Jérôme Thevenot

BIOMECHANICAL ASSESSMENT OF HIP FRACTURE

DEVELOPMENT OF FINITE ELEMENT MODELS TO PREDICT FRACTURES
JÉRÔME THEVENOT

BIOMECHANICAL ASSESSMENT OF HIP FRACTURE
Development of finite element models to predict fractures

Academic dissertation to be presented with the assent of the Faculty of Medicine of the University of Oulu for public defence in Auditorium A101 of the Department of Anatomy and Cell Biology (Aapistie 7 A), on 25 November 2011, at 12 noon

UNIVERSITY OF OULU, OULU 2011
Thevenot, Jérôme, Biomechanical assessment of hip fracture. Development of finite element models to predict fractures
University of Oulu, Faculty of Medicine, Institute of Biomedicine, Department of Medical Technology, P.O. Box 5000, FI-90014 University of Oulu, Finland
Oulu, Finland

Abstract

Hip fracture is the most severe complication of osteoporosis. The occurrence of hip fracture is increasing worldwide as a result of the ageing of the population. The clinical assessment of osteoporosis and to some extent hip fracture risk is based on the measurement of bone mineral density (BMD) using dual X-ray absorptiometry (DXA). However, it has been demonstrated that most hip fractures occurring after a fall involve non-osteoporotic populations and that the geometry plays a critical role in the fracture risk assessment. A potential alternative for the assessment of hip fracture risk is finite element modelling, which is a computational method allowing simulation of mechanical loading. The aim of this study was to investigate different finite-element (FE) methods for predicting hip fracture type and eventually hip failure load in the simulation of a fall on the greater trochanter.

An experimental fall on the greater trochanter was performed on over 100 cadaver femurs in order to evaluate the failure load and fracture type. In all studies, assessment of BMD, measurement of geometrical parameters and generation of finite element models were performed using DXA, digitized plain radiographs and computed tomography scans.

The present study showed that geometrical parameters differ between specific hip fracture types. FE studies showed feasible accuracy in the prediction of hip fracture type, even by using homogeneous material properties. Finally, a new method to generate patient-specific volumetric finite element models automatically from a standard radiographic picture was developed. Preliminary results in the prediction of failure load and fracture type were promising when compared to experimental fractures.

Keywords: biomechanics, cervical fracture, computed tomography, failure load, finite element, fracture risk, hip fracture, patient-specific models, radiography, trochanteric fracture
Thevenot, Jérôme, Lonkkamurtuman biomekaniikan arviointi. Elementtimallien kehittäminen murtumien ennustamiseen
Oulun yliopisto, Lääketieteellinen tiedekunta, Biolääketieteen laitos, Lääketieteen teknikka, PL
5000, 90014 Oulun yliopisto
Oulu

Tiivistelmä
Lonkkamurtuma on osteoporoosin vakavin seuraus. Lonkkamurtumatapaukset kasvavat maailmanlaajuisesti väestön ikääntyvän myötä. Osteoporoosin ja osin myös lonkkamurtumariskin kliininen arviointi perustuu luun mineraalitiheyden mittaamiseen kaksienergisellä röntgenabsorptiometrilla (Dual-energy X-ray absorptiometry, DXA). On kuitenkin osoitettu, että suurin osa kaatumisen seurauksena tapahtuvaista lonkkamurtumatapauksista tapahtuu henkilöillä joilla ei ole todettua osteoporoosia, ja että myös luun muoto on tärkeä tekijä arvioittaessa lonkkamurtumariskiä. Laskennallinen mallintaminen elementtimenetelmällä mahdollistaa mekaanisen kuormituksen simuloinnin ja on potentiaalinen vaihtoehto lonkkamurtumariskin arviointiin. Tämän työn tarkoituksena on tutkia elementtimenetelmää lonkkamurtumatypin ja lopulta lonkan murtolujuuden ennustamiseksi simuloinnilla kaatumista sivulle.

Yli sataa reisiluuta kuormitettiin kokeellisesti murtolujuuden ja murtumatypin määrittämiseksi. Luun mineraalitiheyden arviointi, muotoparametrien mittaus ja elementtimallit tehtiin käyttäen DXA:a, digitalisoituja röntgenkuvia ja tietokonetomografiakuvia.

Tämä tutkimus osoittaa, että luun muotoparametrit vaihtelevat eri lonkkamurtumatypien välillä. Lonkkamurtumatypyppi voitiin ennustaa hyvällä tarkkuudella elementtimenetelmän avulla silloinkin, kun käytettiin homogeenisia materiaaliominaisuuksia. Lopuksi kehitettiin uusi menetelmä yksilöllisten kolmiulotteisten elementtimallien automaattiseen luontiin tavallisista röntgenkuvista. Alustavat tulokset lonkan murtolujuuden ja murtumatypin ennustamisessa ovat lupaavia.

Asiakirjat: biomekaniikka, elementtimenetelmä, kaulamurtuma, lonkkamurtuma, murtolujuus, murtumariski, röntgenkuvaus, sarvennoismurtuma, tietokonetomografia, yksilölliset mallit
To my family
Acknowledgments

This study was carried out at the Institute of Biomedicine, Department of Medical Technology at the University of Oulu, during the years 2006–2011. Thanks to the excellent conditions offered by the department, it has been pleasure for me to work here during all these years.

I would like to express my deep and sincere gratitude to my supervisor, Professor Timo Jämsä; his encouraging and personal guidance have helped me in many ways during the project. I am glad that he offered me the chance to work under his supervision, and that he always found time for discussions with me, despite my field being somewhat different from that of the department. I wish to thank my other Finnish co-authors, MSc Janne Koivumäki and PhD Pasi Pulkkinen, for their fruitful contribution to the thesis. In particular, I would like to thank Janne Koivumäki for the time we spent together developing our models and his large contribution in the post-processing part of the last study. Pasi Pulkkinen is especially acknowledged for statistical advice. I wish to thank my international co-authors, Prof. Felix Eckstein and Dr Volker Kuhn, for the experimental part of the study and the expert criticism they provided during the study.

I am very grateful to the official referees of this thesis, Docent Rami Korhonen from the University of Kuopio and Prof. Chris Langton from Queensland University of Technology, for their careful revision of the manuscript and their valuable comments.

I also want to thank MD, Prof. Miika Nieminen for answering all my questions from a clinical point of view and for the help he provided in scheduling access to the segmentation machine in the Department of Radiology for me and Janne. I also wish to thank Anna Vuolteenaho for revision of the language of this thesis.

I would like to warmly thank the staff of the Department of Medical Technology; you answered my endless questions and helped me with the difficulties and incomprehension I faced in daily life. Riikka, Mikko and Maarit, I thank you for the everyday support and all the discussions we had together. I really enjoyed the time I spent with you, as co-workers of course, but also as friends. Mikko Finnilä, I thank you for the talks we had about our professional life, but also about our shared interest in gastronomy and sports, you really have some social skills… I also would like to thank all the students who have been working with me on programming and image processing.
I will not forget to thank my friends; they showed me what Finnish culture is. They were with me when I was boiling in sauna, freezing in an iced-up river, eaten alive by mosquito while fishing… but all in all, they were there for me when I needed them and for sure, if I like Finland so much, they are one of the reasons why. I would like to thank Heikki Rantala, Pekka Mankila, Tytti Luikku, Thystere Bangue-Tandet, Minna Pulla-Rantala, Eija Junnila, Annika Juvani, Sandra Juutilainen, Jukka Junell, Teemu Kyllönen, Virpi Evesti and the ESN people… and all my friends outside the academia.

Finally, I want to thank my family for their support. Mum and dad, thank you for helping me despite the distance. Audrey and Cindy, thanks to you for supporting your brother. I want also to thank my cousin Franck and his wife Stephanie: you always welcomed me and my friends in your house with open arms, we always have enjoyable moments together, and I hope it will continue.

This study was financially supported by the International Graduate School in Biomedical Engineering and Medical Physics, the National Doctoral Programme of Musculoskeletal Disorders and Biomaterials, the Finnish Funding Agency for Technology and Innovation, and the Association Franco-Finlandaise pour la Recherche Scientifique et Technique.
Abbreviations

\[\Delta \text{ Difference of two values} \]
\[\alpha \text{ Angle} \]
\[\varepsilon \text{ Strain} \]
\[\sigma \text{ Stress} \]
\[\rho_{\text{app}} \text{ Apparent density} \]
\[\rho_{\text{ash}} \text{ Ash density} \]
\[\mu \text{ Shear modulus} \]
\[\nu \text{ Poisson’s ratio} \]
\[A \text{ Area} \]
\[\text{ANCOVA} \text{ Analysis of covariance} \]
\[\text{AO} \text{ Arbeitsgemeinschaft für Osteosynthesefragen} \]
\[\text{ASM} \text{ Active shape modelling} \]
\[\text{BMD} \text{ Bone mineral density} \]
\[C \text{ Cervical fracture} \]
\[\text{CFC} \text{ Medial femoral cortical thickness} \]
\[\text{CSA} \text{ Cross-sectional area} \]
\[\text{CSMI} \text{ Cross-sectional moment of inertia} \]
\[\text{CT} \text{ Computed tomography} \]
\[\text{DXA} \text{ Dual-energy X-ray absorptiometry} \]
\[E \text{ Young’s modulus} \]
\[\text{EPOS} \text{ European Prospective Osteoporosis Study} \]
\[F \text{ Force} \]
\[\text{FEBMD} \text{ Femoral neck bone mineral density} \]
\[\text{FE} \text{ Finite element} \]
\[\text{FEM} \text{ Finite element modelling} \]
\[\text{FNAL} \text{ Femoral neck axis length} \]
\[\text{FRAX}^{\circledast} \text{ WHO Fracture Risk Assessment Tool} \]
\[\text{FSC} \text{ Femoral shaft cortical thickness} \]
\[\text{FSD} \text{ Femoral shaft diameter} \]
\[\text{GLCM} \text{ Gray-level co-occurrence matrix} \]
\[\text{HAL} \text{ Hip axis length} \]
\[\text{HD} \text{ Femoral head diameter} \]
\[\text{HI} \text{ Homogeneity index} \]
\[\text{HSA} \text{ Hip structural analysis} \]
\[\text{HU} \text{ Hounsfield unit} \]
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>l</td>
<td>Length</td>
</tr>
<tr>
<td>MRI</td>
<td>Magnetic resonance imaging</td>
</tr>
<tr>
<td>ND</td>
<td>Femoral neck diameter</td>
</tr>
<tr>
<td>NIH</td>
<td>National Institute of Health</td>
</tr>
<tr>
<td>NSA</td>
<td>Femoral neck-shaft angle</td>
</tr>
<tr>
<td>PCS</td>
<td>Principal trabecular compressive system</td>
</tr>
<tr>
<td>PTS</td>
<td>Principal trabecular tensile system</td>
</tr>
<tr>
<td>QCT</td>
<td>Quantitative computed tomography</td>
</tr>
<tr>
<td>ROC</td>
<td>Receiver operating characteristic curve</td>
</tr>
<tr>
<td>ROI</td>
<td>Region of interest</td>
</tr>
<tr>
<td>RMS CV</td>
<td>Root-mean-square average of coefficient of variation</td>
</tr>
<tr>
<td>S</td>
<td>Shaft fracture</td>
</tr>
<tr>
<td>SD</td>
<td>Standard deviation</td>
</tr>
<tr>
<td>SSM</td>
<td>Statistical shape modelling</td>
</tr>
<tr>
<td>STL</td>
<td>Stereolitographic format</td>
</tr>
<tr>
<td>T</td>
<td>Trochanteric fracture</td>
</tr>
<tr>
<td>TMO</td>
<td>Trabecular main orientation</td>
</tr>
<tr>
<td>TRBMD</td>
<td>Trochanteric bone mineral density</td>
</tr>
<tr>
<td>TW</td>
<td>Trochanteric width</td>
</tr>
<tr>
<td>UFNBMD</td>
<td>Upper femoral neck bone mineral density</td>
</tr>
<tr>
<td>vBMD</td>
<td>Volumetric bone mineral density</td>
</tr>
<tr>
<td>VXA</td>
<td>Volumetric DXA</td>
</tr>
<tr>
<td>WABMD</td>
<td>Ward’s triangle bone mineral density</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
</tbody>
</table>
List of original publications

The thesis consists of four original articles that are referred to in the text by their Roman numerals (I-IV).

4.2.2 Geometrical parameters (I, II, IV) .. 47
4.2.3 Architectural parameters derived from image processing
 (IV) .. 48
4.2.4 Mechanical testing (I-IV) ... 49
4.3 Generation of finite element models ... 49
 4.3.1 2D models from radiographs (II) .. 49
 4.3.2 3D models from computed tomography (III) 50
 4.3.3 3D models from radiographs (IV) ... 51
4.4 Statistical methods (I-IV) .. 53
5 Results 55
 5.1 Bilateral asymmetries in fracture types (I) .. 55
 5.1.1 Asymmetries between the left side and right side 55
 5.1.2 Asymmetries related to fracture type 55
 5.2 Prediction of experimental fracture type (II-IV) 57
 5.2.1 2D models to assess fracture type (II) 57
 5.2.2 3D strain distribution to assess fracture type (III) 59
 5.3 Generating a 3D finite element model from a radiograph (IV) 59
 5.4 Prediction of experimental fracture load (IV) 60
6 Discussion 63
 6.1 Geometrical and structural influence (I, IV) 63
 6.2 Finite element methodology (II-IV) .. 65
 6.3 Assessment of fracture type and load (II-IV) 67
7 Conclusions 71
References 73
Original articles 89
1 Introduction

Hip fracture is considered the most serious complication of osteoporosis, and due to ageing of the population, its occurrence is increasing worldwide. Clinically, the diagnosis of osteoporosis is based on the amount of mineral per area, measured using dual-energy x-ray absorptiometry (DXA). However, it has been demonstrated that the bone mineral density (BMD) assessed from DXA-based images is insufficient to accurately predict individual hip fracture risk (Burr 2002, Kanis 2002, Schuit et al. 2004), the majority of hip fractures occurring in people not considered osteoporo tic (Cummings 1985, Stone et al. 2003, Schuit et al. 2004).

Falls have been shown to be the primary reason for the occurrence of hip fracture (Grasso et al. 1991a), 90% of them estimated to be originated by a fall (Youm et al. 1999a). Bone is able to adapt to its usual loading environment (Wolff 1892, Frost 1994, 2004). However, a fall will involve unusual load intensity and direction (Currey 2003a, 2003b, Sievänen & Kannus 2007a) that might exceed the bone strength (Currey 2001).

Different classifications have been presented to classify fracture types (Evans 1949, Ramadier et al. 1956, Garden 1961, Briot 1980 Müller 1980, Müller & Nazarian 1981). In the AO classification, related to options of actual surgical procedures for fixation, three main groups are defined: trochanteric, cervical and femoral head fractures. However, it has been shown that fracture types have different risk factors (Duboeuf et al. 1997, Partanen et al. 2001, Gnudi et al. 2002, Szulc et al. 2006) and should be evaluated separately (Mautalen et al. 1996). Studies on fracture types also revealed that while cervical fractures are related to low impact (Pulkkinen et al. 2006), trochanteric fractures involve higher mortality (Haentjens et al. 2007). Finally, the occurrence of a specific fracture type is highly dependent on gender (Baudoin et al. 1993).

Finite element modelling (FEM) is a computational method allowing estimation of stress and strain distribution during simulation of various mechanical loading situations. When applied to biological tissues, generation of patient-specific models is available using different medical imaging modalities with relevant results in bone strength assessment (Cody et al. 1999, Crawford et al. 2003). It has been shown that both geometry and structure of the hip are essential in the identification of patients at high risk (Cody et al. 2000a, 2000b, Lochmüller et al. 2002, Bergot et al. 2002, Duan et al. 2003, Gregory et al. 2004a, 2004b, 2005, 2007, 2008). Despite being accurate when compared with

This study focused on the prediction of the fracture type and failure load using FEM from different medical imaging modalities by mimicking an experimental simulation of a fall on the greater trochanter (Eckstein et al. 2004). The impact of the upper femur geometry in the variation of fracture type and failure load was evaluated to characterize the mechanical behaviour of the bone under controlled conditions. The final purpose of the study was to obtain an accurate computational model to assess fracture type and failure load based on data extracted from a standard radiograph.
2 Review of the literature

2.1 Overview of the structure and physiology of bone

Bones are tissues with high density; their organization in the whole body composes the skeleton, the structure that allows the rigidity of the human body. The main function of bone is its capability of not deforming too much under a certain amount of loading (Currey 2003b). In addition, bones are important for mineral metabolism.

The shapes and structures of bones vary depending on their function. The hip area, and especially the femur, support the upper part of the body and allow locomotion of an individual by its interaction with the muscles. The following chapter will focus on the anatomy of the femur.

2.1.1 Structure

As a composite material, bone is made up of inorganic mineral content (up to 70%) and water as well as extracellular matrix. Bones are surrounded on their surface by the periosteum, which is a thin membrane that allows insertion of both ligaments and tendons. The role of the periosteum is to assure blood supply to both bones and skeletal muscles. It has also been shown to have a major role in bone growth and bone repair (Seeman 2007, Dweck 2010). The areas of bone that are not covered by periosteum are instead covered by another connective tissue, cartilage.

Bone includes two compartments: the trabecular bone and the cortical bone surrounding it. Each of these structures has different architecture and density, the cortical bone being more compact than the trabecular bone and representing the bending resistance of the bone (Seeman & Delmas 2006, Seeman 2008). However, it has been demonstrated that the trabecular bone is metabolically more active, and more affected by remodelling (Wolff 1892, Roesler 1987), its architecture being highly correlated with strength.

Geometry of the femur

The femur is the longest bone in the human body, providing connections between the body at the pelvis and the lower limbs at the knee. The upper femur has a
complex geometry that can be divided into subparts (Fig. 1) with different functions. The femoral head, with its half-spherical shape and its smooth surface covered by cartilage, constitutes a direct connection with the pelvis through the acetabulum, forming the hip joint. The lower part of the centre of the head reveals the presence of ligaments connected to the acetabulum and providing stabilizing strength. The femoral neck is the support of the femoral head, connecting it to the femoral shaft with a diameter of almost half of the femoral head diameter. The axis of the femoral neck towards the axis of the femoral shaft is defined by an angle called neck-shaft angle (NSA). The trochanteric area has a complex geometry due to the presence of muscle, ligament and tendon connections. The cortical bone is the thickest in the shaft, and its thickness decreases progressively in the neck area to finally becoming a thin layer, comparable to a shell covering the trabecular bone of the upper areas of the trochanter and femoral head. Finally, the shaft constitutes the body of the femur and connects the upper femur with the lower femur. (Fig. 1).

Fig.1. Parts of the upper femur.
Dimensions of the bones are highly dependent on the size of the whole body. The existence of asymmetries in both the upper and lower limbs between left and right sides has been demonstrated (Auerbach & Ruff 2006). The left side often being the supportive limb, as explained by the cross-symmetrical side dominance with the upper limbs (Auerbach & Ruff 2006, Kanchan et al. 2008), it has been hypothesized that lower limbs have a structural and functional asymmetry (Cuck et al. 2001, Samaha et al. 2008). While focusing on the upper femur area, it has been shown that hip dimensions are higher on the left side than on the right side (Macho 1991, Cuck et al. 2001, Brownbill et al. 2003), except for the femoral shaft diameter (Macho 1991).

2.1.2 Bone adaptation

The growing and ageing skeleton

During the lifespan, the skeleton adapts itself to ageing, daily activity and all environmental factors with direct impact on the body. For example, in order to maintain its functions, such as locomotion and supportive function, the femur has to adapt its shape, structure and position to changes in daily loading orientations and levels (Seeman & Delmas 2006).

Bone mass increases from childhood until the end of adolescence, when it achieves its peak (Haapasalo et al. 1996) as a result of natural changes in bone length and size. As adult age is reached, bone mass will start to decrease gradually, with a difference between men and women. As a result of hormonal changes, bone mass will decrease much faster in women (Riggs et al. 2004), especially after menopause.

It has been demonstrated that later in life, to compensate for bone loss, the femoral neck diameter tends to expand slowly (Heaney et al. 1997, Crabtree et al. 2000, Beck et al. 2000, 2001, Kaptoge et al. 2003, Meta et al. 2006, Gregory et al. 2007) as well as the bone size in the trochanter (Meta et al. 2006). It also has been reported that NSA tends to decrease with ageing (Isaac et al. 1997). However, due to greater loss of trabecular and cortical bone in the femoral neck than in the trochanter, this enlargement is insufficient to protect against loss of bone strength (Riggs et al. 2004, Mayhew et al. 2005, Meta et al. 2006).
Bone adaptation to loading

The internal structure of the bone is adapted to environmental conditions and to the daily loadings. These modifications allow the bone to maintain its strength to adapt it to the external mechanical environment. As suggested already at the end of the 19th century (Wolff 1892) by Wolff’s law, the trabecular bone architecture is determined by the habitual stresses applied to the bones. Studies have been conducted to evaluate the impact of exercise on the BMD per region in the hip in order to focus on the benefits for bone (Wolff et al. 1999, Wallace & Cumming 2000). The characteristics of impact exercises have been shown to play a key role in bone maintenance or regeneration (Turner 1998, Gregg et al. 2000, Hans et al. 2002, Burr et al. 2002, Robling et al. 2002, Turner & Robling 2003, Robling et al. 2006, Jäämsä et al. 2006, Barry & Kohrt 2008, Kam et al. 2009).

Modelling and remodelling

In order to constantly renew itself, the bone undergoes strictly regulated processes known as modelling and remodelling. While modelling consists of changes in both size and shape of the bone, remodelling is the maintenance that keeps up bone strength during adulthood. Osteoblasts are cells that allow the synthesis and mineralization of bone whereas osteoclasts are responsible for its resorption (Eriksen 2010). During the remodelling, both of these cell types act in teams called Bone Multicellular Units, first with resorption of the bone surface by osteoclasts followed by bone formation by osteoblasts (Eriksen 2010). It has been reviewed that osteocytes (osteoblasts trapped in the matrix they secreted) act as an orchestrator of bone remodelling through the regulation of cell activity (Boneswald 2011). Bone remodelling is essential for dealing with micro-damage, repairing dead bone or adapting to changes in local mechanical loadings.

The balance between resorption and formation of bone is the key of bone maintenance; however, some pathological conditions can affect this complex mechanism (Neve et al. 2011). In pathological bones suffering from osteoporosis, the proliferation of osteoblasts is reduced and their function showed to be defective compared to non-pathological bone (Neve et al. 2011). This lack of effectiveness in bone formation involves bone loss (Seeman & Delmas 2006).
2.1.3 Osteoporosis and osteopenia

Osteoporosis is a complex disorder of bone tissue which increases with the age of an individual. Due to hormonal changes occurring during menopause, older women are more affected by this disease than men. Osteoporosis is directly related to the decrease of bone mineral density affecting the microstructure of the bone, and explains the lowering of bone strength, and ultimately, the predisposition for higher risk of fracture (as stated by the NIH, Consensus Development Conference Statement 2000).

Clinically, the diagnosis of osteoporosis is based on the amount of mineral per area of interest in the hip, measured using dual-energy x-ray absorptiometry (DXA). A classification system for osteoporosis for women based on BMD was established in 1994, as a result of a working group of the World Health Organization (WHO 1994, Kanis 1994). By establishing a relationship between the BMD and the lifetime risk of fracture in the population, the working group was able to describe categories corresponding to the level of osteoporosis. As a result, the BMD of a subject can be compared to the mean BMD value at the femoral neck of a young healthy population, the reference being women 20–29 years of age (Kanis et al. 2008a). The difference is expressed in standard deviation (SD) units also referred to as T-score; 0 indicates BMD equal to the young adult mean; deviation above the mean is defined with positives values and below in negatives values (Table 1). The T-score is calculated using the following formula (U.S. Department of Health and Human Services 2004):

\[
T \text{-Score} = \frac{(\text{Patients BMD} - \text{Young normal mean BMD})}{\text{Standard Deviation of young normal mean}}
\]

Table 1. Diagnostic categories for osteoporosis determined with DXA. Adapted from Kanis et al. (2005).

<table>
<thead>
<tr>
<th>T-score value</th>
<th>Diagnostic categories</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-score > −1</td>
<td>Normal BMD</td>
</tr>
<tr>
<td>−2.5 < T-score ≤ −1</td>
<td>Osteopenia</td>
</tr>
<tr>
<td>T-score ≤ −2.5</td>
<td>Osteoporosis</td>
</tr>
<tr>
<td>T-score ≤ −2.5 + presence of one or more fragility fractures</td>
<td>Severe osteoporosis</td>
</tr>
</tbody>
</table>

Recently, WHO has developed the FRAX® tool to evaluate patients’ fracture risk (Kanis et al. 2008b). It is based on integrating the risks associated with clinical
risk factors as well as bone mineral density at the femoral neck and gives a 10-year risk of fracture.

2.2 Upper femur fractures

Hip fractures have long been recognized as a major public health problem as a result of the ageing of the population. The incidence of hip fracture increases dramatically with age, so that about 90 percent of hip fractures occur after age 70 years (Melton 1996, Cummings & Melton 2002). White women have a twofold risk compared to white men (Gullberg et al. 1997, Cheng et al. 2009), while black women and men are at similar risk (Farmer et al. 1984). Although most falls are not associated with fractures in the elderly, over 90 percent of hip fractures are results of a fall (Grisso et al. 1991a, 1991b, Youm et al. 1999a, Parkkari et al. 1999).

2.2.1 Epidemiology of osteoporotic fractures

Osteoporotic fracture has been defined as a fracture occurring at a site associated with low BMD. Fractures occurring in other locations than the hip can be considered osteoporotic fractures as well. The sites concerned are the vertebrae, wrist-forearm, humerus, other femoral areas, ribs, pelvis, clavicles, scapula and sternum, tibias and fibulas (Kanis et al. 2001).

Among all of these fractures, hip fractures are the most severe and they typically result in hospitalization for surgery. Even if treated, mortality occurs from 20% to 30% during the first year after fracture, this percentage being even higher for population with reduced mental or somatic health and low physical ability (Keene et al. 1993, Meyer et al. 2000, Johnell et al. 2004, Alegre-Lopez et al. 2005, Bentler et al. 2009, Da Costa et al. 2009, Ozturk et al. 2010).

Only half of hip fracture patients regain their ability to walk and independence at home; this is mostly due to an increase in long-term disability resulting in the need for aid at home (Sernbo & Johnell 1993, Hochberg et al. 1998, Youm et al. 1999b, Willig et al. 2001, Marks et al. 2003, Morita et al. 2005).

Hip fracture risk increases with age (Kanis 2002), due to a decrease in BMD and an increase in falls. In Scandinavia, the mean age of hip fracture has been reported to be 80 years (Kanis 2002). In Finland, the occurrence of hip fracture is constantly increasing, which is partially explained by demographic changes.
(Boyce & Vessey 1985, Kannus et al. 1996, 1999, Luthje et al. 2009). However, a study by Kannus et al. (2006) demonstrated that the rise in hip fractures in the 1970s and 1990s has stopped and is now followed by a decline in fracture rates. There are lot of disparities between different countries, and Northern Europe has higher rates than Southern Europe (Kanis 2002).

2.2.2 Hip fracture types

Hip fractures are subdivided into categories regarding the location of the crack, the displacement of the femoral head and the severity of the fracture. Different classifications for the type of the fracture have been described (reviewed by Mabesoone 1997), such as Evans’ classification (1949), Ramadier’s classification (1956), Garden’s classification (1961), Briot’s classification (1980) and finally the AO classification proposed by Müller & Nazarian (1980, 1981) that will be described here.

In the AO classification, fracture types are divided into three main groups: trochanteric, cervical, and femoral head fractures. The sub-types of trochanteric and cervical fractures are presented in Fig. 2 and Fig. 3. Fractures of the femoral head are rare, being the result of an injury of the hip joint.

![Fig. 2. Trochanteric fractures. (1) Simple fracture being cervicotrochanteric, pertrochanteric or trochanterodiaphyseal, (2) multiple fractures in the pertrochanteric area and (3) intertrochanteric fractures.](image)

As an indication of estimating the severity of a cervical fracture, the displacement of the femoral neck has to be taken into account. It has been shown that cervical fractures with displacement of the femoral neck are more severe than cervical
fractures without displacement; displacement might affect the blood supply of the femoral head and eventually lead to necrosis (Fox et al. 2000). Supporting this statement, Cornwall et al. (2004) reported higher mortality rates among patients with displaced femoral neck. A recent study from Cauley et al. (2009) evaluated the different risk factors for severe hip fractures and concluded that a patient with high BMD will more likely have higher displacement of the femoral neck.

Fig. 3. Cervical fractures. (1) Subcapital fracture without displacement or valgus displacement, (2) transcervical fracture and (3) subcapital fracture with varus displacement or considerable displacement.

2.2.3 Risk factors for a hip fracture

The clinical risk factors

Many studies have been conducted to evaluate primary risks factors for hip fracture using a large databank (White et al. 2006) or by a follow-up of a large panel of subjects (Cumming et al. 1995, Cheng et al. 2009). By statistical evaluation of risk factors related to occurrence of hip fracture, they were able to determine the effect of specific factors (drug therapy, high coffee intake, tobacco smoking, neuromuscular disorder, etc.). Subjects, especially ageing females, with cumulative multiple risk factors, are the most likely to be affected by a hip fracture. Based on these studies, preventive measures such as quitting smoking, exercising and reducing caffeine intake can be recommended to people with low bone mineral density to decrease their general fracture risk (White et al. 2006). Recently it was shown that femoral neck and trochanteric hip fractures have different clinical risk factors (Jokinen et al. 2010). Specifically, low leisure-time...
physical activity was a risk factor for cervical hip fractures, while high coffee consumption and low mobility were associated with increased risk of trochanteric hip fracture.

Geometrical and structural risk factors

It has been shown that both geometry and structure of the hip are essential in identification of patients at risk (Gregory *et al.* 2004a, 2007). The shape of the femoral head has been defined to be an important determinant of fracture risk (Baker-LePain *et al.* 2011); the main reason is its impact on the distribution of mechanical load during an impact (Gregory *et al.* 2008). It has been assumed that an increase in risk of fracture is proportional to the decrease of BMD at any site (Marshall *et al.* 1996), but a large multicentre study revealed that BMD alone was not a predictor of fractures (Kaptoge *et al.* 2005).

In their study, Voo *et al.* (2004) used 3D finite element models with different geometry to demonstrate that certain geometric features are significant risk factors for femoral neck stress fracture. By using the same fixed material properties in his models, they were able to study the impact of geometry itself. It has also been shown by X-ray measurements that femoral neck length is closely associated with hip fracture, independently of BMD (Bergot *et al.* 2002).

It has been reported that the distribution of fracture type is related to some specific geometric measurements of the upper femur. Cervical fractures have been shown to occur more often in patients with high NSA and thin cortex, whereas trochanteric fractures are more related to decreased BMD (Partanen *et al.* 2001, Pulkkinen *et al.* 2006, Pulkkinen *et al.* 2010).

However, both geometrical and structural parameters differ between genders as does their relevance for predicting hip fracture risk (Cody *et al.* 2000, Lochmüller *et al.* 2002, Bergot *et al.* 2002, Duan *et al.* 2003). Occurrence of cervical fracture is higher for females, resulting in fractures with lower loads (Pulkkinen *et al.* 2006).

Fall-related aspects

Falls have shown to be the primary reason for the occurrence of hip fracture (Grisso *et al.* 1991a, Geusens *et al.* 2002). Ageing increase the rates of falls due to factors such as decrease in vision, mental disorders, loss of permanent attention, and other diseases related to high age.
It is trivial to assume that the fracture occurs when the load applied exceeds the bone strength (Currey 2001, Bousson et al. 2011). However, the bone is adapted to usual, not to unusual loading environment. Thus, a fall will involve an unusual load intensity and direction, resulting in an increased risk of fracture (Pinilla et al. 1996, Currey 2003a, Sievänen & Kannus 2007). It has recently been suggested that practicing martial arts involving fall techniques might be a solution to reduce the impact forces occurring during a fall as well as the fear of falling (Weerdesteyn et al. 2008, Groen et al. 2010).

2.2.4 Experimental testing of hip failure load

In order to evaluate the strength of the bone, different mechanical tests have been developed to simulate real-time fracture using \textit{in vitro} material. The mechanical testing of the upper femur can be divided into two groups: axial loading simulating the stand loading situation, and lateral loading simulating a fall to the side, the latter being considered the main reason of hip fracture (Lotz et al. 1991a, 1991b) (Fig. 4).

\textbf{Axial loading of the femur}

In the axial loading configuration, hip strength is measured by applying a vertical load parallel to the shaft axis (Fig. 4A). After fixation of the shaft vertically, a load is applied either on top of the femoral head parallel to the shaft axis (Beck et al. 1990, Eckstein et al. 2002, Lochmuller et al. 2002, 2003, Duchemin et al. 2008) or on the superiomedial area (rotation of 10–15° from the vertical axis) of the femoral head to simulate the load applied during the stance phase of gait (Lang et al. 1997, Keyak et al. 1998, Cody et al. 1999, Keyak et al. 2001).

\textbf{Lateral loading simulating a fall}

A mechanical test simulating the primary occurrence of hip fracture can be performed by applying a load on the greater trochanter while the femoral head is fixed or vice versa (Courtney et al. 1994, 1995, Lang et al. 1997, Eckstein et al. 2002, Lochmüller 2002, 2003, Eckstein et al. 2004) (Fig. 4B). The direction of the applied load is amplified by a longer moment arm (high NSA with long femoral neck axis length) (Wang et al. 2009). For this simulation, the shaft is typically positioned at 10° from horizontal axis and the neck at 15° of internal
rotation. The load is applied on the greater trochanter, generally through a pad. The reproducibility of such an experiment has been evaluated previously, using the contralateral femora as control, the RMS CV of repeated measures being 15% (Eckstein et al. 2004).

Keyak et al. (1998) used an internal rotation along the shaft axis of 30° and an angle between the horizontal plane vs. neck axis of 20°. In this setup, the force is applied on an area of the proximal anterior femoral head while the bone is fixed on the shaft area and the lowest part of the greater trochanter (Fig. 4B). This configuration simulates an oblique fall backward and to the side. Due to occurrence of lowest fracture loads, this configuration has been considered the most severe scenario (Lotz et al. 1991a, Keyak et al. 2001, Bessho et al. 2004, Wakao et al. 2009).

Fig. 4. Experimental testing of failure load. (A) axial loading and (B) lateral loading.

2.3 Radiological methods for the assessment of hip fracture risk and failure load

Different methods have been developed with the goal of assessing fracture risk from radiological pictures. These methods are based on the analysis of geometry, trabecular structure, mineral density or the combination of multiple parameters.
2.3.1 Radiographs

A method to assess fracture risk is indirectly related to the mineral density of the trabecular bone. The Singh index is a method to assess the resorption of trabecular loss in the upper femur by identification of the patterns of the main compressive and tensile systems (Singh 1970). The visual characterization of the five main groups of trabeculae allows some estimation of the osteoporotic level of the bone and consequently some evaluation of the fracture risk.

A similar approach has been developed to avoid relying on the human eye for the consistency of computerized evaluation of the radiographic texture pattern of bone images. Radiographic texture analysis (RTA) is a method allowing the assessment of bone architecture, as a determinant of bone quality instead of bone quantity (Vokes et al. 2006, 2008). Many studies have been conducted to evaluate the trabecular bone structure (Benhamou et al. 2001, Chappard et al. 2001, Veenland et al. 2002, Gregory et al. 2004a, Chappard et al. 2005, Huber et al. 2009). Unfortunately, the variation of contrast and intensity between images due to the acquisition increases the complexity of the method. However, some recent studies applying gradient-based image processing found correlations between parameters derived from texture analysis of plain radiographs and BMD in different sites (Pulkkinen et al. 2008, Chappard et al. 2010).

Finally, it has been proven that mechanical competence (Ruff et al. 2006) and fracture risk (Michelotti & Clark 1999, Partanen et al. 2001, Szulc et al. 2006, Rivadeneira et al. 2007, Cheng et al. 2007, Wang et al. 2009, Pulkkinen et al. 2010, Ito et al. 2010) can be evaluated by geometrical measurements based on anatomical references, with good repeatability (Partanen et al. 2001). Briefly, by comparing patients with hip fracture and controls without fracture (Table 2), the occurrence of fracture is higher for hip with high NSA, thin cortical bone and long moment arm.
Table 2. Geometrical hip fracture predictors.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Sex</th>
<th>N</th>
<th>N controls</th>
<th>Hip fracture predictors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Michelotti & Clark 1999</td>
<td>Women</td>
<td>43</td>
<td>119</td>
<td>Thin cortices, higher ND</td>
</tr>
<tr>
<td>Partanen et al. 2001</td>
<td>Women</td>
<td>70</td>
<td>49</td>
<td>Small FSD, small TW and pelvic dimensions, High NSA, thin cortices,</td>
</tr>
<tr>
<td>Szulc et al. 2006 (EPIDOS cohort)</td>
<td>Women</td>
<td>65</td>
<td>167</td>
<td>Thin cortices, low CSMI</td>
</tr>
<tr>
<td>Cheng et al. 2007</td>
<td>Women</td>
<td>45</td>
<td>66</td>
<td>Low neck cortical thickness, large FN CSA</td>
</tr>
<tr>
<td>Rivadeneira et al. 2007 (Rotterdam Study)</td>
<td>Both</td>
<td>147</td>
<td>4659</td>
<td>Thin cortices, greater bone width</td>
</tr>
<tr>
<td>Wang et al. 2009</td>
<td>Both</td>
<td>63</td>
<td>57</td>
<td>Longer moment arm</td>
</tr>
<tr>
<td>Pulkkinen et al. 2010</td>
<td>Women</td>
<td>57</td>
<td>40</td>
<td>High NSA, thin cortices</td>
</tr>
<tr>
<td>Ito et al. 2010</td>
<td>Women</td>
<td>36</td>
<td>36</td>
<td>High NSA, low cortical and trabecular CSA, thin cortices, low CSMI</td>
</tr>
</tbody>
</table>

With ND Neck diameter, FSD Femoral shaft diameter, TW Trochanteric width, NSA Neck-shaft angle, CSMI Cross-sectional moment of inertia, FN CSA Femoral neck cross-sectional area

2.3.2 DXA

Dual-energy X-ray absorptiometry is an imaging method that allows the assessment of bone mineral density by using two X-ray beams of different energy levels. This method is widely used for the prediction of osteoporosis and at some extent of fracture risk, BMD being related to fracture load (Huber et al. 2008).

Hip strength analysis (HSA) is a method combining both geometry and mass distribution assessed by DXA to generate parameters evaluating the bone strength. The parameters include predictors of hip fracture such as hip axis length (HAL), NSA, cross-sectional bone area (CSA), bone width, cross-sectional moment of inertia (CSMI), section modulus, cortical thickness, and buckling ratio. Using the HSA method, the EPOS (European Prospective Osteoporosis Study) study of Crabtree et al. (2002) determined by how much hip geometry data improved the identification of hip fracture, concluding that this method can be applied clinically to identify women with high risk of hip fracture.

Finally, Vokes et al. (2006) suggested that radiographic texture analysis method can also be applied to densitometer-generated calcaneus images from DXA picture to estimate bone fragility independently and complementary to BMD measurements and age.
2.3.3 Computed tomography

Computed tomography (CT) is a method using series of 2D X-ray images along an axis in order to generate a volume by creating consecutive 2D pictures separated by a fixed thickness. This method allows not only obtaining a volumetric representation of an object, but also assessing its volumetric density at each coordinate in the space. One advantage of CT scans is the evaluation of true trabecular bone density, whereas DXA as a planar projection method results in areal BMD values affected by the projection of both trabecular and cortical bone.

Use of CT scans to study the geometry of the hip and its relationship to the occurrence of fracture allows the evaluation of volumetric measurements (Ito et al. 2010). This method allows evaluating geometrical parameters that cannot be assessed with radiographs due to dimensional restriction.

Strength of bone can be evaluated using quantitative CT, which allows studying bone compartments individually (Manske et al. 2009). Correlation has been established between BMD assessed from QCT and experimental failure load (Bousson et al. 2006, Huber et al. 2008).

Computed tomography allows volumetric evaluation of the bone structure (Baum et al. 2010) as well as volumetric BMD. To assess the BMD along the bone, a calibration phantom with different known densities is scanned and the Hounsfield units corresponding to the grey levels of the scans are related to the density. After adjustments using the phantom as a reference, volumetric BMD can be evaluated directly from the Hounsfield unit of the ROI and eventually the Young’s Modulus can be derived from it, as demonstrated in literature (Table 3).
Table 3. Material properties of the trabecular bone evaluated from ash density as used in studies.

<table>
<thead>
<tr>
<th>Reference</th>
<th>Young’s Modulus (MPa)</th>
<th>Yield stress (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>*Keyak et al. 1994, 2001</td>
<td>33.900ρash2.20 for 0 < ρ ≤ 0.27</td>
<td>137ρash1.88 for ρash < 0.317</td>
</tr>
<tr>
<td>Bessho et al. 2004, 2007, 2009</td>
<td>5307ρash+469 for 0.27 < ρ ≤ 0.6</td>
<td>114ρash1.72 for 0.317 ≤ ρash</td>
</tr>
<tr>
<td>Majumder et al. 2007</td>
<td>10,200ρash2.01 for 0.6 < ρ</td>
<td></td>
</tr>
<tr>
<td>*Keller 1994</td>
<td>10,500ρash2.29</td>
<td>1.0 x1020 for ρash ≤ 0.2</td>
</tr>
<tr>
<td>Wakao et al. 2009</td>
<td>117ρash1.95 for 0.2 < ρash</td>
<td></td>
</tr>
<tr>
<td>Schileo et al. 2007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*Morgan et al. 2001, 2003</td>
<td>15,010ρapp2.18 for greater trochanter</td>
<td>85.5ρapp2.26 for greater trochanter</td>
</tr>
<tr>
<td>Schileo et al. 2007</td>
<td>trochanter</td>
<td>38.5ρapp1.48 for femoral neck</td>
</tr>
<tr>
<td></td>
<td>6,850ρapp1.49 for femoral neck</td>
<td></td>
</tr>
<tr>
<td>*Carter & Hayes 1977</td>
<td>3,790ρapp3</td>
<td>68 ρapp2</td>
</tr>
<tr>
<td>Schileo et al. 2007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*Rice et al. 1988</td>
<td>900 ρapp2+60</td>
<td>32.66 ρapp2+2.45</td>
</tr>
</tbody>
</table>

*Original studies establishing the relationships ρash/ρapp = 0.6 (Schileo et al. 2007).
ρapp = 0.551 ρash (Keyak et al. 1994)

2.4 Finite element method

This computational method allows the estimation of mechanical behaviours of an object using information concerning its shape, structure and material properties. Briefly, the geometry of an object is divided into small parts called finite elements, considered a mathematical representation of the physical problem. Material properties as well as boundary conditions are then applied to the model to simulate an event, and the analysis of the problem is performed by solving partial differential equations. Finite element (FE) modelling has appeared to provide opportunities for estimating stress and strain distribution during simulation of various mechanical loading conditions. Application in biomechanics allows the assessment of fracture risk from models derived from different medical imaging modalities.

2.4.1 Theoretical Background

The force-deformation curve (Fig. 5) represents the behaviour of the bone mechanical properties when a load is applied. When the load increases, the deformation Δl is linear until it reaches a yield point corresponding to the limits of
the force F_{yield} that can be applied without damage. If the force applied increases above this limit, deformation becomes irreversible and eventually a force F_{max} will be reached corresponding to the failure load of the bone.

![Load-deformation curve](image)

Fig. 5. Typical load-deformation curve resulting from biomechanical testing of a bone.

The FE method divides geometry into small finite segments assembled together to keep the equilibrium of the model. The method will study the displacement related to the material properties of the elements under a certain load to find a solution of the behaviours of the whole geometry. The stress corresponds to the force F applied on an area A.

$$\sigma = \frac{F}{A} \quad (2)$$

However, this formulation presumes that the stress is uniform along the area, an approximation that cannot be assumed for large areas. The discretization of geometry into finite elements allows considering small areas δA carrying smaller intensity of force δF, called "stress at a point":

$$\sigma = \lim_{\delta A \to 0} \left(\frac{\delta F}{\delta A} \right) \quad (3)$$

The stress matrix $[\sigma]$ is the representation of the stress components in space (Fig. 6); if Cartesian coordinates are used, six components out of nine are considered (due to interchangeability).
Fig. 6. Three-dimensional Cartesian stresses.

The stress matrix is represented by the three principal stress components (σ_{xx}, σ_{yy}, σ_{zz}) and the three shear stress components (σ_{xy}, σ_{xz}, σ_{yz}). Similarly to the stress matrix, a strain matrix $[\varepsilon]$ is defined, the strain ε corresponding to the deformation Δl from the original length l:

$$\varepsilon = \frac{\Delta l}{l}$$

(4)

For linear elastic material, the relationship between the stress and the strain is defined by Hooke’s law, defined as (if thermal strain is neglected):
with \(E \) being Young’s Modulus (N/m\(^2\)), \(\nu \) Poisson’s ratio and \(\mu \) the shear modulus (N/m\(^2\)). The relationship between \(E \) and \(\mu \) for an isotropic material is defined as:

\[
\frac{1}{E} = \frac{1}{2\mu} \left(1 + \frac{\nu}{1-2\nu} \right)
\]

(5)

For simplification, the terms on the right are grouped into an “elastic property matrix” \([D]\), and the generalized relationship between stress and strain becomes:

\[
[\sigma] = [D][\varepsilon]
\]

(7)

The finite element method examines the variation of stress along the elements through the whole body when the equilibrium of the forces is considered.

2.4.2 Building the model

A typical workflow for generating an FE model and performing FE analysis is presented in Fig. 7.
Segmentation of the femoral bone

To perform an FE analysis, it is required that a surface/volume be meshed to obtain a numerical representation of the model. For this purpose, the geometry of the bone is generally imported in the FE software after image processing of the original data acquisition with medical devices.

Segmentation of 2D data such as DXA and radiographs are usually performed automatically or semi-automatically using anatomical landmarks defined by the user (Testi et al. 1999, 2002, 2004, Yang et al. 2009). The outer contour of the bone is delimited and then exported to the FE software to be meshed (Fig. 8, left).

Segmentation of CT scans is typically performed manually on each slice of the volumetric data. To reduce the process, different methods such as threshold, interpolation, smoothing and shape recognition can be used. Once the segmentation is done, the volume between the segmented slices is then interpolated and the 3D model is created.
Fig. 8. Model creation from a radiographic picture: on the left, half-automatically segmented upper femur; on the right: meshed model with different material properties per area and boundary conditions. The blue triangles represent horizontally fixed nodes, allowing vertical translation, the pink arrows correspond to the location and orientation of the load applied.

Meshing

The meshing process is the subdivision of the original geometry into elements with their corners called nodes. The nodes correspond to a point in the space defined to approach the geometry. Depending on the size of the mesh, the accuracy to approximate the original shape will vary. Elements can be of different shapes. In 2D models they are generally triangles or quads (Fig. 8, right) whereas in 3D models they are tetrahedrons or hexahedrons. The meshing can use mapped algorithm for high accuracy of solids and surfaces with specific geometry, but for complex shapes, free-mesh algorithms are usually performed to reduce the processing time. After meshing, it is important to check the validity of the model to avoid any distorted/flat elements that could affect the final result of the analysis.

Material properties

Material properties in finite element method can be anisotropic, orthotropic or isotropic along the models, but to avoid complexity and computational time, most of the studies in literature use isotropic models. Even though bone material has been recognized as an orthotropic material, building such models involves extra work in the implementation of material properties (Wirtz et al. 2003), and only
small differences have been reported after comparison using both isotropic and orthotropic properties (Peng et al. 2006).

If not homogenous, the material properties have been derived from the BMD values from DXA (Testi et al. 1999, 2002, 2004), or Hounsfield units from CT (Carter & Hayes 1977, Keller 1994, Keyak et al. 1994, Morgan et al. 2003). Relationships have been established between these parameters and actual experiments on bones (Schileo et al. 2007). Typically, Poisson ratio is fixed, with a value between 0.2 and 0.4 (Wirtz et al. 2000, Schileo et al. 2007, Keyak et al. 1998, Ota et al. 1999).

Boundary conditions

The boundary conditions allow the simulation of different experiments. They are mainly defined from the conditions occurring in real life or during a specific experiment; they correspond to the degree of freedom of the model. To establish these conditions, it is possible to fix the nodes of elements totally, to allow their translation or rotation along defined axis, to simulate connections between surfaces, etc. The load can be defined on specific elements with different parameters (direction, intensity, speed of loading, etc.). The boundary conditions will characterize the behaviour of the model in space.

Solving the problem

The role of the solver is to find a solution of the partial differential equations in order to extract the nodal displacement which is the same for every element connected to it. From the displacement, the strain can be calculated, and finally, the stresses defined from the stress-strain relationships.

Post-processing

The post-processing is the investigation of the results of the analysis of the solved model. After verification of eventual errors that could have occurred during the solving process, the model is ready to be checked. Depending on the purpose of the simulation, different parameters can be displayed, such as displacement of the elements, distribution and magnitude of the stress and strain, or the failure of elements.
2.5 Evaluation of hip fracture type and failure load using finite element analysis

A sample of FE studies estimating hip fracture type or failure load is overviewed in Table 4. It has been demonstrated that femoral strength is better predicted by finite element models than quantitative computed tomography or DXA (Cody et al. 1999).

2.6 Creation of 3D models from 2D data

3D FE models derived from 3D imaging allow making accurate simulation of physiological situation. However, building such models requires time and use of complex imaging techniques that involve high cost and high radiation levels in most of the cases (e.g. CT or peripheral quantitative CT). One alternative to generate 3D models is to build them from 2D pictures with better time- and cost-efficiency (Gunay et al. 2007). The challenging part of this method is the complexity of the hip geometry and the lack of information of the 3rd axis.

2.6.1 Active shape modelling

Active shape modelling (ASM) is a method that allows an original 3D object - used as a reference/template - to deform itself in order to fit a 2D contour as an input. The ASM method will iterate processes such as rotating, scaling, translating and shaping the initial 3D model to fit the 2D contour with the best accuracy possible (Sadowsky et al. 2006, 2007, Gregory et al. 2007, Galibarov et al. 2010, Zheng 2010, Väänänen et al. 2010). For this purpose, different methods can be used, some studies using individual segmented femur from QCT (Ahmad et al. 2010) in order to create an atlas and to derive an averaged 3D model from it. The model is projected to 2D, and the ASM fits the projection with the original DXA picture. After the variation between both simulated 2D model and DXA picture is minimized, the 3D model is obtained by using deformation fields for the 3rd axis. Typically, the studies use DXA pictures as an input in order to obtain BMD, and eventually material properties from it.
<table>
<thead>
<tr>
<th>Reference</th>
<th>N</th>
<th>2D/3D</th>
<th>Material properties</th>
<th>Simulation</th>
<th>Criteria for the goal</th>
<th>Goal of the study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Testi et al. 1999</td>
<td>12</td>
<td>2D</td>
<td>Derived from DXA</td>
<td>Fall on trochanter</td>
<td>Maximal principal tensile strain close/higher than ultimate strain</td>
<td>Predictive index of fracture risk</td>
</tr>
<tr>
<td>Yang et al. 2009</td>
<td>120</td>
<td>2D</td>
<td>Derived from DXA</td>
<td>Fall on trochanter</td>
<td>Index of fracture risk</td>
<td>Fracture type discrimination</td>
</tr>
<tr>
<td>Keyak et al. 2001</td>
<td>4</td>
<td>3D</td>
<td>Derived from ash density from CT</td>
<td>Atraumatic loading / fall with postolateral loading</td>
<td>15 contiguous non-surface element failing</td>
<td>Effect of direction on the femoral fracture load</td>
</tr>
<tr>
<td>Schileo et al. 2007</td>
<td>4</td>
<td>3D</td>
<td>Derived from CT</td>
<td>Stance loading</td>
<td>Principal strain</td>
<td>Evaluation of the best density-elasticity relationship</td>
</tr>
<tr>
<td>Majumder et al. 2007</td>
<td>1</td>
<td>3D</td>
<td>Derived from CT</td>
<td>Sideway fall</td>
<td>Principal strain</td>
<td>Simulation of pelvis/femur with whole body representation</td>
</tr>
<tr>
<td>Bessho et al. 2007</td>
<td>11</td>
<td>3D</td>
<td>Derived from CT</td>
<td>Quasi-static uniaxial compressive load</td>
<td>Principal strain</td>
<td>Comparison of yield loads, fracture loads and principal strains to experiment</td>
</tr>
<tr>
<td>Qian et al. 2009</td>
<td>6</td>
<td>3D</td>
<td>Derived from DXA with 3D correspondence</td>
<td>Stance loading</td>
<td>Von Mises stress</td>
<td>Influence of NSA in the stress distribution</td>
</tr>
<tr>
<td>Bryan et al. 2009</td>
<td>1000</td>
<td>3D</td>
<td>Stat model from CT</td>
<td>Oblique fall backwards and to the side</td>
<td>Exceeding yield strain 0.7%</td>
<td>Discrimination of factors at risk</td>
</tr>
<tr>
<td>Langton et al. 2009a</td>
<td>18</td>
<td>3D</td>
<td>Derived from 2D BMD image (ash density)</td>
<td>Stance loading</td>
<td>Stiffness derived from the displacement of the loading plate</td>
<td>Failure load assessment from 3D model derived from 2D BMD image</td>
</tr>
</tbody>
</table>

ASM can also be used to quantify variations in the shape of the hip, or mode scores, on a long-term basis to discriminate patients at risk for osteoarthritis (Gregory et al. 2007). These mode scores have been compared to composite average proximal femur shape in order to predict osteoporotic hip fracture (Gregory et al. 2004, Baker-LePain et al. 2010).
Volumetric DXA (VXA) method uses the ASM to reconstruct a 3D model from four DXA images in different projections. Not only the geometry is generated, but the method also offers an approach to the volumetric structure derived from the DXA. In their study, Ahmad et al. (2010) found good correlation between the estimated volumetric BMD (vBMD) derived with the VXA method with the one obtained from QCT.

2.6.2 Statistical shape modelling

As an alternative to the ASM method, the statistical shape modelling (SSM) method allows the reconstruction of anatomical structure such as bones from sparse data. To elaborate such a tool, correspondence between each model has to be established. To summarize, a specific point in a model has an equivalent point in every model, and this concerns both the geometrical location and the material property related to it.

In their studies, Bryan et al. (2009, 2010) used SSM to generate 1,000 femur models with different realistic parameters representative of interpatient variability. They tested their models in a simulation of an oblique fall to the side to estimate the models with the highest risk of fracture. Based on a deeper analysis, they concluded that the main difference between failed and non-failed groups was the percentage of cortical bone.

Using correspondences between landmarks from two X-ray radiographs and 2D/3D reconstruction process of their SSM algorithms, Zheng & Schumann (2009) and Schumann et al. (2010) were able to generate geometrical patient-based models. Instead of validating their method by calculating the distance error between the reconstructed surfaces and the original truth surfaces, they compared clinically relevant morphometric parameters. By showing no significant difference between morphometric parameters of normal and outlier bones, they concluded that their technique was able to reconstruct both normal and outlier bones.
3 Purpose of the study

The present study examines new computational approaches to predict fracture risk by simulations of a fall on the greater trochanter. The general purpose of this study was to assess hip fracture type and failure load using radiological images and finite element modelling. The specific aims were:

1. To evaluate the structural differences between bilateral hips and their impact on the fracture type obtained during an experimental fall on the greater trochanter.
2. To investigate whether the type of fracture (cervical or trochanteric) can be accurately predicted using a 2D model of the proximal femur, generated from a standard radiograph.
3. To investigate whether the strain distribution within the upper femur coincides with the occurrence of experimental hip fracture type using a 3D model of the proximal femur, generated from computed tomography images.
4. To develop a new automatic method to generate 3D finite element model of the upper femur from a standard 2D radiograph.
4 Material and methods

4.1 Subjects

The materials and methods used in the sub-studies are summarized in Table 5. The study sample consisted of cadaver femora obtained from a larger experimental study (Pulkkinen et al. 2006, Eckstein et al. 2004) from the Institute of Anatomy at the Ludwig Maximilians University of Munich (Germany). The femora were chosen to be representative of the elderly population of the southern part of Germany. Biopsy specimens were taken from the left iliac crest for histology in order to keep only subjects without bone diseases other than osteoporosis or osteopenia.

Table 5. Summary of the materials and methods used in the study.

<table>
<thead>
<tr>
<th>Study</th>
<th>Material</th>
<th>Imaging</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>112 bilateral cadaver femurs (32F, 24M)</td>
<td>Plain radiographs</td>
<td>Statistical comparison</td>
</tr>
<tr>
<td></td>
<td>77 with cervical fracture (55F, 22M)</td>
<td>DXA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>27 with trochanteric fracture (9F, 18M)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8 with shaft fracture (M)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>II</td>
<td>49 cadaver femurs (F)</td>
<td>Plain radiographs</td>
<td>2D finite element models</td>
</tr>
<tr>
<td></td>
<td>26 with cervical fracture (F)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>23 with trochanteric fracture (F)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>III</td>
<td>26 cadaver femurs (F)</td>
<td>CT-scans</td>
<td>3D finite element models</td>
</tr>
<tr>
<td></td>
<td>13 with cervical fracture (F)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>13 with trochanteric fracture (F)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>14 cadaver femurs (9F, 5M)</td>
<td>Plain radiographs</td>
<td>3D finite element models</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CT-scans</td>
<td></td>
</tr>
</tbody>
</table>

F female; M male

4.2 Measurements

To evaluate the geometry, structure and BMD of the femurs, different image acquisitions were performed on the subjects. Study I was based on geometrical parameters extracted from radiographs analysis as well as bone mineral density derived from DXA pictures. Plain radiographs were used for study II in order to define the shape of the bone and the inner and outer contour of the trabecular bone in 2D. Study III was based on analysis of CT scans in order to generate the models in 3D based on manual segmentation. Finally, study IV used a
combination of radiograph pictures to extract geometrical and architectural parameters, as well as CT scans as training material to generate 3D models.

4.2.1 Image acquisition

Radiographs (I-II, IV)

Radiographs were taken using a Faxitron X-ray system (Model 43885A; Faxitron, Hewlett Packard, McMinnville, OR, USA) at 40 to 85 kV, 2mA, time = 120s, using a 18*24cm X-ray film (Agfa Structurix D7DW, Agfa, Leverkusen, Germany), and the X-ray films were digitized together with a calibration scale using a scanner at 600dpi.

CT-scans (III-IV)

The femora were scanned with a 16-row multi-detector CT scanner (Sensation 16; Siemens Medical Solutions, Erlangen, Germany). The specimens were degassed, packed in airproof plastic bags filled within a formalin/water solution and positioned in the scanner comparable to the in vivo exam of the pelvis and proximal femur. A high-resolution protocol with a slice thickness of 0.75 mm was used. The settings were 120 kVp and 100 mAs, image matrix 512 x 512 pixels, and field of view of 100 mm. The in-plane spatial resolution was approximately 0.25 mm x 0.25 mm. For calibration purposes, a reference phantom (Osteo Phantom, Siemens, Erlangen, Germany) was placed below the specimens. Images were obtained in Digital Imaging and Communications in Medicine (DICOM) format for segmentation and analysis.

DXA (I)

In vitro DXA scans of the femora were obtained using a standard narrow fan beam scanner (GE Lunar Prodigy, GE Lunar Corp., Madison, WI, USA) with the femoral specimens submerged in a water bath. Standard positioning was used across all specimens, and both total and site-specific femoral BMDs were checked. The bone mineral density was evaluated in the neck area, upper neck area, shaft area and trochanteric area using the software provided by the manufacturer.
4.2.2 Geometrical parameters (I, II, IV)

To focus on the geometry on the bone and its impact on the bone strength, geometrical dimensions were assessed from the radiographs for each femur (Fig. 9).

Fig. 9. Geometrical parameters measured from the radiographs of the upper femur. A, neck-shaft angle (NSA); B-D, femoral shaft diameter (FSD); E-G, trochanteric width (TW); J-K and L-M, femoral head and femoral neck diameters (HD and ND respectively); H-I and H-N, femoral neck axis length (FNALa and FNALb, respectively); B-C, femoral shaft cortex width (FSC); and E-F, medial calcar femoral cortex width (CFC).

Femoral neck axis length (defined in two ways, FNALa and FNALb); neck-shaft angle (NSA); trochanteric width (TW); femoral head (HD), neck (ND), and shaft (FSD) diameters; and femoral shaft (FSC) and calcar femoral cortical thicknesses (CFC) were measured as previously described (Partanen et al. 2001) using Image Tool software (version 3.00; University of Texas Health Science Center, San Antonio, TX). The root mean square coefficients of variation (CVRms) were 0.9%, 1.5%, 1.1%, 2.5%, 1.5%, 0.7%, 2.5%, 5.2%, and 9.9% for FNALa, FNALb, NSA, TW, HD, ND, FSD, FSC, and CFC, respectively (Partanen et al. 2001).
4.2.3 Architectural parameters derived from image processing (IV)

Image processing was performed with an algorithm developed under MATLAB (version 7.1, MathWorks, Natick, Massachusetts, USA) with a graphical interface allowing the user to select a specific region of interest (ROI) (15mm x 15mm). Image pre-processing was applied to the picture, i.e. noise was removed using a median filter and morphological top and bottom hat operations were performed. A gradient-based gray-level image was then constructed as previously described (Pulkkinen et al. 2008).

Fourier transform was applied to the ROI in order to evaluate the trabecular main orientation (TMO). A threshold of 0.03 was used to remove non-significant frequencies, and linear regression was applied to fit a line \(g(x) = ax + b \) to extract the TMO in the frequency domain. Eventually, the angle \(\alpha \) between the TMO and the shaft axis in the space domain was calculated from trivial trigonometry from the previous equation. A rotation of the ROI based on the angle \(\alpha \) was performed to obtain a ROI aligned along TMO. A gray-level co-occurrence matrix GLCM was calculated along the TMO with a distance of one pixel. First column and first row were cropped from the GLCM to remove the values corresponding to empty spaces in the bone. Homogeneity index (HI), which measures the closeness of the distribution of elements near the diagonal of the GLCM, was calculated as follows:

\[
HI = \sum_{i,j} \frac{GLCM(i,j)}{1+|i-j|}
\]

(8)

Cropping the GLCM affects directly the result of the HI values by lowering them. This method was chosen in order to evaluate solely the homogeneity of the mineralized trabecular bone. For example, a picture with almost no trabecular bone will have a lot of pixels with values close to 0. As a result, its GLCM will have a very high value in the first diagonal cell, ending up with a HI close to 1. A pre-study was performed to evaluate the ROI with the best correlation with the total BMD and eventually the distribution of material properties through the principal systems themselves. The ROI with the best correlation was the lower neck area, corresponding to the highest density through the trabecular bone.
4.2.4 Mechanical testing (I-IV)

The mechanical test was performed earlier using a testing setup simulating a fall on the greater trochanter (Eckstein et al. 2004). The femoral shaft was positioned at 10° from horizontal axis, and neck at 15° internal rotation. Two halves of a tennis ball were used to simulate cartilage contact in the femoral head. The load was applied to the greater trochanter through a pad simulating soft tissue at a constant loading speed of 6.6 mm/second, using a material testing machine (Zwick 1445, Ulm, Germany). The failure load was defined as the maximum value of the load-deformation curve.

4.3 Generation of finite element models

For each finite element study (II-IV), the boundary conditions of the models were chosen to simulate a fall on the greater trochanter mimicking the mechanical test. Loading was applied on the greater trochanter through simulated soft tissue with an angle of 10° with the horizontal-axis and the neck with an internal rotation of 15°. The minimal cortical thickness on the proximal femur for the models was adjusted to 1 mm using shell elements, and a fixed Poisson’s ratio of 0.33 was used in all studies. A summary of the finite element studies is presented in Table 6.

<table>
<thead>
<tr>
<th>Study</th>
<th>Building method</th>
<th>Material properties</th>
<th>Mesh size</th>
<th>Goal and criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>II</td>
<td>2D model radiograph (Semi-automatic)</td>
<td>Cortical: 14.2 GPa Trabecular: 780 / 300–900 MPa</td>
<td>Cortical: 1–2 mm Trabecular: 2 mm</td>
<td>Fracture type, stress distribution in trabecular bone</td>
</tr>
<tr>
<td>III</td>
<td>3D model CT-scans (manual)</td>
<td>Cortical: 15 GPa Trabecular: 1.1 Gpa</td>
<td>Cortical: 1–3 mm Trabecular: 3 mm</td>
<td>Fracture type, strain distribution in trabecular bone</td>
</tr>
<tr>
<td>IV</td>
<td>3D model geometrical parameters (automatic)</td>
<td>Cortical: 14.2 GPa Trabecular: based on structural analysis from radiographs</td>
<td>Cortical: 1–3 mm Trabecular: 1–3 mm</td>
<td>Fracture load, failing elements in cortical bone</td>
</tr>
</tbody>
</table>

4.3.1 2D models from radiographs (II)

After filtering of radiographs to enhance edges on the pictures, semi-automatic custom algorithms were applied to extract the cortical vs. trabecular bone...
compartments based on grey levels using MATLAB. For each bone, two neutral files were generated:

- A model with only two Young’s modulus values (one for cortical bone and one for trabecular bone).
- A model with the same Young’s modulus value for cortical bone and four different values for different trabecular bone areas (900 MPa for femoral head, 780 MPa for femoral neck, 600 MPa for trochanteric region and 300 MPa for subtrochanteric region) (Wei et al. 2005, Sievänen et al. 1996, Martens et al. 1983), the areas separated using anatomical landmarks.

Neutral files were imported into Femap (Finite Element Modeling and Postprocessing, version 9.2.0, UGS Corp., Plano, TX, USA) software used for the pre- and post-processing of images and boundary conditions were applied to the models. Due to spatial restrictions, the internal rotation of the bone used in the experiment was ignored in this 2D study.

VonMises stress analysis was performed for each model using NASTRAN (version NX; UGS, Plano, Texas, USA). The fracture type was evaluated from VonMises stress distributions within the trabecular bone and the location of maximum continuous stress patterns.

4.3.2 3D models from computed tomography (III)

The Medical Image Processing and Visualization software MeVisLab (version 1.6, MeVis Research GmbH, Bremen, Germany) was used for the image segmentation. The two-dimensional slices of the proximal femur DICOM file set were manually segmented to cortical and trabecular bone contours, and these contours were automatically combined and converted to 3D surfaces of the trabecular and cortical bone. The stereolithographic (STL) files of the surfaces were imported in the FE modelling software. A homogenous Young’s modulus of 1.1 GPa for the trabecular bone and 15 GPa for the cortical bone was applied to estimate the impact on the geometry itself on fracture type (Lengsfeld et al. 1998).

After strain analysis using NASTRAN, the principal strain and its distribution at the trabecular bone area were analysed along the model; seven planes parallel to the femoral neck axis with a distance of 2 mm were used to estimate the volumetric distribution. Assessment of fracture type was based on the highest threshold of uniform strain patterns over the cervical and trochanteric regions.
4.3.3 3D models from radiographs (IV)

In order to establish relationships between the geometrical parameters and the skeleton of the femurs, we used seven bones with a large range of geometrical parameters as training material. The CT data of these seven bones were manually segmented under Mimics (v12.1, Materialise, Leuven, Belgium). Segmented cortical bone models were then imported into FEMAP to obtain the accurate volumetric shape of the outer contour of the bones.

Since the geometry of the femoral neck area is considered critical (Qian et al. 2009), the non-circular cross-section of the femoral neck (Zebaze et al. 2005) was estimated by using the training material. The neck area was divided into segments along the FNAL and for each of these segments, the radius of the neck was checked in every 45° and correlated with geometrical parameters.

An algorithm based on the geometrical parameters was developed in order to minimize the geometrical error while comparing the models generated from the script with the models from the training material. Two curves representing the orientation of the principal tensile system (PTS) and principal compressive system (PCS) based on the geometry were also generated (Rudman et al. 2006). A Young’s modulus of 14.2GPa was assigned to the cortical bone (Viceconti et al. 1998). An intermediate Young’s modulus of 7GPa was given to the first layer of elements from the cortical bone in order to simulate the transition between cortical and trabecular bones.

As training material, Young’s moduli derived from the Hounsfield units from the CT scans were used as described previously (Duchemin et al. 2008a). This true volumetric measurement was assessed in different regions of the trabecular bone to represent the spatial distribution of material properties along both the PTS and the PCS. Material properties were affected with a linear increase along both PTS and PCS within an estimated consistent thickness, based on HI of the lower neck area extracted from the radiograph as described previously. An extra layer of elements with lower Young’s modulus was generated to lower the transition with the elements outside the system area. The Young modulus values were linearly increasing from the greater trochanter until the femoral head area along the tensile system. In PCS, the highest Young’s modulus values were located in the lower neck and the lowest values in the upper part of the femoral head.

The rest elements outside PTS and PCS in the shaft, trochanteric, femoral neck, and femoral head regions, which had no material properties assigned, were grouped, and a single material property was derived from the HI for each area.
Based on these relationships, a typical distribution of Young’s modulus within the generated models is presented in Fig. 10. As a result, a total of 66 material properties were created:

- the cortical bone and the transition between cortical and trabecular bone
- 4 material properties for the areas outside PTS and PCS
- 20 material properties for the tensile system and 20 for the transition layer
- 10 material properties for the compressive system and 10 for the transition layer

Fig. 10. Typical distribution of the material properties in a generated model, from a plane passing through the centre of the bone. The darker values correspond to elements with low-density parameters while the light values have high density. The cortical bone is represented in white, surrounded by the outer surface of the bone.

Mean reconstruction error was assessed on seven other bones by comparing the distance between the generated geometry and the original 3D finite element model derived from the CT scans. To validate the methodology, a preliminary finite element analysis simulating a fall on the greater trochanter, as described above, was performed on seven femur models generated from the algorithm. After applying boundary conditions to simulate the experiment, nonlinear FE analysis was performed using the Newton-Raphson method and Drucker-Prager yield criterion (Drucker & Prager 1952), a post-yield modulus 5% of the Young modulus was used (Bayraktar et al. 2004) and the ultimate tensile stress was presumed to be 0.8 times the compressive yield stress (Bessho et al. 2007). The
fracture was determined to occur when a surface cortical element failed (Bessho et al. 2007), failure in tension being characterized by a maximum principal stress higher than the ultimate tensile stress and failure in compression by a minimum principal strain lower than -7300 microstrain.

4.4 Statistical methods (I-IV)

For each study, statistical analyses were performed using SPSS statistical software (version 16.0; SPSS, Chicago, IL). For all studies, a p-value smaller than 0.05 was considered statistically significant.

Student’s paired t-test was used to evaluate bilateral asymmetries in study I. For further intrasubject analysis, femurs were grouped by their experimental fracture type and pair-wised analysis using the Wilcoxon signed rank test was performed between the sides. This method was chosen due to the small sample size in order to test the differences in the parameters between cervically fractured femurs and their contralateral sides with trochanteric fractures. Finally, an intersubject analysis was performed to compare asymmetric fracture cases with symmetric ones using Student’s independent t-test. A similar statistical method was used in study II, grouping being done by fracture type only.

In order to determine the best combination of geometrical parameters for the prediction of fracture type and to compare their ability to discriminate it with the FE method, a logistic regression analysis was performed in study II. Regression analysis was used in study IV to establish a relationship between the distribution of Young’s modulus derived from Hounsfield units in CT scans and structural parameters assessed from image analysis of plain radiographs.

In study III, a Mann-Whitney test was performed to compare the cervical/trochanteric principal strain threshold ratio from the FE analysis with the actual, experimentally obtained fracture type. A covariance analysis (ANCOVA) using BMD as covariate was also performed to show the independence of the fracture type from the mineral density. Finally, to assess the ability of the method to discriminate the fracture type, both specificity and sensitivity were tested using a receiver operating characteristic curve (ROC) analysis.
5 Results

5.1 Bilateral asymmetries in fracture types (I)

The distribution of bilateral fractures types is presented in Table 7. The distribution of fracture type did not show any tendency for a side-related specific fracture; both cervical and trochanteric fractures occurred on left and right side. Thus, we decided to perform a left-right comparison by gender and then with all subjects pooled together to show that the eventual asymmetries are not related to the fracture type.

Table 7. Distribution of samples by different fracture types occurring during the mechanical test.

<table>
<thead>
<tr>
<th>Gender</th>
<th>C/C</th>
<th>C/T</th>
<th>T/C</th>
<th>T/S</th>
<th>S/T</th>
<th>T/T</th>
</tr>
</thead>
<tbody>
<tr>
<td>Females</td>
<td>46</td>
<td>9</td>
<td>9</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Males</td>
<td>14</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>2</td>
</tr>
</tbody>
</table>

C cervical, T trochanteric, S shaft

5.1.1 Asymmetries between the left side and right side

Similar asymmetries were found between males and females while comparing geometrical parameters and BMD of both sides. For both genders, the cortical bone was thicker on the right femur (p < 0.01) and the FSD larger (p < 0.01), whereas HD (p < 0.001) and ND (p < 0.05) were smaller. FNAL differed between the left and right side only in males (p < 0.01), being higher on the left side. No significant difference between sides was found in BMD.

5.1.2 Asymmetries related to fracture type

Results for intra- and inter-subject analysis are presented in Table 8. The intra-subject analysis was performed between the cervically fractured side of an individual versus the contralateral side with trochanteric fracture. A pre-study showed no statistically significant differences between a femur with a trochanteric fracture versus its contralateral side with shaft fracture. For this reason, and due to restricted sample size, we decided to pool both trochanteric and shaft fractures together for the inter-subject analysis.
Table 8. Structural parameters, failure load and upper femoral neck BMD (UFnBMD) vs. fracture type of the femur in question and its contralateral counterpart.

<table>
<thead>
<tr>
<th>Gender</th>
<th>Type</th>
<th>N</th>
<th>NSA</th>
<th>FSC</th>
<th>CFC</th>
<th>FNALa</th>
<th>FNALb</th>
<th>HD</th>
<th>ND</th>
<th>TW</th>
<th>FSD</th>
<th>HD/ND load</th>
<th>UFnBMD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Females</td>
<td>C/C</td>
<td>46</td>
<td>127.4+++</td>
<td>0.49</td>
<td>0.40</td>
<td>9.72+</td>
<td>3.02</td>
<td>5.86</td>
<td>3.07</td>
<td>1.50++</td>
<td>2838</td>
<td>0.46</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C/T</td>
<td>9</td>
<td>121.7</td>
<td>0.48</td>
<td>0.40</td>
<td>9.46</td>
<td>3.34</td>
<td>5.83</td>
<td>2.98</td>
<td>1.43</td>
<td>2996</td>
<td>0.44</td>
<td></td>
</tr>
<tr>
<td></td>
<td>T/C</td>
<td>9</td>
<td>118.8(*)</td>
<td>0.51</td>
<td>0.43</td>
<td>9.44</td>
<td>3.01</td>
<td>5.78</td>
<td>3.04</td>
<td>1.47+</td>
<td>3142</td>
<td>0.44</td>
<td></td>
</tr>
<tr>
<td>Males</td>
<td>C/C</td>
<td>14</td>
<td>125.1</td>
<td>0.60</td>
<td>0.49</td>
<td>10.69++</td>
<td>5.02++</td>
<td>3.50</td>
<td>3.28+</td>
<td>1.44</td>
<td>4467</td>
<td>0.51++</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C/T</td>
<td>8</td>
<td>126.9</td>
<td>0.63</td>
<td>0.51</td>
<td>11.12++</td>
<td>5.38</td>
<td>3.60</td>
<td>3.43</td>
<td>1.50</td>
<td>4877</td>
<td>0.61</td>
<td></td>
</tr>
<tr>
<td></td>
<td>T/C</td>
<td>8</td>
<td>127.4</td>
<td>0.56</td>
<td>0.45</td>
<td>11.12</td>
<td>5.29+</td>
<td>3.62</td>
<td>3.50+</td>
<td>1.47</td>
<td>4916</td>
<td>0.58</td>
<td></td>
</tr>
<tr>
<td></td>
<td>T&S</td>
<td>18</td>
<td>122.1</td>
<td>0.61</td>
<td>0.51</td>
<td>10.76++</td>
<td>6.57#</td>
<td>5.10#</td>
<td>3.54</td>
<td>3.32</td>
<td>1.44</td>
<td>5968##</td>
<td>0.72##</td>
</tr>
</tbody>
</table>

(*) p < 0.1; * p < 0.05, asymmetrical cervical fracture cases (C/T) vs. their contralateral trochanteric fractures (T/C).

+p < 0.05; ++p < 0.01, symmetrical cervical fracture cases (C/C) vs. asymmetrical fractures (C/T and T/C).

(#) p < 0.1; #p < 0.05; ##p < 0.01, trochanteric/shaft (T&S = T/S, S/T and T/T combined) fracture cases vs. asymmetrical fractures (C/T and T/C).

Differences within subjects with asymmetric fractures

In intra-subject analysis of females, NSA showed a tendency to be lower in asymmetric trochanteric fractures (T/C) than their contralateral sides (p = 0.066). The T/C cases also presented higher HD/ND ratio than C/T (p < 0.05). In males, the trochanteric side had a lower HD (p < 0.05) and higher FSD (p < 0.05) than its contralateral C/T side. No differences were found in BMD or fracture load within these subjects.

Differences between subjects with asymmetric and symmetric fracture types

The inter-subject analysis of females showed that the symmetrical cervical (C/C) cases had significantly higher NSA (p < 0.001) than those with asymmetric fracture type (C/T and T/C), C/C cases also had higher HD (p < 0.05), implying higher HD/ND ratio (p < 0.01). Finally, FNALa (p < 0.05) was lower for asymmetrical fracture types for a similar FNALb. No significant differences in BMD were found between the groups.

In males, the subjects with asymmetric fractures (C/T and T/C) showed larger dimensions when compared with C/C cases (p < 0.05 to p < 0.01), and also when compared with all other subjects combined together (T&S = T/T, T/S, S/T) (p < 0.05). They also had a higher NSA (p < 0.05) than the T&S cases. BMD was the smallest for bilateral cervical cases.
The experimental failure load showed an increasing trend from symmetric cervical cases to asymmetric cases towards bilateral trochanteric cases (T&S).

5.2 Prediction of experimental fracture type (II-IV)

The prediction of fracture type in studies II and III was done using FE analysis, with main focus on the geometry. Thus, the material properties were similar for each bone. Accuracy of each method to predict the fracture type is presented in Fig. 11. Due to a limited sample size, accuracy was not evaluated for study IV. However, the fracture type was directly predicted from the localization of the failing element on the surface of the cortical bone.

![Percentage of experimental fracture type prediction](image)

Fig. 11. Accuracy of fracture type prediction in percentage: (1) Geometrical parameters, (2) 2D FE (homogeneous trabecular bone), (3) 2D FE (heterogeneous trabecular bone), and (4) 3D FE.

5.2.1 2D models to assess fracture type (II)

To assess fracture type, VonMises stress distributions within the trabecular bone were evaluated and the regions of maximum continuous stress patterns were
determined. Two different criteria were defined: (1) location of the peak stress value and (2) region of the maximum continuous stress pattern (Voo et al. 2004).

![Fig. 12. Typical Von Mises stress distribution for a specific fracture type: on the left, cervical fracture; on the right, trochanteric fracture. MIN/MAX refer to minimum and maximum VonMises stress values for each bone.](image)

This procedure predicted the fracture type correctly in 79.6% of the cases using the models with homogeneous trabecular bone properties. A slight improvement in fracture type prediction was achieved by using the models with 4 different material properties for the trabecular bone. Here, 85.7% of all cases were predicted correctly.

Both finite element analyses showed better fracture type prediction than the analysis of the best combination of geometrical predictors, these being the NSA and the femoral neck axis length, with accuracy of 77.6%. The best criterion for the prediction of hip fracture type from FE analysis is shown in the decision-making tree (Study II, Fig. 4). Briefly, to be predicted as a cervical fracture, the maximum VonMises stress has to be located in the neck area and the stress pattern through the neck; otherwise, the fracture type is considered trochanteric (Fig. 12).
5.2.2 3D strain distribution to assess fracture type (III)

The highest threshold for uniform strain patterns differed significantly between cervical and trochanteric fractures (p = 0.001). Experimental cervical fractures showed a cervical/trochanteric principal strain threshold ratio $\varepsilon_C/\varepsilon_T$ to be higher (1.103 ± 0.127) than in trochanteric fractures (0.925 ± 0.137) (p = 0.001). Using the cut-off value of $\varepsilon_C/\varepsilon_T = 1.0$ as criterion, FE model predicted the experimental fracture type correctly in 85% of the cases (12/13 cervical; 10/13 trochanteric fractures). The result appeared to be independent of BMD, since the difference remained significant after adjustment for FNBMD and TRBMD (p = 0.014).

5.3 Generating a 3D finite element model from a radiograph (IV)

Precision of the shape reconstruction from a radiograph was assessed by comparing the generated 3D shape with its corresponding 3D model constructed from segmented CT scans. The mean shape error for the seven bones per area is shown in Table 9; the mean error being 1.77 mm ± 1.17mm.

For all the bones, the maximum average error is located in the trochanteric area while the minimum average errors are located in the femoral head and the neck areas (1.03 mm ± 0.45 mm and 1.27 mm ± 0.60 mm, respectively). The average error in the femoral head is mostly due to the spherical approximation of the femoral head, the maximum error being located in the excavation of the fovea capitis where the ligaments of the acetabulum are attached.

Table 9. Mean shape error in mm (± SD).

<table>
<thead>
<tr>
<th>Bone ID</th>
<th>Femoral head</th>
<th>Femoral neck</th>
<th>Trochanteric area</th>
<th>Shaft area</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.97 (0.39)</td>
<td>1.19 (0.50)</td>
<td>2.17 (1.15)</td>
<td>1.39 (0.60)</td>
<td>1.70 (1.04)</td>
</tr>
<tr>
<td>2</td>
<td>1.10 (0.53)</td>
<td>1.19 (0.63)</td>
<td>2.30 (1.4)</td>
<td>1.59 (0.80)</td>
<td>1.77 (1.21)</td>
</tr>
<tr>
<td>3</td>
<td>0.93 (0.44)</td>
<td>1.16 (0.53)</td>
<td>2.07 (1.21)</td>
<td>1.61 (0.74)</td>
<td>1.64 (1.08)</td>
</tr>
<tr>
<td>4</td>
<td>1.19 (0.47)</td>
<td>1.47 (0.60)</td>
<td>2.60 (1.69)</td>
<td>1.58 (1.25)</td>
<td>2.00 (1.46)</td>
</tr>
<tr>
<td>5</td>
<td>1.09 (0.46)</td>
<td>1.40 (0.70)</td>
<td>2.19 (1.34)</td>
<td>1.48 (0.67)</td>
<td>1.80 (1.16)</td>
</tr>
<tr>
<td>6</td>
<td>0.99 (0.42)</td>
<td>1.31 (0.66)</td>
<td>2.47 (1.50)</td>
<td>1.58 (0.66)</td>
<td>1.94 (1.34)</td>
</tr>
<tr>
<td>7</td>
<td>1.00 (0.42)</td>
<td>1.17 (0.60)</td>
<td>1.89 (1.02)</td>
<td>1.80 (0.79)</td>
<td>1.57 (0.93)</td>
</tr>
<tr>
<td>Average</td>
<td>1.03 (0.45)</td>
<td>1.27 (0.60)</td>
<td>2.24 (1.33)</td>
<td>1.57 (0.79)</td>
<td>1.77 (1.17)</td>
</tr>
</tbody>
</table>

The relationship between the HI, assessed in the lower neck area from the cropped GLCM along the trabecular main orientation, and the neck BMD derived from DXA is presented in Fig. 13. R^2-value is 0.82 when HI is compared to the
BMD of the corresponding area and $R^2 = 0.71$ when compared with the total BMD of the bone. The HI increases linearly with the BMD when the GLCM is cropped from all the black values of the pictures.

Fig. 13. Relationship between neck BMD assessed from DXA and homogeneity index (HI) derived from cropped gray-level co-occurrence matrix calculated along the trabecular main orientation. The HI is calculated from the lower neck area.

Relationships between the homogeneity index as assessed in the lower femoral neck area from radiographs, and the average Young’s modulus within the compressive and tensile trabecular systems as assessed from CT-based Hounsfield units are presented in study IV (Fig. 4, page 4).

5.4 Prediction of experimental fracture load (IV)

The results for predicted failure load vs. experimental fracture load, as well as the experimental fracture type and location of the failing element in the model are presented in Table 10. Predicted failure load showed to be well-correlated with the experimentally measured load.

However, the strength of bone 5 being highly under-estimated, the differences between cortical Young’s modulus derived from CT scans and the one used in our models (14.2 GPa) was evaluated. While all the bones showed a close value for the Young’s modulus of the cortex (217 MPa ± 130 MPa), the cortical bone of bone 5 was highly underestimated, being 15.3 GPa in the original CT model.
Table 10. Experimental fracture load and type vs. predicted failure load and location of the failing elements.

<table>
<thead>
<tr>
<th>Bone ID</th>
<th>Experimental load [N]</th>
<th>Predicted load [N]</th>
<th>Experimental fracture type</th>
<th>Location of failing element</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1718</td>
<td>1680</td>
<td>Cervical</td>
<td>Femoral head - neck</td>
</tr>
<tr>
<td>2</td>
<td>2952</td>
<td>3375</td>
<td>Cervical</td>
<td>Femoral neck</td>
</tr>
<tr>
<td>3</td>
<td>3533</td>
<td>3168</td>
<td>Cervical</td>
<td>Femoral neck</td>
</tr>
<tr>
<td>4</td>
<td>2351</td>
<td>2569</td>
<td>Cervical</td>
<td>Femoral neck- trochanter</td>
</tr>
<tr>
<td>5</td>
<td>4536</td>
<td>3705</td>
<td>Trochanteric</td>
<td>Trochanteric area</td>
</tr>
<tr>
<td>6</td>
<td>2842</td>
<td>3474</td>
<td>Trochanteric</td>
<td>Trochanteric area</td>
</tr>
<tr>
<td>7</td>
<td>3635</td>
<td>3802</td>
<td>Trochanteric</td>
<td>Femoral neck</td>
</tr>
</tbody>
</table>

The location of the failing element was also compared to the experimentally obtained fracture type (Table 10). In five out of the seven bones, the failing elements were located in the corresponding area, in the femoral neck area for cervical fractures and in the trochanteric area for the trochanteric fractures. In bone 4, the location of the failing element was in the border line, whereas bone 7 showed a failing element in the femoral neck when the experimentally obtained fracture type was trochanteric.
6 Discussion

Hip fracture is considered the most severe fracture injury that commonly leads to devastating consequences. Most hip fractures occur after a fall, such as one from standing height, the risks factors increasing with age, as well as the level of osteoporosis (Cumming 1995). Therefore, new fall prevention strategies should be developed (Stevens & Olson 2000, Gillespie et al. 2009). The clinical assessment of osteoporosis, and to some extent fracture risk, is based on the BMD derived from DXA, the BMD being related to fracture load (Huber et al. 2008). However, it has been shown that using such a method is insufficient for predicting individual fracture risk (Schuit et al. 2004). This demonstrates an urgent need for more accurate tools for the assessment of osteoporotic fracture risk.

As an alternative tool, FE models have shown good accuracy as computational methods to assess the hip fracture risk (Cody et al. 1999). However, the complexity of accurate finite element models requires the use of more complex medical imaging technology, resulting in the use of time-consuming methods as well as increases in computational costs. To reduce these costs, one alternative is to study the capability of radiograph-based finite element models in the prediction of individual fracture risk.

6.1 Geometrical and structural influence (I, IV)

Based on Study I, it appears that a single femur has a tendency for a cervical or trochanteric fracture. Performing the analysis pairwise emphasized the impact of hip structure in the occurrence of a specific fracture type. However, the determinants of fracture type were different between genders, BMD being more important for fracture types in males whereas geometrical parameters were better predictors for females, as also suggested previously (Pulkkinen et al. 2004, Duboeuf et al. 1997)

The left-right analysis exposed different dimensions by side, the left side being typically bigger than the right one, except for the shaft diameter as previously reported (Macho 1991, Cuk et al. 2001, Brownbill et al. 2003). It is also interesting to notice that side asymmetries between males and females are the same, except for femoral axis length, which was not statistically different in females (Faulkner et al. 1995).

Despite the fact that the left side is considered the supportive limb (Cuk et al. 2001, Samaha et al. 2008), resulting in left-right functional asymmetries, the
experimentally obtained fractures did not show a side dominance for a specific fracture type. In fact, while grouped by fracture type, pairwise analysis showed different asymmetries than left-right analysis.

Inter-subject analysis, grouping subjects by symmetrical and asymmetrical fracture type, suggested that an individual has a structure-related tendency for a certain type of fracture. The predictors of a specific fracture type were different between males and females, being more dependent on NSA for females and BMD for males. The failure load showed an increasing trend from symmetric cervical cases to asymmetric cases and bilateral trochanteric cases, a trend that followed the BMD increase in males.

In summary, for females, high NSA and HD/ND ratio will more likely be associated with symmetric cervical fractures for a subject and will determine either a cervical fracture or a trochanteric one for asymmetrical cases. For males, the first predictor for symmetrical cervical fractures, asymmetrical fractures and symmetrical trochanteric fractures is BMD. For asymmetrical fracture type, geometry will have an effect on the tendency for a fracture, low FSD and high HD being related to cervical fractures. Symmetrical trochanteric fractures are also associated with low NSA while asymmetrical trochanteric fractures are not, demonstrating the gender-specific impact on fracture-type biomechanics.

In study IV, the distribution of material properties of the trabecular bone was derived from parameters derived from picture analysis of plain radiographs, as suggested by Pulkkinen et al. (2008) and Chappard et al. (2010). By using GLCM-based trabecular parameters, we were able to reveal the spatial distribution of gray levels. However, the typical method to ensure rotational invariance of the GLCM is to average it along four different orientations (0°, 45°, 90° and 135°). In our method we decided to calculate the GLCM along the TMO in order to emphasize the anisotropy of the trabecular bone. In addition, to reflect the true bone content inside the ROI, we cropped the first row and column of the GLCM before calculating the HI to remove the values related to empty spaces. A pre-evaluation of this method showed linear relationship between DXA-based BMD and the calculated HI. Furthermore, the influence of the principal trabecular systems was taken into account using the TMO for GLCM calculation, as it has been suggested that the principal orientation used in an orthotropic model should be defined from the trabecular structure (Yang et al. 2010).

Results from study I justify the methodology of study II and study III. The prediction of fracture type of females being the aim of these studies, FE models solely based on geometry should be sufficient for accurate prediction. However,
failure load prediction requires a more complex model involving personalized material properties, the failure load being related to the BMD (Marshall et al. 1996)

6.2 Finite element methodology (II-IV)

While most studies on finite element models of the upper femur are today performed in 3D, we decided to study how well a simple 2D model could predict an experimental fracture type. As has been suggested previously (Partanen et al. 2001, Gnudi et al. 2002, Pulkkinen et al. 2006, 2009), measurements of geometrical parameters from standard radiographs can indicate a tendency for a specific fracture type. From this statement, we hypothesized that a model based solely on the geometry derived from a standard radiograph might predict the fracture type with even better accuracy than the combination of geometrical parameters. As the cortical thickness showed to be a critical issue in the assessment of hip fracture (Partanen et al. 2001, Pulkkinen et al. 2004, Szulc et al. 2005, Pulkkinen et al. 2006, Cheng et al. 2007, Pulkkinen et al. 2008, Ito et al. 2010), we decided to separate the trabecular and cortical compartment in the process of segmentation. We used similar homogeneous material properties in our models, roughly adjusted locally based on anatomical regions. Compared to previous studies (Testi et al. 1999, 2002, Yang et al. 2009) which used DXA to generate 2D FE models of the proximal femur, taking into account also the BMD of the bone, our models were developed to evaluate primarily the impact of the geometry. However, while DXA cannot be used to accurately identify the cortical thickness the use of standard radiographs allowed us to obtain better accuracy in the segmentation of the cortex.

In study III, 3D models generated from segmented CT scans were used. In his study, Voo et al. (2004) demonstrated the importance of bone geometry and especially the impact of NSA as well as the thickness of the cortical bone for the stress-strain distribution. Based on this hypothesis, we decided to correlate the strain distribution with a typical fracture type obtained experimentally. Similarly as in study II, both bone compartments were segmented and homogeneous material properties were assigned to them. In support of this methodology, Holzer et al. (2009) demonstrated that the relative contribution of trabecular bone is marginal for bone strength when compared to the contribution of cortical bone, explaining only 7% of fracture load. However, a study by Manske et al. (2009)
showed opposite results as they concluded that both cortical and trabecular bone affect the failure load.

The methodology used in study IV may offer an alternative to the ASM method. One of the main advantages here is the separation of bone compartments. The heterogeneous distribution of material properties was determined using the homogeneity index and the localization of principal trabecular systems. The correlation between the homogeneity index and bone mineral density (Fig. 13) showed opposite results when compared to the previously published method, since zero values originated from the bone marrow dominate in the uncropped GLCM (Pulkkinen et al. 2008). This method is fundamentally different from the method typically used in ASM, where material properties are directly derived from the DXA-based BMD. As a result, the generation of a model was totally automated, using geometrical parameters with high repeatability as an input (Partanen et al. 2001) for the shape of the bone and the homogeneity index for an estimation of the material properties.

Study II and study III used a protocol that ignores the real distribution of material properties through the bone in order to focus on the impact of the geometry to predict the fracture type. However, inclusion of non-uniform material properties might have refined the models, and consequently led to better discrimination accuracy, especially in the cases of trochanteric fractures which are primarily determined by BMD (Pulkkinen et al. 2004, Schott et al. 1998, 2005). This lack of accuracy was filled in study IV by using heterogeneous material properties along the PCS and PTS and in the different areas of the bone.

Whereas the methodologies used in study II and study III involved semi-automatic segmentation and eventually higher accuracy in the geometrical reconstruction of the model, the models of study IV were automatically generated from geometrical parameters for simplification of the process and high inter-user reproducibility. Furthermore, the number of bones used for the training material for this last study was quite restricted, and the accuracy of the generated shape was limited in some areas, especially on top of the trochanteric area and near the minor trochanter. Nevertheless, these areas are not crucial, since clinical hip fractures typically occur in the femoral neck and intertrochanteric regions. However, the script lacked robustness to generate bones with peculiar geometry.

The finite element methodologies in these studies were developed in order to mimic the experiment. The soft tissues, simulated by a tennis ball and a pad during the protocol, had much higher Young’s modulus values than the biological tissues they were representing. As a result, overestimation of material properties
of the cartilage and other soft tissues might affect the results that could be obtained in real conditions. The potential of soft tissues to undergo big deformations and their capability to absorb energy during a fall reduces the strain transmitted to the bone. Furthermore, the cortical bone was adjusted to have a minimum thickness of 1 mm, whereas more accurate cortical values thickness might be obtained by increasing the number of elements in the models. Patient-specific evaluation of fracture risk should take into account these facts during modelling. The anisotropy of the trabecular bone could also be reflected with better accuracy using orthotropic material properties along the principal trabecular tensile and compressive systems.

6.3 Assessment of fracture type and load (II-IV)

The finite element methods used in this study seem to have the potential to discriminate the fracture type and predict experimental fracture load. The study suggests in accordance with previous studies that geometry is the most relevant factor in the discrimination of fracture type (Duboeuf et al. 1997, Fox et al. 2000, Partanen et al. 2001, Gnudi et al. 2002, Szulc et al. 2006).

Previous studies have also reported the potential of finite elements analysis to discriminate fracture types (Keyak et al. 2001, Bessho et al. 2004, Gomez-Benito et al. 2005, Schileo et al. 2008). In general, our estimation of fracture type appeared to be more accurate than in previous studies, even if they used heterogeneous material properties. This difference in results may partly be due to the different failure criterion between studies. In their clinical study, Bessho et al. (2004) predicted fracture type from a crack in the cortical bone, while Keyak et al. (2001) used non-surface elements with the lowest factors of safety to predict the experimental fracture site. Gomez-Benito et al. (2005) simulated fracture type using anisotropic fracture criterion and the coefficient of risk to fracture. In our studies II and III, fracture type was estimated from the stress and strain in the trabecular bone, which appears to be an effective method in discriminating experimental hip fracture types.

We report here in study I that the tendency for a specific fracture type can already be assessed from geometrical parameters in elderly females. The results from studies II and III show an increase in the accuracy for the prediction of fracture type while compared to geometrical parameters only (Fig. 11); this suggests that FE analysis yields a more comprehensive prediction by capturing the varying stress and strain distribution caused by the shape of bone, whereas the
measurement of a limited set of local geometrical parameters provides a rougher estimate for the shape.

Previously it has been shown that trochanteric fractures are best predicted by BMD (Partanen et al. 2001, Eckstein et al. 2004, Schott et al. 2005, Pulkkinen et al. 2010). In studies II and III, both 2D and 3D geometry-based models showed lower accuracy in the prediction of this fracture type. A slight increase in the prediction accuracy between models with one and four material properties for the trabecular bone (study II) might be explained by an ambiguous stress distribution in the original model with one material property. For a femur with an individual anatomy with quite equal susceptibility for cervical and trochanteric fractures, the trabecular fine structure might define the final fracture type. In study IV, the prediction of the fracture type was based on the location of the failing of a surface element of the cortical bone (Bessho et al. 2007). Even if the method seems to have potential to predict fracture type, the sample size is too restricted to statistically confirm this.

As demonstrated in studies II and III, the geometry of the hip of elderly females seems to have a higher impact in the distribution of fracture types. However, for some bones with a shape without tendency for any specific fracture type, material properties might help in the discrimination of fracture type. However, study I indicates that in males, fracture type might be less related to the geometry itself than to bone mineral density. These considerations were taken into account while developing study IV, to be a compromise between geometrical accuracy and a better approximation of the non-uniformity of the bone. The neck-shaft angle being the most important geometrical parameter for fracture type prediction, it was well represented in study IV, and the orientations of the PCS and PTS were derived from it.

Multiple studies have been conducted to estimate the failure load using 3D models derived from CT scans (Keyak et al. 2000, 2001, Bessho et al. 2004, 2007, Schileo et al. 2007, 2008, Bessho et al. 2009) with high accuracy. Unfortunately, building patient-specific 3D finite element models requires high-cost volumetric imaging such as computed tomography (CT) scans involving high radiation doses and computational power. In study IV, we constructed patient-specific 3D shape with feasible accuracy, implemented with personalized material properties derived from structural analysis of the trabecular bone. The assessment of the failure load was performed from the failing of a surface element of the cortical bone (Bessho et al. 2007).
The predicted failure load of cervical fractures seemed to correlate better with the experimental fracture load than the predicted failure load of trochanteric fractures. As suggested previously, this might be explained by the fact that the geometry is an important factor especially for the risk of cervical fracture (Pulkkinen et al. 2008).

The distribution of Young’s modulus in the trabecular bone was estimated based on trabecular structure analysis of the radiographs; however, the Young’s modulus of the cortical bone was fixed and was similar for all the bones. Even though the trabecular bone plays a role in the strength of the upper femur (Manske et al. 2009), it has been demonstrated that its impact is relatively limited (Holzer et al. 2009). Eventually, the density of the cortical bone will not be reflected in our radiograph-based models, which results in underestimation of Young’s modulus and failure load for a bone with high cortical density of the cortex. This was also confirmed in our model after verification of density from the CT scans. In future, the estimation of material properties for cortical bone might be assessed with a non-invasive ultrasound method (Nicholson, 2008).

However, preliminary results of failure load prediction were presented in study IV, and more bones will be studied in the future to reach a statistically relevant study sample size. Furthermore, the method will be developed to increase its accuracy to predict individual failure load. A feasible solution to improve the method and eventually make it applicable for clinical practice would be to use a patient-specific thickness of the soft tissues with realistic approximated material properties. The thickness could be assessed directly from medical imaging and would help in the simulation of the diffusion of load through the hip during a fall. Using this method, a study involving patients with and without hip fracture should be performed in order to evaluate if the models are able to discriminate the patients at risk.
7 Conclusions

The present study confirms that finite element models derived from radiographs can be used for preliminary assessment of fracture risk. The study suggests that fracture type can already be estimated from geometry-based finite element models whereas assessment of failure load requires patient-specific material properties. Finally, both volumetric geometry and distribution of material properties within a patient-specific model can be estimated with feasible accuracy using the analysis of a standard 2D radiograph. Based on the aims of this study, it can be specifically concluded that:

1. Intra-subject structural asymmetries are associated with different fracture types between contralateral hips of a single individual. Also, subjects with asymmetrical fracture types have different hip structures, and in males, a different hip BMD than subjects with symmetrical fracture type.
2. Experimental fracture type of females can be predicted with good accuracy from 2D finite element models derived from standard radiograph.
3. Geometry-based volumetric finite element models generated from computed tomography scans show a strain distribution associated with a specific fracture type during an experimental fall.
4. A patient-specific volumetric finite element model can be generated automatically based on a standard 2D radiograph. Such a model can estimate the failure load of an experimental simulation with feasible accuracy.
References

Mabesoone F (1997). Maitrise orthopédique 65

Original articles

Reprinte with permissions from Springer Science & Business Media (I, III) and Bentham Science (II).

Original publications are not included in the electronic version of the dissertation.
1112. Kaakinen, Mika (2011) Functional microdomains in the specialized membranes of skeletal myofibres
1114. Vuoti, Maire (2011) Pohjoissuomalaisten suurten ikäänuuksien tulevaisuudenkuva
1115. Hakalaho, Anna (2011) Human β1-adrenergic receptor: biosynthesis, processing and the carboxyl-terminal polymorphism
1116. Peltonen, Jenni (2011) TP53 as clinical marker in head and neck cancer
1118. Suorsa, Eija (2011) Assessment of heart rate variability as an indicator of cardiovascular autonomic dysregulation in subjects with chronic epilepsy
1120. Venhola, Mika (2011) Vesicoureteral reflux in children
1121. Naillat, Florence (2011) Roles of Wnt4/5a in germ cell differentiation and gonad development & ErbB4 in polarity of kidney epithelium
1124. Cederberg, Henna (2011) Relationship of physical activity, unacylated ghrelin and gene variation with changes in cardiovascular risk factors during military service
1126. Tolvanen, Mimmi (2011) Changes in adolescents’ oral health-related knowledge, attitudes and behavior in response to extensive health promotion
1127. Pirilä-Parkkinen, Kiru (2011) Childhood sleep-disordered breathing – dentofacial and pharyngeal characteristics
Jérôme Thevenot

BIOMECHANICAL ASSESSMENT OF HIP FRACTURE

DEVELOPMENT OF FINITE ELEMENT MODELS TO PREDICT FRACTURES