAND-36 is an internationally used, validated and reliable self-report questionnaire for assessing HRQoL with Finnish population-based norms. The RAND-36 is composed of 36 items with standardized response choices and it contains eight different subscales: physical functioning (PF), social functioning (SF), role limitations due to physical problems (RP), role limitations due to emotional problems (RE), mental health (MH), vitality (VT), bodily pain (BP), and general health perception (GH). For each subscale scores were coded, summed up and transformed into a scale from 0 to 100, in which a higher score indicated better health (Aalto 1999).

4.3.3 Depressive symptoms and mental distress (III)

The BDI is a self-administered, 21-item instrument for evaluating depressive symptoms. Respondents rate symptoms on a four-point scale ranging from 0 to 3. Cut-off scores for clinically significant symptoms of depression are 10–16 (mild), 17–29 (moderate), and 30–63 (severe). A BDI score under four is suggested to indicate a denial or repression process in mental well-being and depression (Beck 1961).

The GHQ-12, a self-administered, twelve-item screening instrument for psychological distress, is also widely used and well validated. The scale measures recently experienced psychological symptoms, and each item is rated on a four-point scale with higher scores indicating higher mental distress. The scoring method in this study was bimodal (0, 0, 1, 1), i.e., the scores were calculated from
3 or 4 point answers only. The ideal cut-off sum value for identifying mental disorders varies between different studies, but the most commonly used cut-off sum value is >3, which was also used in our study. (Goldberg et al. 1997).

4.3.4 Physical late-effects and physical performance (II, IV)

Survivors were interviewed and examined by a pediatrician, and their medical files were reviewed. Diagnosed late effects were graded using the Common Terminology Criteria for Adverse Events, Version 3 (CTCAEv3). The CTCAEv3 represents the first comprehensive multimodality grading system to include both acute and late effects. CTCAEv3 grades adverse effects from 0 to 4. Grade 1 effects are minimal and usually asymptomatic. Grade 2 effects are moderate and they are usually symptomatic, but do not impair activities of daily living. Grade 3 effects are considered severe, requiring more serious interventions. Grade 4 effects are potentially life-threatening. Low-grade events (Grade 1 and 2) are considered tolerable and manageable. (Trotti et al. 2003).

The survivors underwent a physical performance test, which included the Pajulahti Sports Institute repeated movements test. The test included sit-ups (abdominal muscles), back extensions (dorsal muscles), crouches (muscles of the lower extremities) and push-ups (arm extensors). The test movements were repeated correctly as many times as possible during 30 seconds. The test results were classified as: 1 = Clearly below average, 2 = Below average, 3 = Average, 4 = Above average, 5 = Clearly above average. Respiratory and cardiovascular systems were tested with the UKK walking test. BMI was calculated from weight/square of height. (Keskinen et al. 2007).

4.3.5 The efficacy of the rehabilitation (IV)

The efficacy of the rehabilitation was evaluated at the end of the course by repeating the physical fitness tests and RAND-36 questionnaire. RAND 36 has been shown to be suitable for measuring the efficacy of rehabilitation. RAND 36 measured rehabilitees’ HRQoL comprehensively and variedly. (Pekkonen 2010). Based on literature, a change of 3–5 units in the RAND-36 items is considered a minimally clinically important difference (MCID) (Hays and Morales 2001), which means that the changes observed can be considered clinically significant.
4.4 Statistical methods

Demographic variables were compared among the three groups using either the x^2 test or analysis of variance, depending on whether the variables were categorical or continuous. To test differences between two groups, t-tests or Mann–Whitney U-tests were performed. Changes from one measurement to the next were computed, and paired t-tests were used to determine if the mean change differed significantly. All the statistical analyses were twotailed, and $P < 0.05$ was taken to indicate statistical significance. (I)

Differences between the groups were evaluated with t-test and variance analysis (ANOVA) with post-hoc Dunett analysis in continuous and normally distributed variables. Mann–Whitney U-test and Kruskall–Walls test were used with discrete and nominal variables. The one-sample t-test was used to compare the mean RAND scores of the study group with the mean scores of the Finnish control group. Categorical variables were analyzed using the Pearson Chi-Square test or Fisher’s exact test. A significance level of $P < 0.05$ was applied in all the analyses. All statistical analyses were performed using SPSS for Windows, version 14.0. (II)

The score differences in continuous variables between the groups were tested by using a Mann-Whitney U-test. The categorical variables were compared with a χ^2 test. All the statistical analyses were conducted using Statistical Package for Social Sciences (SPSS) 16.0 for Windows. A significance level of .05 was used to describe statistically significant differences. (III)

The one-sample t-test was used to compare the mean RAND-36 scores of the study group with the mean scores of the Finnish control group. Efficacy of the rehabilitation was analyzed using a paired t-test. The score differences in continuous variables between the groups were tested by using Mann-Whitney U-test and Kruskall-Walls test with non-parametric variables. Categorical variables were analyzed using the Pearson Chi-Square test or Fisher’s exact test. A significance level of $P < 0.05$ was applied in all the analyses. All statistical analyses were performed using SPSS for Windows, version 14.0. (IV)
5 Results

5.1 Neuropsychological Tests (I)

IQ Test Scores

The irradiated ALL survivors had significantly lower test scores in VIQ (P < 0.001) and PIQ (P < 0.001) compared with the controls. The non-irradiated survivors also achieved significantly lower VIQ (P = 0.006) and PIQ (P = 0.041) scores compared with the controls. Among the irradiated survivors, all the subtest scores except the Comprehension subtest were significantly lower than the corresponding scores in the control group. Among the nonirradiated survivors, a statistically significant decline was observed in the Information, Digit Symbol and Similarities subtests compared with the controls (Table 4).

The verbal IQ (mean = 91, P = 0.024) and performance IQ (mean = 100, P = 0.005) scores of the irradiated survivors were significantly lower than those of the non-irradiated subjects (mean 100 and 111, respectively) (Table 4). All the subtest scores except for the scores in the Comprehension and Similarities subtests were found to be significantly lower among the irradiated survivors than among the non-irradiated survivors (Table 4).

No significant differences were found in VIQ or PIQ estimates among patients treated with a lower (18–23 Gy; VIQ mean 96, PIQ mean 100) or higher irradiation dose (24 Gy; VIQ mean 89, PIQ mean 100). However, the 11 patients with a relapse or BMT, who also received the most intensive treatments, had significantly lower VIQ and PIQ scores than the other ALL survivors (mean VIQ 83 vs. 96, P = 0.004, mean PIQ 94 vs. 106, P = 0.018, in the relapsed/BMT group and the other survivors, respectively). The VIQ scores of the relapsed/BMT group were also significantly lower when compared to the other irradiated survivors (83 vs. 94, P = 0.016), respectively. The difference in the PIQ scores was not statistically significant. It was remarkable that even nine out of 11 relapse/BMT patients had the VIQ scores below 85.

Memory Functions

The ALL survivors achieved significantly lower scores in all the memory tests than did the controls. The irradiated group achieved significantly lower test scores
in all the tests compared with the controls, whereas the mean scores of the non-irradiated survivors differed significantly from the controls only in Digit Span Forward \((P = 0.003)\) (Table 4).

The irradiated survivor group performed all the memory subtests with lower test scores than did the non-irradiated group. The difference was significant in WMS Digit Span, WMS Immediate Logical Memory, WMS Delayed Logical Memory, Memory Interference Tests and the Verbal Learning Task (Table 4).

Orientation/Attention

The ALL survivors were significantly slower in the Stroop Color-Word and Trail-Making A \((P = 0.021)\) and B \((P = 0.004)\) tests compared with the controls (Table 4). The irradiated survivors were significantly \((P < 0.01)\) slower in the Trail-Making A and B and the Stroop Color-Word Test than were the controls, whereas the non-irradiated survivors were significantly \((P < 0.05)\) slower in the Stroop-Color-Word test compared with the controls. Additionally, the irradiated group performed significantly slower in the Trail-Making A \((P < 0.05)\) and the Stroop Color-Word Test \((P < 0.05)\) compared with the non-irradiated group.

Motor Performance Tests

Motor performance was found to be significantly slower \((P < 0.01)\) in all the motor performance tests when compared with the controls. The non-irradiated group was significantly slower only in the Reaction Time Test \((P = 0.005)\) compared with the controls. There was no statistically significant difference in motor performance between the irradiated and non-irradiated survivors (Table 4).
Table 4. Results of the neuropsychological tests among irradiated and non-irradiated young adult survivors of childhood acute lymphoblastic leukaemia (ALL) and healthy controls.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Irradiated Survivors (n=44)</th>
<th>Non-irradiated Survivors (n=20)</th>
<th>Controls (n=45)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M</td>
<td>Range</td>
<td>p</td>
</tr>
<tr>
<td>VIQ</td>
<td>91 (65-123) .024</td>
<td>100 (65-120) .006</td>
<td>109 (80-127) .000</td>
</tr>
<tr>
<td>Information</td>
<td>9 (4-15) .17</td>
<td>11 (3-16) .044</td>
<td>13 (7-18) .000</td>
</tr>
<tr>
<td>Comprehension</td>
<td>9 (4-12) .393</td>
<td>9 (3-12) .747</td>
<td>9 (5-13) .120</td>
</tr>
<tr>
<td>Similarities</td>
<td>8 (3-14) .226</td>
<td>9 (3-14) .000</td>
<td>13 (10-17) .000</td>
</tr>
<tr>
<td>Digit Span</td>
<td>8 (3-19) .26</td>
<td>11 (7-18) .011</td>
<td>13 (7-15) .000</td>
</tr>
<tr>
<td>PIQ</td>
<td>100 (62-145) .005</td>
<td>111 (85-141) .041</td>
<td>118 (95-150) .000</td>
</tr>
<tr>
<td>Picture Completion</td>
<td>10 (3-16) .668</td>
<td>11 (5-16) .171</td>
<td>12 (9-17) .000</td>
</tr>
<tr>
<td>Block Design</td>
<td>10 (5-15) .001</td>
<td>12 (6-17) .579</td>
<td>13 (7-19) .000</td>
</tr>
<tr>
<td>Digit Symbol</td>
<td>11 (4-19) .029</td>
<td>12 (7-18) .242</td>
<td>13 (7-15) .000</td>
</tr>
<tr>
<td>Memory functions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WMS Number Series Forward</td>
<td>6 (9-8) .187</td>
<td>6 (4-8) .003</td>
<td>7 (5-8) .000</td>
</tr>
<tr>
<td>WMS Number Series Backwards</td>
<td>4 (2-7) .19</td>
<td>5 (3-7) .82</td>
<td>5 (3-7) .000</td>
</tr>
<tr>
<td>WMS Immediate Logical Memory</td>
<td>10 (1-18) .006</td>
<td>13 (2-20) .711</td>
<td>14 (9-20) .000</td>
</tr>
<tr>
<td>WMS Delayed Logical Memory</td>
<td>9 (1-16) .007</td>
<td>12 (2-19) .824</td>
<td>12 (9-15) .000</td>
</tr>
<tr>
<td>Memory Interference</td>
<td>13 (8-18) .17</td>
<td>15 (7-18) .426</td>
<td>16 (9-23) .000</td>
</tr>
<tr>
<td>Verbal Learning Task</td>
<td>40 (26-50) .025</td>
<td>44 (32-48) .051</td>
<td>45 (37-49) .000</td>
</tr>
<tr>
<td>Benton-C</td>
<td>22 (14-26) .021</td>
<td>24 (18-26) .892</td>
<td>24 (20-26) .022</td>
</tr>
<tr>
<td>Orientation and attention</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trail-Making test A</td>
<td>31 (16-51) .023</td>
<td>27 (11-42) .820</td>
<td>27 (20-39) .001</td>
</tr>
<tr>
<td>Trail-Making test B</td>
<td>89 (35-281) .115</td>
<td>72 (23-164) .095</td>
<td>60 (28-127) .001</td>
</tr>
<tr>
<td>Stroop Color-Word</td>
<td>115 (80-207) .028</td>
<td>102 (78-138) .025</td>
<td>91.9 (65-130) .000</td>
</tr>
<tr>
<td>Motor functions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Purdue Pegboard. Right hand</td>
<td>15 (7-19) .51</td>
<td>16 (12-19) .549</td>
<td>16 (14-19) .003</td>
</tr>
<tr>
<td>Purdue Pegboard. Both hands</td>
<td>12 (7-16) .633</td>
<td>13 (9-19) .914</td>
<td>13 (12-18) .007</td>
</tr>
<tr>
<td>Reaction Time</td>
<td>370 (224-776) .465</td>
<td>353 (264-460) .005</td>
<td>313 (214-461) .001</td>
</tr>
<tr>
<td>Finger Tapping. Right Hand</td>
<td>48 (32-65) .064</td>
<td>52 (39-65) .431</td>
<td>53 (41-64) .000</td>
</tr>
<tr>
<td>Finger Tapping. Left Hand</td>
<td>44 (31-59) .132</td>
<td>47 (37-57) .239</td>
<td>49 (39-60) .000</td>
</tr>
</tbody>
</table>

VIQ Verbal Intelligence Quotient (Wechsler Adult Intelligence standard test score); PIQ Performance Intelligence Quotient (Wechsler Adult Intelligence standard test score). \(p^a \) difference between irradiated and non-irradiated groups; \(p^b \) difference between non-irradiated and control groups; \(p^c \) difference between irradiated and control groups.
5.1.1 Comparison of IQ at the end of Treatment, 5 Years After Treatment and a Mean of 17 Years After Completion of Therapy

A total of 45 survivors had results of a previous neuropsychological testing available. Figures 2 and 3 show the mean verbal and performance IQ of the survivors in the irradiated and the non-irradiated groups at three different time points. Significant decline during the study period was observed both in VIQ and PIQ in the irradiated group, but only in VIQ in the non-irradiated group (Figs. 2 and 3).

Irradiated Group

In the paired t-test analysis the mean decline in VIQ among the 16 irradiated survivors was 7 (95% CI 3–10) standard points and in PIQ 12 (95% CI 5–18) standard points between the first and the last examination. The decline in VIQ between the second and the last examination among the 20 irradiated survivors was a mean of 5 (95% CI 1–10) and in PIQ 8 (95% CI 3–12) standard points.

Non-Irradiated Survivors

In the paired t-test analysis the non-irradiated survivor group showed a significant decline in VIQ between the first and the last examination, mean 8 (95% CI 2–13) standard points (N = 12). Instead, no significant decline was seen in PIQ, mean change 3 (95% CI 4–9) standard points. No significant IQ changes were observed between the second and the third examination in this group.
Fig. 2. Mean VIQ scores at the end of leukaemia treatment (1), 5 years later (2), and a mean of 17 years after completion of the therapy (3) in survivors treated with radiation therapy (RT) and with chemotherapy only (CT). In the RT group a statistically significant decline was found between the first and the last examination ($P = 0.007$) and between the second and the last examination ($P = 0.0017$). In the CT group a significant decline was observed only between the first and the last examination ($P = 0.032$).

Fig. 3. Mean PIQ scores at the end of leukaemia treatment (1), 5 years later (2), and a mean of 17 years after completion of the therapy (3) in survivors treated with radiation therapy (RT) and with chemotherapy only (CT). In the RT group a statistically significant decline was observed between the first and the last examination ($P = 0.005$)
and the second and the last examination (P = 0.005). In the CT group the difference was not statistically significant.

5.2 HRQoL

5.2.1 Physical late-effects

Expert rating showed that treatment-related low-grade (mild or moderate) late effects were present in 33% and high-grade (sever or life threatening) effects in 36% of the ALL survivors. Lifethreatening late effects were diagnosed in 17% of the irradiated survivors. Severe late effects included infertility (seven cases), epilepsy (two cases), cognitive impairment (one case), obesity (four cases) bone exostosis (one case) and hearing loss (one case). Lifethreatening late effects were found in 11 survivors (13 secondary malignancies and 1 epilepsy). Compared to the controls, the survivors were less often married and lived more often with their parents (Table 3).

5.2.2 Emotional and social well-being

BDI scores indicated moderate or severe depression significantly less frequently in the ALL survivors compared to the controls (1.4% vs. 8.9%, p = 0.039). BDI scores indicated no depression in 80.8% of the ALL survivors and 73.3% of the control group.

In the GHQ, 80.8% of the ALL survivors and 78.8% of the control group reported no mental distress. The mean GHQ scores were under the cut-off score in both of the groups, and the scores did not differ significantly between the groups.

Exploration of the depressive symptoms revealed that the ALL survivors obtained significantly lower mean BDI scores compared with the controls, indicating fewer depressive symptoms. Treatment group had no effect on the BDI scores: no significant difference was found between the irradiated and non-irradiated treatment groups. However, the irradiated ALL survivor group obtained a significantly lower mean score than the control group. No significant difference in BDI scores was found between the non-irradiated survivors and the controls.

In comparison to the controls, survivors with equal or more than 20 years of follow-up had significantly lower scores in BDI than controls (p = 0.010).
were no group differences between survivors with 20 or more years of follow-up and the survivors with shorter follow-up.

Contrary to our expectations, no significant differences in BDI scores were found between genders among the ALL survivors. However, the female survivors obtained significantly lower BDI scores than the female control group (2.77 vs. 7.13, \(p < 0.05 \)). The BDI scores of the irradiated survivors did not differ significantly from the non-irradiated survivors or the control (2.96 vs 3.38), but the irradiated females obtained significantly lower mean BDI scores than did the female controls (2.50 vs. 7.13, \(p < 0.05 \)). No significant differences were observed between nonirradiated survivor males or females when compared with the controls.

Survivors with high-grade (severe or life-threatening) late-effects did not differ statistically in BDI (3.34 vs 5.67), or GHQ-12 scores from the healthy controls (1.29 vs 1.64), or from those with no or low-grade late-effects (BDI 3.43 vs 2.74; GHQ 1.29 vs 1.06). However, mean BDI scores in 11 ALL survivors with life-threatening late effects were remarkably lower than in the control group (mean 1.2 (SD 2.1) vs. 5.7 (SD 9.0)), although the difference did not reach statistical significance.

5.2.3 HRQoL in ALL survivors after an average of 20 years after the diagnosis

Comparison with the Finnish population norms showed that the ALL survivors scored statistically significantly better than the average in all dimensions of RAND-36 except for the bodily pain subscale. The HRQoL was better than the norms in both the irradiated and non-irradiated groups in six subscales.

ALL survivors showed good HRQoL scores in comparison to the healthy young adults selected randomly from local population registry (control group). They scored significantly better than controls on the subscales of role limitations due to emotional problems \((P = 0.030) \), mental health \((P = 0.030) \), and vitality \((P = 0.004) \). There was no difference between survivors and the control group in the subscale general health. The irradiated group had significantly higher scores on the subscales of mental health \((P = 0.027) \) and vitality \((P = 0.009) \) compared to controls.

There were no group differences between irradiated and non-irradiated survivors, or between irradiated male and non-irradiated male survivors. However, compared to female controls, female survivors had significantly higher scores on
role limitations due to emotional problems \((P = 0.005)\), vitality \((P = 0.004)\), mental health \((P = 0.002)\), social functioning \((P = 0.040)\), and bodily pain \((P = 0.016)\).

In comparison to the controls, survivors with more than 20 years of follow-up had significantly higher scores in vitality \((P = 0.006)\) and mental health \((P = 0.011)\). Furthermore, on the subscale vitality \((P=0.043)\) and mental health \((P = 0.040)\), survivors with high-grade late effects scored significantly better than controls. Relapsed survivors obtained significantly better scores on the subscales mental health \((P = 0.004)\) and vitality \((P = 0.004)\) than the controls (Table 5).

Table 5. The score differences for RAND-36 dimensions among of low- and high-grade late-effects, relapse and controls. Out of the 74 participants altogether 63 participated to the medical examination, of which 19 had no medical late-effects. An asterisk denotes statistically significant difference against the control group (* \(p < .05\), ** \(p < .001\), *** \(p < .001\)).

<table>
<thead>
<tr>
<th>RAND-36</th>
<th>Low-grade effect (n=21)</th>
<th>High-grade effect (n=21)</th>
<th>Relaps (n=11)</th>
<th>Controls (n=146)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical functioning (PF)</td>
<td>92 17</td>
<td>93 9</td>
<td>93 9</td>
<td>95 10</td>
</tr>
<tr>
<td>Role limitations due to physical problems (RP)</td>
<td>70 40</td>
<td>89 25</td>
<td>91 20</td>
<td>84 28</td>
</tr>
<tr>
<td>Role limitations due to emotional problems (RE)</td>
<td>89 26</td>
<td>84 32</td>
<td>82 31</td>
<td>82 31</td>
</tr>
<tr>
<td>Vitality (VT)</td>
<td>72 12</td>
<td>78* 16</td>
<td>83** 11</td>
<td>68 19</td>
</tr>
<tr>
<td>Mental health (MH)</td>
<td>79 14</td>
<td>82* 19</td>
<td>85** 21</td>
<td>75 18</td>
</tr>
<tr>
<td>General health (GH)</td>
<td>69 25</td>
<td>76 21</td>
<td>76 27</td>
<td>74 18</td>
</tr>
<tr>
<td>Social functioning (SF)</td>
<td>84 21</td>
<td>91 17</td>
<td>92 19</td>
<td>87 20</td>
</tr>
<tr>
<td>Bodily pain (BP)</td>
<td>74 26</td>
<td>85 19</td>
<td>85 23</td>
<td>79 22</td>
</tr>
</tbody>
</table>

5.2.4 The occupational rehabilitation course

Despite the overall high scores in RAND-36, need for rehabilitation was observed in 14 survivors by the examiners and the expert group. Altogether, nine subjects participated in a rehabilitation course. There was no significant difference in the RAND-36 scores between those who were selected to the rehabilitation course compared to the scores of the non-participant group.

Treatment-related severe or life threatening late effects were found by expert rating in as many as 67% of the participants. Severe late effects included secondary malignancies, complete infertility, cognitive impairment and
hypopituitarism with growth impairment and one case with multiple bone exostosis. In addition to these, survivors had impaired hearing/ unilateral deafness, musculoskeletal symptoms, obesity, allergy, asthma, headache, insomnia, depression and drinking problem.

At the onset of rehabilitation, participants’ physical functioning was somewhat/clearly poorer than average in all domains. Over the course of rehabilitation, physical functioning improved, but remained somewhat below average. BMI decreased to normal during the rehabilitation period.

The course participants reported good HRQoL measured by RAND-36. Comparison with the Finnish population norms showed that they scored statistically even better on the subscales physical functioning (p = 0.024), role limitations due to emotional problems (p = 0.000) and social functioning (p = 0.006). There was no difference between the survivors who participated in the rehabilitation course and those who did not.

These young adult survivors of childhood ALL reported good mental well-being and no depressive symptoms. There was no difference between those ALL survivors who participated in the rehabilitation course and who did not.

Following rehabilitation, a negative change was seen in six domains of HRQoL. This change was not statistically significant. At the beginning of rehabilitation, the survivors who participated in rehabilitation scored statistically even better on the subscales physical functioning (p = 0.024), role limitations due to emotional problems (p = 0.000) and social functioning (p = 0.006), but this difference was no longer seen at the end of the rehabilitation period.

Nearly half of the young participants had some indication of a mood problem, which not all of them were able to recognise or willing to address. Some brought up depressed mood, which had in some participants been associated with suicidal ideation. The rehabilitees also brought up problems associated with adaptation and self-esteem. In addition, some had problems with alcohol use, which they denied, however.

Further measures and recommendations

Disability pension was recommended for one of the participants. One of them was recommended work practice via the Social Insurance Institution/Farmers’ Social Insurance Institution at another place of work in order to assess work ability. One of the participants was accepted to a study program; the onset of studies was postponed for a year because she had a job she liked. One of the participants went
abroad to work and take part in a course. One had a job interview lined up at the end of the course. Four course participants continued to look for work. They were deemed not to be in need of vocational training; their problem with finding a job was due to their psychosocial situation and lack of motivation. They were still in need of special support. (Table 6).

The rehabilitees’ job/study situation one year and five years after rehabilitation

After a one-year follow-up, the rehabilitees’ life situation had not changed significantly compared to the final phase of the rehabilitation. Three were employed, four were still looking for a job, and one was studying. One of the rehabilitees had been granted a pension. At the one-year follow-up, the rehabilitees were also asked to assess how issues associated with key matters had been addressed during the course in relation to their needs. Two survivors thought that there had not been enough emphasis on job-related issues. They were dissatisfied with how they had been able to find employment. Partly for this reason, they felt that the vocational intervention had been useless. Five years after the end of the rehabilitation course three of the participants were on retirement, four were employed, and one had died. One person was lost to follow-up. Three out of four employed survivors had changed to a less demanding job. (Table 6).
Table 6. The rehabilitees' characteristics and job/study situation one year and five years after rehabilitation.

<table>
<thead>
<tr>
<th>Participant</th>
<th>Age when diagnosed</th>
<th>Treatment</th>
<th>Gy</th>
<th>Relaps</th>
<th>CVCA</th>
<th>Cognitive/Learning difficulties</th>
<th>Education</th>
<th>Marital status</th>
<th>Work</th>
<th>Further recommendations</th>
<th>Physical and psychological limitation</th>
<th>Situation after rehabilitation</th>
<th>Situation after 1 year</th>
<th>Situation after 5 years</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7</td>
<td>Radiation</td>
<td>28</td>
<td>Yes</td>
<td>24</td>
<td>Severe</td>
<td>Yes</td>
<td>Unmarried/Unmarried with parents</td>
<td>Vocational</td>
<td>Yes</td>
<td>Disability pension</td>
<td>Yes</td>
<td>Yes</td>
<td>Retired</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>Radiation</td>
<td>20</td>
<td>No</td>
<td>24</td>
<td>Mild</td>
<td>No</td>
<td>Unmarried/Unmarried with parents</td>
<td>Vocational</td>
<td>No</td>
<td>Education</td>
<td>Yes</td>
<td>No</td>
<td>Student</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>Non-radiation</td>
<td>21</td>
<td>No</td>
<td>25</td>
<td>Mild</td>
<td>No</td>
<td>Unmarried/Unmarried with parents</td>
<td>Vocational</td>
<td>Yes</td>
<td>Education</td>
<td>Yes</td>
<td>No</td>
<td>Employed</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>Radiation</td>
<td>32</td>
<td>No</td>
<td>Life-threatening</td>
<td>Yes</td>
<td>Unmarried/Unmarried with parents</td>
<td>Vocational</td>
<td>Yes</td>
<td>Work/Education</td>
<td>No</td>
<td>Yes</td>
<td>Work applicant</td>
<td>Retired</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>Radiation</td>
<td>31</td>
<td>No</td>
<td>30</td>
<td>Moderate</td>
<td>No</td>
<td>Unmarried/Unmarried with parents</td>
<td>Vocational</td>
<td>No</td>
<td>Therapy and education</td>
<td>No</td>
<td>Yes</td>
<td>Work applicant</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
<td>Radiation</td>
<td>30</td>
<td>No</td>
<td>21</td>
<td>Severe</td>
<td>Yes</td>
<td>Unmarried/Unmarried with parents</td>
<td>Vocational</td>
<td>No</td>
<td>Work practice</td>
<td>No</td>
<td>Yes</td>
<td>Employed</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>Radiation</td>
<td>34</td>
<td>Yes</td>
<td>24</td>
<td>Life-threatening</td>
<td>Yes</td>
<td>Unmarried/Unmarried with parents</td>
<td>Vocational</td>
<td>Yes</td>
<td>3.5 Work</td>
<td>No</td>
<td>Yes</td>
<td>Employed</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>Radiation</td>
<td>25</td>
<td>No</td>
<td>21</td>
<td>Mild</td>
<td>Yes</td>
<td>Married/2 child</td>
<td>Vocational</td>
<td>Yes</td>
<td>4 Work/Updating education</td>
<td>Yes</td>
<td>Yes</td>
<td>Work applicant</td>
</tr>
<tr>
<td>9</td>
<td>4</td>
<td>Radiation</td>
<td>33</td>
<td>No</td>
<td>25</td>
<td>Life-threatening</td>
<td>No</td>
<td>Divorced/cohabiting</td>
<td>Vocational</td>
<td>No</td>
<td>3.5 Updating education</td>
<td>No</td>
<td>Yes</td>
<td>Work applicant</td>
</tr>
</tbody>
</table>
6 Discussion

6.1 Discussion on results

6.1.1 Neuropsychological functioning

In this study we found that young adult survivors of childhood ALL treated with cranial irradiation had clear progressive deficits in their neurocognitive functioning at a mean of 20 years after diagnosis compared with healthy controls. Statistically significantly lower test scores were found in verbal and performance IQ, memory functions, orientation/attention and motor functions. Non-irradiated ALL survivors performed significantly better, but even they had statistically significant impairments in some of the neuropsychological test scores compared with the controls, particularly in the areas of VIQ and PIQ, sequential reasoning, working memory and information processing speed.

These findings are consistent with most other studies that demonstrate major cognitive impairment of CRT and milder deficits among those treated with chemotherapy only. Since the first report by Meadows et al. (1981) numerous studies have shown that cancer patients treated with irradiation are at the greatest risk of developing treatment-related neurocognitive deficits. A recent meta-analytic review of the neurocognitive effects of CRT reported decreased intellectual functioning, poor academic achievement, deficient attention, information processing, executive functioning, psychomotor and visuospatial skills, and memory compared with controls (Campbell et al. 2007). However, somewhat controversial results have been obtained concerning late effects of chemotherapy only. The most common neuropsychological effects of chemotherapy alone involve deficits in visual processing (Brown et al. 1998, Copeland et al. 1996), visual-motor functioning (Copeland et al. 1996, Kingma et al. 2002, Mahone et al. 2007) and attention and executive functioning (Buizer et al. 2009, Espy et al. 2001, Moleski 2002, Waber 2000). The results of this study agree well with studies, which have shown that chemotherapy without irradiation of the central nervous system might decrease cognitive and academic functioning (Copeland et al. 1996, Moleski 2000, Peterson et al. 2008). Mennes et al. (2005) concluded that children treated for ALL with chemotherapy are impaired only in selective aspects of cognitive functioning; attention, concentration and information processing speed. Memory difficulties are multifactorial in origin.
Inefficient storage of new information can be compounded by diminished attention and poor information-processing skills. (Brouwers & Poplack 1990, Mirsky et al. 1991, Rodgers et al. 1992). In our study attention tests were performed with lower test scores by irradiated survivors. Even non-irradiated had difficulties in the Digit Span subtest. Attention and concentration impairments are particularly common for ALL survivors (Langer et al. 2002, Mulhern & Butler 2004, Rodgers et al. 1999, Nathan et al. 2007, Rodgers et al. 2003). In our study the irradiated survivors performed slower in motor performance tests when compared with the control group, and this is one of the most frequently documented findings also in other ALL studies (Moleski 2000). However, the non-irradiated group had deficits only in their reaction times, and this finding is in accordance with the results reported by Mennes et al. (2005).

Our findings of progressive decline after cranial irradiation therapy is supported by Kato et al. (1993) who also observed IQs decline even 10 years after diagnosis. Link et al. (2006) investigated 44 adults treated for childhood ALL, and showed impaired neuropsychological capacity in the period 8–27 years after CRT. Despite methodological shortcomings, we also had evidence of a decline in cognitive functioning even in non-irradiated survivors.

The decline in cognitive performance among the ALL survivors of this study could be explained by white matter changes in the brain. White matter appears to play an important role in neurocognitive problems (Cole & Kamen 2006, Moore 2005) and even a slight pathology of white matter has been associated with brain dysfunction (Cole & Kamen 2006, Reddick et al. 2006). Reddick et al. (2006) find that smaller white-matter volumes were associated with larger deficits in attention, intelligence, and academic achievement. Survivors who received cranial irradiation had more severe impairment of white-matter volume development and more significant deficits in learning, instead survivors who received chemotherapy alone had less damage to the white matter and were able to compensate intellectually and academically for attentional deficits. (Reddick et al. 2006). Researchers have hypothesized that the developing brain may be more susceptible to damage, because newly synthesized myelin has higher metabolic activity and lower stability that makes it more vulnerable to the toxic effects of therapy (Anderson et al. 2009). This assumption is also supported by the finding of resent magnetic resonance imaging studies (Anderson et al. 2009, Lesnik et al. 1998, Mahone et al. 2007). White matter abnormalities in aging have also been associated with cognitive decline that leads to dementia. Our relapsed/BMT survivors had below normal IQ scores. They had received also the highest doses
of CRT and neurotoxic chemotherapy. It remains to be seen whether additional white matter loss with aging places these survivors at increased risk of early dementia later on in their lives.

6.1.2 Depressive symptoms, well-being and health-related quality of life

Compared to healthy controls, ALL survivors reported significantly less depressive symptoms or depression in BDI and an equal amount of mental distress in GHQ-12. In this study, the irradiated and female ALL survivors reported less depression than the other study groups.

It is difficult to draw firm conclusions of the prevalence of depression in adult survivors of childhood leukaemia from the published articles, but generally most survivors seem not to be particularly depressed (Marsland et al. 2006, McDougall & Tsonis 2009). Supporting our findings, in a report from the Childhood Cancer Survivor Study Zelzer et al. (2008) and others found that the survivors had lower scores for depression, anxiety and global distress compared to the population norms. Likewise Pemberger et al. (2005) found less depression in a group of 78 childhood cancer survivors than the population norms using the same BDI questionnaire as was used in this study. Large scale multi-centre studies suggest that the young adult survivors may be at slightly greater risk of depressive symptoms compared to siblings (Pemberger 2005, Zeltzer et al. 1997). In a large, sibling-controlled study of young adult survivors of childhood leukaemia, Hodgkin’s disease, and non-Hodgkin’s lymphoma, Zebrack et al. (2002b) found that survivors had a significantly increased risk for reporting symptoms of depression and somatic distress, but the rates fell within the population norms. Using parental reports, Schultz et al. (2007) found the risk for symptoms of depression, anxiety and psychological problems to be 1.5 times higher in adolescent survivors of childhood cancer compared to their siblings.

We found that young adult survivors of childhood ALL reported good HRQoL. The survivors even had significantly higher scores than controls on the subscales role limitations due to emotional problems, mental health and vitality. Long follow-up time, more severe late effects and treatment for a relapse were associated with higher quality of life, especially in the dimensions of vitality and mental health. No difference was found on the general health subscale between the study groups. However, treatment-related late effects were found by expert rating in 70% and severe late effects in as many as 36.5% of the survivors.
Chronic health conditions have been associated with a reduced QOL. Nevertheless, in our study the survivors who had been diagnosed more than 20 years ago and who had high-grade late effects of treatment or had even relapsed had higher scores than other survivors or controls. However, our results are congruent with previous findings that seven out of 10 survivors develop at least one medical late effect, which can include the development of physical impairments and second malignancies (Oeffinger et al. 2006). The frequency of life-threatening late effects was as high as 17% in the irradiated group, possibly explained by a high rate of secondary malignancies, mainly meningiomas in our study population (Banerjee et al. 2009). They were also less often married and more often living with their parents compared to the controls.

Our findings that ALL survivors rated their general health and social functioning as good are in discordance with the magnitude of the detected late-effects. The findings of the current study are in accordance with the results of other studies where the survivors of cancer had equal or better HRQoL than controls or population norms (Apajasalo et al. 1996, Blaauwbroek et al. 2007, Elkin et al. 1997, Langeveld et al. 2004;2002, Pemberger et al. 2005, Zebrack & Zeltzer 2003). In contrast to our study, a recent study by Blaauwbroek et al. (2007) found lower HRQoL in adult very longterm childhood cancer survivors than in survivors diagnosed more recently. This discrepancy between the results of our study and that of Blaauwbroek et al. (2007) may be explained by the inclusion of only survivors of leukemia in our study. Several studies have examined the HRQoL among the ALL survivors with more or less conflicting results, which may be at least partly due to methodological differences. Zeltzer et al. (2008) found that survivors had poorer outcomes on six out of eight dimensions in SF-36. Mody et al. (2008) found in a large study that ALL survivors reported more adverse general health and mental health, functional impairments, and activity limitations compared with their siblings. Further, survivors who had received irradiation or had suffered a relapse were found to have the greatest risk for lower HRQoL, which is in contrast to our findings. Mody et al. 2008). Meeske et al. (2005) found that survivors without fatigue had significantly higher QOL in five out of ten SF-36 subscores compared to population norms. Most interestingly, significantly higher scores than in the present study were found on the same subscales of vitality, mental health and role limitations due to emotional problems (Meeske et al. 2005). However, in the study of Meeske et al. (2005) survivors who suffered from fatigue had lower QOL than population norms. Unfortunately, we did not measure fatigue separately among our survivors.
6.1.3 The occupational rehabilitation intervention

We aimed to investigate here whether occupational rehabilitation could improve employment and quality of life in survivors of ALL with reduced ability to become employed. In our study the employment of the survivors did not improve significantly. Five years after the rehabilitation course one of the nine participants had died, three were entitled to permanent disability retirement and four were employed. Three of them had changed to less demanding work. The physical fitness of the survivors improved and their BMI decreased after rehabilitation. Instead HRQoL declined in 6 out of 8 domains.

In contrast to our study, earlier studies have reported higher rate of employment after institutional occupational rehabilitation in various disease groups in Finland (Järvikoski 2002). In our study, the problems of employment persisted almost invariably after rehabilitation. One third of the participants were on disability pension after a five-year follow-up period. This may be explained by poor selection of participants. Vast majority of participants of rehabilitation here had advanced functional and occupational deficits related to the leukemia experience and treatment, which significantly reduced the potential for occupational rehabilitation. Many of these survivors had undergone several attempts of vocational rehabilitation before participation in this study. For some of the survivors here a goal of becoming employed was too high. Correct targeting and timing of the intervention plays a key role for finding employment (e.g. Pohjolainen 2006), since institutional rehabilitation benefits neither healthy nor too ill individuals (Pekkonen 2010).

In our study measuring HRQoL by RAND-36 was neither useful in identifying participants with occupational problems nor in measuring the effect of rehabilitation. We observed a surprising shift in a negative direction in six domains of HRQoL during the follow-up. Despite of significant improvement in physical fitness and decrease in BMI, scores of physical functioning in RAND-36 decreased to the level of normal population scores. This discrepancy may be an indicator of more realistic self image and better awareness of physical deficits and hinders of employment. In our previous study we have shown that RAND-36 is not an appropriate instrument for measuring HRQoL in this group of survivors (Harila et al. 2010).
6.2 General discussion

Childhood cancer can be a devastating experience that places patients at increased risk for disruption in psychological functioning (Zebrack 2000). A life-threatening disease does not necessarily lead to long-term impairment of mental well-being, but may even generate positive effects. It can lead to greater emotional maturity and finding a new outlook on life. (Marsland et al. 2006, Phipps 2005). As Andrykowski et. al. (1993) suggested a serious illness should not be viewed as a stressor with only negative outcomes, but rather as a transitional event which creates opportunity for both positive and negative outcomes.

As the disease is treated in childhood, survivors’ development of coping strategies may be affected in such a way that the subjects tend to repress possible difficulties in their lives and overestimate their well-being -“disability paradox”. The results could possible be explained by denial mechanism of the long-term cancer survivors compensating and overcompensating extant late effects. (Canning et al. 1992). Repressive adaptive style has been documented among cancer patients in childhood and adolescence (Canning et al. 1992, Gil 2005), but the adaptive styles have been poorly studied in long-term survivors. Repression in previous studies has been characterized by under-reporting the negative aspects in self-administered questionnaires and by emphasizing the positive elements.

We believe that our finding of fewer depressive symptoms in the BDI than the controls and, the mean BDI score in the ALL survivors group was below four, indicating denial or repression of negative thoughts and emotions. Findings of higher HRQoL in more affected ALL survivors lends support to the idea of socially desirable response bias (SDRB). Also findings of declined HRQoL after rehabilitation support idea of response shift. Studies suggest that response shift is found in cancer patients, but no consensus has been reached on the magnitude and direction of the shift. In our study irradiated survivors were the oldest, treated during the early era when supportive care and psychosocial support were not at the level where they are today, which may have contributed to the development of SDRB. More recently treated survivors who had very few, if any, late effects did not differ from their healthy peers, which seems to indicate that they have coped well with the childhood trauma.

Socially desirable response bias (SDRB) has recently been reported to affect the assessment of subjective quality of life among childhood cancer survivors. The results of this study also refer to the notion that the repressive adaptive style may persist into adulthood among the ALL survivors, or on the other hand, that
psychological distress may manifest itself as bodily pain. The SDRB is thought to be a gradually developing unconscious process to cope with stressful life situations, leading the subjects to underreport negative aspects in their lives and accentuate positive. It is reasonable to consider cancer as a very stressful illness. As the disease is treated in childhood, the survivors’ developing coping strategies may be affected in a way that the subjects tend to deny possible difficulties in their lives and overestimate their well-being. (O’Leary et al. 2007).

The idea of SDRB leads further to the issue that it would be important to assess the defensive styles and coping mechanisms of the patients in order to obtain a reliable picture of the true quality of life. Quantitative methods suffer from limitations in this, but with qualitative methods they may be easier to achieve. These two approaches support each other, and should by no means be considered as excluding each other. One should keep in mind that HRQoL cannot be considered as a single entity; rather, it should be seen as consisting of several dimensions. These dimensions are investigated with several methods, which the conflicting results of the previous studies possibly refer to. Drawing general assumptions about the true quality of life is therefore difficult to accomplish. This accounts for the idea of calculating the mean scores at group level, which inevitably leads to loss of individual information.

Further, at the individual level, HRQoL is affected by a multiple number of uncontrollable variables, which in turn very likely affect the subjective meanings. Attempts to estimate the quality of life with self-rated questionnaires is thus difficult; this is important, considering that the assessment of HRQoL is often accomplished as part of treatment or rehabilitation plans. Correct targeting and timing of the occupational rehabilitation intervention plays a key role for finding employment (e.g. Pohjolainen 2006). If we can determine factors that complicate ALL survivors in finding employment, we may be able to help them to prepare for the labor market.

6.3 Methodological considerations

6.3.1 Strengths and weaknesses of the study

The strength of this study is that it has one of the longest follow-ups (20 years) of ALL survivors with representative data, and it is one of the first studies with a vocational training intervention aimed at ALL survivors. The present study was
based on an extensive neuropsychological test, well-known measures of the
HRQoL dimensions and depressive symptoms. Also late effects were graded
using CTCAEv3.

The strength of our neuropsychological study is the long follow-up period
and inclusion of longitudinal comparison data. The patients were personally and
carefully interviewed and examined by a pediatrician and a psychologist.
Although heterogenic, we believe that the studied group represents quite well the
first cohort of survivors. We also included a healthy control group in our study.
Unfortunately we did not have any follow-up data of the controls available.

One limitation of this study is the relatively small group of participants,
which also included relapsed patients. The survivors had been treated with
various treatment protocols, and the fact that SDRB or a coping mechanism was
not assessed. The present study also suffers from limitations in assessment of the
other variables possibly influencing HRQoL aside from the diagnosis and
treatments or sociodemographic variables. We also had a control group, randomly
recruited from the general population. Their response rate was low (40%), which
raises the question of selection bias. However, comparisons against the Finnish
population normative scores were conducted in RAND-36. The rehabilitation data
set is small, comprising only a study group, which puts considerable limitations
on interpretation of results. The specific impact of rehabilitation cannot be
evaluated with this study design due to lack of a control group. Selection of
participants for rehabilitation was not successful, because many of them did not
have preconditions for employment. This group may have benefited from
different type of rehabilitation e.g. rehabilitation focusing more on psychosocial
well-being.

Measuring HRQoL is today an important outcome indicator in evaluating
health-care interventions. It has been stated that HRQoL should be included in all
randomized cancer trials in addition to other outcome measures (Eiser 2004,
Pickard 2004, Solans 2008). However, the concept of HRQoL is inexact and thus
difficult to measure. A large number of instruments have been developed,
including both generic and disease-specific measures. (Wiebe 2003). The former
are designed to capture all aspects of HRQoL, and are used to collect information
on healthy as well as ill individuals. Disease-specific instruments, on the other
hand, aim to collect information on disease-specific health problems from more
specific populations. Disease-specific instruments tend to be more sensitive to
treatment-related changes, although the generic instruments provide a broader
context about change in HRQoL. (Wiebe 2003). Although the majority of the
instruments meet accepted standards of internal consistency and validity, relatively few provide data on test-retest reliability, structural validity, and sensitivity to change (Wiebe 2003). Large numbers or studies have even used non-standardized, study-specific instruments, which does not allow cross-study comparisons. Relative responsiveness varies across patient populations, which also partially explained our findings in the most affected leukemia survivors.

These quantitative questionnaire-based methods are an easy and cheap way to measure HRQoL in large groups of individuals and thus attractive. This has resulted in a large number of research articles in cancer patients and survivors, and the results have been contradictory. Our study results lie at the most positive end. The results from other investigations and personal contact with the survivors revealed that RAND-36 did not measure the true HRQoL, especially in the survivors with the most severe adverse effects of treatment. In previous studies with positive HRQoL findings in cancer survivors the result has been accepted as an indicator of positive psychological growth and change of values after a life-threatening disease without taking into account the possibility of response bias (Stam 2001, Zeltzer et al. 2009). At least according to our findings, HRQoL questionnaires may not be an appropriate way to measure the effectiveness of rehabilitation, either.

In addition to problems with poor measurement instruments, the majority of quality of life studies have also suffered from other methodological weaknesses, which include differing definitions and operationalization of the concept of HRQoL from one study to another, small sample sizes and low participation rates.

Problems of measuring QOL make evaluation and comparison of QOL difficult. QOL research presents an ethical dilemma: how to deal with an individual’s adaptation to lower achievement level and subjective satisfaction in a situation which objectively appears unsatisfactory? Should satisfaction of the survivors lead to withholding of rehabilitation or other interventions aiming to improve their situation? Survivors have individual needs, which can best be fulfilled if they are followed by health care professionals that are well aware of the consequences of cancer treatments. In many countries special late-effect clinics have been established. Such clinics would also improve the situation of our survivors in Finland, especially for those who have received the most harmful and intensive cancer treatments, e.g. cranial irradiation.
6.3.2 Future perspectives

We conclude that long-term survivors of ALL rate their HRQoL as good. However, we agree with O’Leary et al. (2007) that self-reported health-related quality of life has to be interpreted with caution. We suggest that high scores of quality of life measured with self-reported questionnaires cannot be trusted blindly; it would be more important to find out what these scores tell us. It appears that self-reported inventory may not be an optimal tool in assessing HRQoL among ALL survivors. Referring to the previous incongruent results and the results of this study, it seems that in addition to quantitative approaches also qualitative dimensions are needed in assessment of HRQoL to gain more specific individual information about the subjects’ quality of life.

In future, studies on HRQoL in childhood cancer survivors should consider synthesizing generic and cancer-specific measures and including qualitative measures especially when looking at coping mechanisms. In order to understand the whole picture of cancer survivors’ QOL, also “hard data” on adverse late effects should be included. One option to improve the QOL measurement is to add proxy reports in the studies. Comparisons of qualitative and quantitative data would provide a more comprehensive understanding of the survivors’ experiences and document the personal relevance of the different aspects of survivors’ HRQoL measures for individual survivors. Comparisons of group means on a variety of measures can give the impression that adjustment does not change over time, while inspection of individual scores can show a completely different pattern. Comparisons with norms can reveal that the population has a specific problem, but tell us nothing about the processes whereby the problems arose. Attention also needs to be given to issues of clinical rather than statistical change.

It would also be valuable to include the assessment of the defensive styles and coping mechanisms and response shift of the survivors. In the light of the results of the present study, which indicate that the subjects who presumably should have the lowest HRQoL do in fact report the greatest well-being, this use of qualitative measures seems to be especially important in the case of survivors with the most severe treatment-related late-effects.

In the future we should identify the need for occupational rehabilitation earlier, and aim at developing selection criteria that identify those who can be expected to benefit from such an intervention.
7 Conclusions

Survivors of childhood ALL suffer from long-lasting progressive neuropsychological impairment, especially when treatment includes cranial irradiation.

Survivors of acute lymphoblastic leukaemia report fewer depressive symptoms and equal mental well-being compared to healthy controls. Our findings support the idea that childhood leukaemia survivors’ subjective experience of well-being is possibly affected by repressive adaptive style.

Long-term survivors of childhood ALL reported equal or better HRQoL in RAND-36. Higher HRQoL scores were associated with more severe late effects and intensive therapy. Our findings support the idea of response bias.

The occupational rehabilitation course improved physical fitness and decreased overweight in long-term survivors of ALL, but impaired their HRQoL. The survivors with the most severe late effects ended up on disability retirement despite rehabilitation. Our study emphasizes the need for organized late follow-up of cancer survivors, preferably at special follow-up clinics.
References

Act 15 July 2005/566

SII 2003. 2

Stam H, Grootenhuis MA, Caron HN & Last BF (2006) Quality of life and current coping in young adult survivors of childhood cancer: Positive expectations about the further course of the disease were correlated with better quality of life. Psychooncology 15: 31–43.

Original publications

This list is based on the following publications, which are referred to in the text by their Roman numerals I-IV:

Reprinted with permission from John Wiley & Sons (I,II) and Wolters Kluwer Health/Lippincott Williams & Wilkins (III).

Original publications are not included in the electronic version of the dissertation.

1089. Miettinen, Johanna (2011) Studies on bone marrow-derived stem cells in patients with acute myocardial infarction

1091. Stefanius, Karoliina (2011) Colorectal carcinogenesis via serrated route

1092. Männistö, Tuja (2011) Maternal thyroid function during pregnancy : effects on pregnancy, peri- and neonatal outcome and on later maternal health

1093. Uusela, Toini (2011) Health-related quality of life and functional ability as patient-reported outcomes in rheumatoid arthritis : A study from two Finnish hospital-based populations

1094. Solyom, Szilvia (2011) BRCA/Fanconi anemia pathway genes in hereditary predisposition to breast cancer

1096. Lunnela, Jaana (2011) Internet-perusteisen potilasohjauksen ja sosiaalisen tuen vaikutus glaukoompotilaan hoitoon sitoutumisessa

1097. Koskela, Ritva (2011) Microscopic colitis: Clinical features and gastroduodenal and immunogenetic findings

1098. Kurola, Paula (2011) Role of pneumococcal virulence genes in the etiology of respiratory tract infection and biofilm formation

1099. Rimpiläinen, Riikka (2011) Minimized cardiopulmonary bypass in extracorporeal circulation : A clinical and experimental comparison with conventional techniques

1100. Kubin, Anna-Maria (2011) Characterization of signaling mechanisms regulating cardiac contractility

1102. Pasanen, Annika (2011) Prolyl 3-hydroxylases and hypoxia-inducible factor 3 : Their roles in collagen synthesis and hypoxia response, respectively
Marika Harila

HEALTH-RELATED QUALITY OF LIFE IN SURVIVORS OF CHILDHOOD ACUTE LYMPHOBLASTIC LEUKAEMIA