Sonja Kujala

DISSECTING GENETIC VARIATION IN EUROPEAN SCOTs PINE (PINUS SYLVESTRIS L.) – SPECIAL EMPHASIS ON POLYGENIC ADAPTATION
SONJA KUJALA

DISSECTING GENETIC VARIATION IN EUROPEAN SCOTS PINE (PINUS SYLVESTRIS L.) – SPECIAL EMPHASIS ON POLYGENIC ADAPTATION

Academic dissertation to be presented with the assent of the Doctoral Training Committee of Health and Biosciences of the University of Oulu for public defence in Kuusamonsali (YB210), Linnanmaa, on 11 December 2015, at 12 noon
Kujala, Sonja, Dissecting genetic variation in European Scots pine (*Pinus sylvestris* L.) – special emphasis on polygenic adaptation
University of Oulu Graduate School; University of Oulu, Faculty of Science; University of Oulu, Biocenter Oulu
Acta Univ. Oul. A 661, 2015
University of Oulu, P.O. Box 8000, FI-90014 University of Oulu, Finland

Abstract

Adaptation through polygenic selection is a prominent feature in nature. Still, the genetic backgrounds of polygenic adaptations are often unknown. The challenges of resolving adaptive processes are related to selection being distributed over several loci with often small effect sizes. Also, even a low level of population substructure can obstruct the inference. Further, demographic factors in the history of the species, such as population size changes and range expansions leave a confounding footprint in the background genomic variation. In this thesis, polygenic adaptation was studied with Scots pine (*Pinus sylvestris* L.), a widespread ecologically and economically important conifer.

In this thesis, timing of bud set – an adaptive polygenic trait – was studied at the level of the phenotype in a common garden study, and at the genomic level by examining the sequence and allele frequency variation patterns in bud set timing related loci, with a sampling across a latitudinal transect in Europe. An association study, combining these two levels, was carried out with a new Bayesian multipopulation method. The congruence of allozyme and nucleotide level diversity was estimated, the level of neutral genetic population structure surveyed, and a demographic background model for statistical inference of selective signals redefined.

Allozyme variation seemed to correlate well with the nucleotide level variation at the between species level, but within population, at the individual allozyme coding loci, allozyme heterozygosity does not describe the underlying level of nucleotide variation well. Indications of recent colonization history affecting the level of differentiation between populations were seen, and the need to control for the background effects of simultaneous range expansion and adaptation shown. Lower phenotypic and additive genetic variation in timing of bud set was found in northern compared to central European populations. Signs of heterogeneity in genetic basis of this trait were also found between these areas, which could indicate different timekeeping mechanisms due to different environmental cues in the two regions. The results in this thesis are of value to the study of adaptation, but also for breeding, conservation and prediction of responses of forest trees to future climate change.

Keywords: adaptation, allelic covariance, allozyme, association, cline, demography, F_{ST}, genetic heterogeneity, Pinus sylvestris, polygenic
Kujala, Sonja, Geneettinen vaihtelu eurooppalaisessa metsämännynä (Pinus sylvestris L.) – erityistarkastelussa polygeeninen sopeutuminen
Oulun yliopiston tutkijaoulu; Oulun yliopisto, Luonnontieteellinen tiedekunta; Oulun yliopisto, Biocenter Oulu
Oulun yliopisto, PL 8000, 90014 Oulun yliopisto

Tiivistelmä

To my beautiful daughters
Acknowledgements

I want to start by thanking my main supervisor and coauthor professor Outi Savolainen for taking me onboard to the plant genetics group. I am very grateful for your expert guidance in this challenging field of research. You have been most patient and encouraging, thank you for having faith in me! I also thank my other supervisor professor Katri Kärkkäinen for collaboration and coauthorship. Your expertise on forest genetics has been very valuable and motivating.

I want to thank professor Teemu Teeri and professor Peter Tiffin for reviewing this thesis. My coauthors Tanja Pyhäjärvi, Timo Knürr, Mikko Sillanpää and David Neale are highly appreciated for their collaboration. I am grateful also for Natural Resources Institute Finland for cooperation. I acknowledge financial support from EU projects Treesnips and Evoltree, Department of Genetics and Physiology, Biocenter Oulu Doctoral Programme, University of Oulu Graduate School, Finnish Graduate School in Population Genetics and the Emil Aaltonen foundation.

A warm thank you for all the current and former coworkers, especially my “brothers and sisters in pine” Tanja, Timo, Komlan, Matti, Yongfeng and Jaakko. Also Tiina, Lumi and Kukka, to mention just a few, are thanked for their companionship. I have had many fun moments with all of you over the years, not to mention the value of discussing various science and life issues. I warmly thank Soile Alatalo for all the laboratory work she has done for the studies in this thesis, and also for great, fun moments. The department of Genetics and Physiology has offered a professional and comfortable environment for learning.

Thank you family and friends! Mother and Father, your help in various aspects of life through different times has been invaluable. You have always supported me when I wanted to see how far I can reach, and also encouraged me to finish what I have started. And yet you have always made me feel that if I fall, you will catch me. Kerttu and Jaakko, thank you for your help and support, too. Jaana, thank you for being my friend, for all your help, and for helping me see things in so many different lights.

Heikki, we have practically grown up together, and gone through many things in life together. And many more to come! You have been very patient through these final stages of my thesis work. For better, for worse, My Love! Anni, Iiris and Ella, my best work on inheritance, you are my most precious treasures <3

Oulu, November 2015
Sonja Kujala
Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABC</td>
<td>approximate Bayesian computation</td>
</tr>
<tr>
<td>ADT</td>
<td>Assay Design Tool</td>
</tr>
<tr>
<td>BLUP</td>
<td>best linear unbiased predictor</td>
</tr>
<tr>
<td>bp</td>
<td>base pair</td>
</tr>
<tr>
<td>CRSP</td>
<td>Comparative Re-Sequencing in Pinaceae</td>
</tr>
<tr>
<td>DNA</td>
<td>deoxyribonucleotide acid</td>
</tr>
<tr>
<td>EMBR</td>
<td>extended bottleneck model with recombination</td>
</tr>
<tr>
<td>EST</td>
<td>expressed sequence tag</td>
</tr>
<tr>
<td>F_{ST}</td>
<td>population differentiation at genetic markers</td>
</tr>
<tr>
<td>GWAS</td>
<td>genome wide association study</td>
</tr>
<tr>
<td>LGM</td>
<td>last glacial maximum</td>
</tr>
<tr>
<td>MAF</td>
<td>minor allele frequency</td>
</tr>
<tr>
<td>PEMR</td>
<td>population expansion model with recombination</td>
</tr>
<tr>
<td>SFS</td>
<td>site frequency spectrum</td>
</tr>
<tr>
<td>SNMR</td>
<td>standard neutral model with recombination</td>
</tr>
<tr>
<td>SNP</td>
<td>single nucleotide polymorphism</td>
</tr>
<tr>
<td>SPC</td>
<td>selection, pleiotropy and compensation</td>
</tr>
<tr>
<td>Q_{ST}</td>
<td>population differentiation at quantitative traits</td>
</tr>
<tr>
<td>QTL</td>
<td>quantitative trait locus</td>
</tr>
</tbody>
</table>
List of original articles

This thesis is based on the following publications, which are referred throughout the text by their Roman numerals:

*authors contributed equally to the manuscript

Author contributions

<table>
<thead>
<tr>
<th>Paper</th>
<th>Study design</th>
<th>Experiments</th>
<th>Data analyses</th>
<th>Manuscript preparation</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>OS, TP</td>
<td>SK, TP</td>
<td>TP, SK</td>
<td>TP, SK, OS</td>
</tr>
<tr>
<td>II</td>
<td>OS, SK</td>
<td>SK</td>
<td>SK</td>
<td>SK, OS</td>
</tr>
<tr>
<td>III</td>
<td>OS, KK, MS</td>
<td>KK, SK, DN</td>
<td>TK, SK</td>
<td>OS, SK, TK, MS</td>
</tr>
<tr>
<td>IV</td>
<td>OS, SK</td>
<td>SK</td>
<td>SK</td>
<td>SK, OS</td>
</tr>
</tbody>
</table>

Sonja Kujala (SK), Outi Savolainen (OS), Tanja Pyhäjärvi (TP), Timo Knürr (TK), Mikko Sillanpää (MS), Katri Kärkkäinen (KK), David Neale (DN)
Table of contents

Abstract
Tiivistelmä
Acknowledgements 9
Abbreviations 11
List of original articles 13
Table of contents 15

1 Introduction 17
1.1 Scots pine (*Pinus sylvestris* L.) ... 18
 1.1.1 Early demographic history of European Scots pine 18
 1.1.2 Postglacial history and present day population structure.......... 19
 1.1.3 Scots pine as a study species .. 20
1.2 Adaptive traits are often polygenic ... 21
 1.2.1 Theory on polygenic traits .. 21
 1.2.2 Timing of bud set as an example .. 22
1.3 Searching for the genetic basis of an adaptive polygenic trait 23
 1.3.1 Controlling for the effects of past demographic events 23
 1.3.2 Challenges in finding the signal of polygenic selection 24
 1.3.3 Association mapping can reveal the underlying loci 25
1.4 Aims of the study .. 27

2 Material and methods 29
2.1 Scots pine population samples .. 29
2.2 Generating sequence, phenotype and genotype data 30
2.3 Sequence material for background demography modelling 32
2.4 Data analysis ... 32
 2.4.1 Population structure .. 32
 2.4.2 Background demography modelling with ABC 33
 2.4.3 Literature review for comparison of *H*$_0$ vs. *θ* 33
 2.4.4 Sequence analyses .. 34
 2.4.5 Association analysis on timing of bud set 35
 2.4.6 Allele frequency clines and allelic covariation 36

3 Results and discussion 37
3.1 Population structure of European Scots pine .. 37
 3.1.1 Population structure and diversity in comparison to
 allozyme level estimates.. 38
 3.1.2 Adaptive variation in timing of bud set in Scots pine 40
3.2 Impacts of demography on the genetic variation of European Scots pine populations .. 42
 3.2.1 Impacts of historical population size fluctuations 42
 3.2.2 Impacts of present day gene flow and recolonization history ... 43

3.3 Genetic background of bud set timing in European Scots pine 44
 3.3.1 Genetic heterogeneity underlying the timing of bud set 45
 3.3.2 Sequence variation in timing of bud set associated genes 46
 3.3.3 Allele frequency patterns in bud set timing associated loci 50

4 Conclusions and future directions .. 53
References ... 57
Original articles .. 73
1 Introduction

The ability of organisms to adapt to different environmental conditions is one of the cornerstones of evolution. Adaptation can be seen all around us; bird species have adapted to different food sources with morphological changes in their beaks (Darwin 1845), Tibetan people have acquired features in their physiology that allow life in the high altitudes with low oxygen pressure (Lorenzo et al. 2014), bacteria are constantly evolving and gain resistance to new antibiotics (Toprak et al. 2012), only plants that have developed cold tolerance survive the northern winter (Oakley et al. 2014). Adaptation by definition requires that it has a genetic basis and that different genetic variants have different probabilities to survive and produce offspring in particular environmental conditions. The proportion of these favourable genetic variants will increase in the following generations if chance effects do not override this effect of natural selection. Adaptation can have a single gene basis, or be polygenic, meaning that variation in multiple genes contribute to the variation in a phenotypic trait that confers adaptation (Kawecki & Ebert 2004).

Adaptation often takes place simultaneously with colonization of new habitats (Davis & Shaw 2001). As an example, the retreating glacial ice at the end of the last glacial maximum (LGM), provided open land in Fennoscandia to be colonized. The environment was harsh, though, and any species that migrated northwards from more southern latitudes had to tolerate the cold. The seasonal changes between summer and winter were also more extreme than in the south, and the environmental cues that warn about the approaching winter were different. A species that already had genetic variants enabling some individuals to tolerate the cold and to interpret the different environmental cues had a better chance of colonizing the new space. Some new favourable mutations conferring these abilities might also have occurred while the species was spreading to north. Adaptation occurred as these variants increased in frequency in successive generations as the species spread towards new areas.

In this thesis I have studied climatic adaptation and genetic variation with Scots pine, a species that has migrated and adapted to northern latitudes in Fennoscandia after the last glacial maximum, but exists in various other environmental conditions as well. I will start by introducing the species in order to give an overall picture of the biological features of Scots pine important in the context of studying polygenic adaptation, followed by the theory and methodological considerations.
1.1 Scots pine (*Pinus sylvestris* L.)

Scots pine (*Pinus sylvestris*; genus *Pinaceae*, subgenus *Pinus*, section *Pinus*, subsection *Pinus*) is one of the several pine species occurring in Eurasia. *P. sylvestris* is the most widespread among all pines (altogether some 115 species in the world) with a wide distribution from Western Europe to the eastern parts of Siberia (Fig. 1). The species extends to the harsh northern latitudes in northern Finland, Sweden and Norway. The southernmost populations are found in Spain and Turkey. A large part of the range has a rather continuous distribution. Mostly in the southern parts of the range, the species splits into more isolated patches (Mirov 1967, Richardson & Rundel 1998). In some western part of the range, the species has gone extinct due to human activities, but has later been reintroduced.

A large number of varieties within this species have been suggested along the long history of Scots pine studies, but only three official varieties are recognized nowadays; var. *mongolica* (in Mongolia and close by regions in southern Siberia and China), var. *hamata* (in Balkans, northern Turkey and Caucasus) and var. *sylvestris*, which is the most widespread variety and covers the rest of the range (Farjon 1998). The plethora of unofficial varieties is often based on phenotypic characters, and most likely reflects the large phenotypic variation found in this species, and the obvious capacity to adapt to variety of environmental conditions (Giertych & Mátyás 2013).

1.1.1 Early demographic history of European Scots pine

The areas that Scots pine occupies nowadays have gone through dramatic climatic changes in the past as multiple glacial and interglacial periods have alternated (Petit 1999, Cheddadi *et al.* 2005), which have influenced the population size and distribution of Scots pine (and other species). Most likely recurrent extinction and recolonization events have followed these climatic oscillations throughout the history of the species. Population size fluctuations leave a footprint in the amount and/or pattern of nucleotide variation. Certain features in the genome, such as the amount of diversity, the site frequency spectrum (SFS) and extent of linkage disequilibrium can deviate from neutral expectations due to past demographic events. For example, a population expansion is known to cause an excess of low frequency variants, and a recent bottleneck a reduction of diversity and an excess of intermediate frequency variants. The effects of demography extend to the whole genome (Przeworski 2002, Huber *et al.* 2014).
Pyhäjärvi et al. (2007) studied the signs of past demography in the nuclear genome of Scots pine. They found that the patterns of variation fit a demographic model with an old, severe bottleneck. Similar finding is common among many other forest trees, too. In Norway spruce (Heuertz et al. 2006), European aspen (Ingvarsson 2008a) and Maritime pine (Lepoittevin 2009) similar old bottlenecks fit the nuclear sequence data. The inferred models surely are simplifications of the actual course of events (see Jesus et al. 2006). It seems, however, that at least for Scots pine, the effect of the recolonization events after the last glacial maximum are not seen in the SFS of nuclear sequence data, as similar demographic model were inferred to both northern Scots pine populations and populations closer to potential LGM refugia (Pyhäjärvi et al. 2007). Neutral evolution of long-lived species is slow, i.e. mutation-drift equilibrium is reached very slowly. Therefore signs of very old events are seen in the genome (Savolainen & Pyhäjärvi 2007).

1.1.2 Postglacial history and present day population structure

The last glacial maximum occurred 26500–19000 years ago (Clark et al. 2009). In Europe the glacial ice sheet covered Scandinavia and most of the British Isles with its southern edge running through Germany and Poland (Svendsen et al. 2004). Permafrost extended even further south. Post-LGM events have been studied with maternally inherited organelle DNA markers in Scots pine (Sinclair et al. 1999, Cheddadi et al. 2006, Naydenov et al. 2007, Pyhäjärvi et al. 2008) and in other trees (e.g. Ferris et al. 1998, Petit et al. 2002, 2003) along with fossil evidence (e.g. Willis & van Andel 2004). These studies have suggested that cold tolerant trees, such as Scots pine, might have had LGM refugia quite close to the edge of the ice sheet, and that more southern refugia in Spain and Turkey have not contributed to the recolonization of central and northern Europe. Northern Europe was colonized within the last 10 000 years (Huntley & Birks 1983).

In general, nuclear markers are considered to be less informative about the recent colonization history than maternal organelle markers that are transferred through seeds only. They are, however, useful in describing the current state of differentiation between populations that depends on both the sharing of common ancestors and the amount of effective gene flow since the beginning of spatial separation (Whitlock & McCauley 1999). Nuclear allozyme markers (Gullberg et al. 1985, Muona & Smidt 1985, Muona & Harju 1989, Wang et al. 1991, Goncharenko et al. 1994, Prus-Głowacki & Stephan 1994, Shigapov et al. 1995, Puglisi & Attolico 2000, Dvornyk 2001), microsatellites (Karhu et al. 1996) and
sequence data (Dvornyk et al. 2002, Garcia-Gil et al. 2003, Pyhäjärvi et al. 2007, Wachowiak et al. 2009) have indicated very little population structure among current European Scots pine populations when estimated through F_{ST} (generally below 0.02). Especially the northernmost populations are very undifferentiated from each other. Gullberg et al. (1985) and Dvornyk et al. (2001) have suggested that this reflects their shorter occupation time when compared to the central populations that have had slightly more time to diverge. The southern isolated Spanish populations have been shown to be more differentiated from the rest of the Europe (Prus-Glowacki & Stephan 1994, Dvornyk et al. 2002, Pyhäjärvi et al. 2007).

1.1.3 Scots pine as a study species

Scots pine is a long lived tree with an average age at first reproduction of approximately 25 years. As it is an economically important species, many results have been obtained from growth trials, such as the transfer trial data of Eiche (1966). Scots pine disperses through seeds, and the pollen is wind dispersed. Pollen dispersal has been estimated both by pollen capture and by genetic methods. Long-distance pollen dispersal occurs, but most of the pollen lands within few hundred meters at most (Koski 1970, Robledo-Arnunzio & Gil 2005, Robledo-Arnunzio 2011). Seeds disperse less than pollen. Migration capacity must, however, be significant to explain the rapid colonization of the north indicated in pollen data (Austerlitz et al. 2000, Austerlitz & Garnier-Géré 2003, Mimura & Aitken 2007, Savolainen et al. 2011).

The genome of Scots pine is very large, approximately 22.4 gigabases (Plant DNA C-values Database, release 5.0, December 2010), which is approximately seven times the size of the human genome. A huge genome size is a typical feature of conifers. As a comparison, the genome of an angiosperm tree *Populus trichocarpa* is approximately 485 megabases (Tuskan et al. 2006). The number of genes in conifers (about 50000) is however not different from an average angiosperm. Most of conifer genomes consist of repetitive retrotransposon sequences, which can cause some difficulties in molecular genetics. There is, however, no evidence of recent genome duplications (Kovach et al. 2010, Nystedt et al. 2013, Wegrzyn et al. 2014, reviewed in De La Torre et al. 2014).

In earlier diversity studies with allozyme and microsatellite markers, the genetic diversity of Scots pine, as of many other forest trees, has been considered among the highest of all plants (Hamrick & Godt 1996). Early sequencing studies
later suggested that nucleotide diversity is not higher than in other plants (approximately 0.005/bp in Pyhäjärvi et al. 2007, see also Savolainen & Pyhäjärvi 2007). This is, however, at least five times more than in humans (Cargill et al. 1999, The 1000 Genomes Project Consortium 2015). Linkage disequilibrium generally decays rapidly, within a few hundred base pairs. So far, estimates for larger distances (beyond genes) are not available. The fact that linkage disequilibrium does not extend far is both an advantage and a challenge in association mapping studies (described below). Accuracy of mapping improves as the markers recognized in the analysis must reside close to the causal polymorphism. A high density of markers is, however, required to adequately cover the areas of interest (Neale & Savolainen 2004).

1.2 Adaptive traits are often polygenic

In contrast to the generally low F_{ST} estimates, there is ample phenotypic differentiation between populations of Scots pine and in other trees as well; genetic differentiation between populations of many adaptive and economically important traits (such as growth, cold tolerance, morphology) are high (Morgenstern 1996). These traits have a complex, polygenic genetic background with moderate to high heritability (Howe et al. 2003, Savolainen et al. 2007). Selection on the traits is in the form of diversifying selection towards different optima along environmental gradients. At the local level selection is stabilizing; the individuals closest to the local optimum have the highest fitness.

1.2.1 Theory on polygenic traits

Much theory on polygenic traits exists – traditionally within the framework of quantitative genetics – that can be applied to adaptive polygenic traits. A large number of loci are expected to contribute to the trait variation (Fisher 1930, Turchin et al. 2012). The effect sizes vary. Exponential distribution (with few loci with big effects and a large number of small effect loci) is often expected after an episode of directional selection (Orr 2005, Alonso-Blanco & Méndez-Vigo 2014). Genetic redundancy occurs, i.e. the same phenotypic value can be gained with multiple different genotypic combinations (Wright 1935, Goldstein & Holsinger 1992). Population genetics adds another layer of theory with issues such as migration-selection balance (Haldane 1930, Wright 1931), the origin of adaptive variation (adaptation from new mutations vs. adaptation from standing genetic variation,

The underlying allele frequency changes in space (along an environmental gradient) has been modelled in detail by Slatkin (1973), Barton (1999), Bridle et al. (2010), Polechova & Barton (2011, 2015) and Geroldinger & Burger 2015. According to these models steep sequential allele frequency clines (from near zero to near fixation) are expected to form in part of the loci, while the rest of the loci remain near fixation. Each of the alleles is favoured towards a different end of the gradient. While the phenotypic optimum might change slowly along the environmental gradient, the individual allele frequency changes can occur at a narrower spatial scale. The allele frequency clines form in the timescale of few hundred generations, assuming fairly weak selection on individual loci (Barton 1999).

Latta (1998), Le Corre & Kremer (2003, 2012) and Kremer & Le Corre (2011) emphasize a different aspect of spatial processes, concentrating more on the early stages of adaptation. This model puts more weight on the positive allelic covariation and stresses that in many conditions selection on beneficial allele combinations is more important than the frequency changes at individual loci. The allele covariation originates from the between population component of linkage disequilibrium (Ohta 1982) and leads to a lack of significant differentiation, i.e. low between population F_{ST} estimates in the trait defining loci. The amount of gene flow between populations, the strength of diversifying (between populations) and stabilizing (within population) selection, the number of loci and time from the onset of selection all influence the amount of covariation. These studies are based on the island model (see also Merilä & Crnokrak 2001, McKay & Latta 2002, Leinonen et al. 2013).

1.2.2 Timing of bud set as an example

Timing of growth is another adaptive polygenic trait showing high differentiation, and has been studied in many tree species, often using timing of bud flush and timing of bud set as proxies for start and end of the active growing period (see e.g. Cooke et al. 2012). In Scots pine, as in other trees (Clapham et al. 1998, Viherä-Aarnio et al. 2005, Ingvarsson et al. 2006, Mimura & Aitken 2010), timing of bud set forms a latitudinal cline, studied in detail by Mikola (1982) in Finnish populations, and by Notivol et al. (2007) and Oleksyn et al. (1992). Timing of bud set is measured in the first year seedlings, but correlates with the end of the period
of active growth in older trees (Oleksyn et al. 1998). Photoperiod is the critical environmental cue that the tree uses to determine the proper time to end the yearly growth (Vaartaja 1959). The actual adaptation is to the interpretation of light conditions and varies according to the natural light environment in the place of origin at the time of the year when preparation for the winter must start. The genes are therefore expected to be found mainly from the light perception and timekeeping functional networks. These networks have been studied extensively in Arabidopsis thaliana (e.g. Andrés & Coupland 2012, Song et al. 2014) and in some crop plants (Nakamichi 2014). In coniferous trees the networks have been examined by Gyllenstrand et al. (2007), Lagercrantz (2009), Karlgren et al. (2011), Avia et al. (2014) and Gyllenstrand et al. (2014).

1.3 Searching for the genetic basis of an adaptive polygenic trait

The factors described above, i.e. the past demographic events, population structure, and the polygenic architecture of adaptive traits all influence the patterns of sequence variation in the trait controlling loci. Consequently they also influence our ability to successfully find the trait related genes with population genetic or association based methods (see e.g. Savolainen et al. 2013, Bank et al. 2014, Tiffin & Ross-Ibarra 2014, Pardo-Diaz et al. 2015). As an example, an excess of low frequency variants caused by past demographic events can affect the success of association tests, since the power is, in part, related to the allele frequencies (Long & Langley 1999).

1.3.1 Controlling for the effects of past demographic events

Past demographic events can produce similar changes in the amounts and site frequency spectrum of nucleotide variation as positive selection (Przeworski 2002, Huber et al. 2014). As an example, the excess of low frequency variants can be due to past population expansion, but can also be due to recent directional selection that has rapidly increased a frequency of a specific haplotype. Since commonly used sequence based tests of neutrality, such as Tajima’s D (Tajima 1989) and Fay & Wu’s H (Fay & Wu 2000), use the properties of the site frequency spectrum to infer selection in a locus, false positive (or negative) results are likely under nonequilibrium demography. This problem can be alleviated by using a background model that describes the overall patterns of the genome due to demography and contrasting the findings in genes of interest against this
background; the effects of the demography are genomewide, while effects of selection are constrained around the selected locus.

This kind of model inference has been conducted for many species, with many different methods (e.g. Voight et al. 2005, François et al. 2008, Gronau et al. 2011, Duchen et al. 2012, Liu & Fu 2015). Approximate Bayesian computation (ABC; Beaumont et al. 2002, Bertorelle et al. 2010, Csillery et al. 2010) is one tool used for the inference with reference sequence data. In this approach the data are reduced to summary statistics (instead of using the full sequence data) to decrease the computational load. Coalescent simulations for specific models are performed, using parameter values from prior distributions, and models that produce summary statistics closest to the observed empirical reference data are favored. Once the model has been built, it can be used as a null model to test the deviation from neutrality in sequence variation of genes of interest.

As mentioned above, this type of background modelling in long lived trees has often revealed signs of old (pre-LGM) demographic events. This does not mean that younger events are negligible, but rather that the study design used for the model inference has not been well suited for detecting recent events (Pyhäjärvi et al. 2007, but see Städler et al. 2009 and Holliday et al. 2010b). It is important to recognize and control also for younger events because they can generate neutral genomewide population structure that mimics the structure caused by natural selection (Meirmans 2012, De Mita et al. 2013). This kind of situation can arise, for instance, when colonization and adaptation to conditions in the new habitat have occurred simultaneously and along the same environmental axis. This is especially important with association methods and analysis based on allele frequencies (such as \(F_{ST} \) outlier tests). Correcting for structure will reduce the number of false positives, but unfortunately also reduces the power to detect the true outliers and associations (Lotterhos & Whitlock 2015).

1.3.2 Challenges in finding the signal of polygenic selection

The polygenic nature of adaptive traits essentially means that most individual genes influencing the trait variation receive only weak selective pressure. The tests often used to test for signals of selection (such as Tajima’s \(D \) and Fay and Wu’s \(H \)) are designed to detect the recovery phase after classical selective (“hard”) sweeps. These tests therefore have low power to detect weaker selection, soft sweeps or incomplete sweeps (Kelly 2006, Chevin & Hospital 2008, Stephan 2015). Further, the temporal allele frequency trajectories can be nonmonotonic, (i.e. a polymorphic
equilibrium frequency can be achieved quickly, but might change to another equilibrium state or become extinct or fixed), which can further complicate the nucleotide variation patterns (Pavlidis et al. 2012). In *Pinus taeda*, it was however shown that as a group, loci associated with adaptive polygenic traits show more extreme values of these statistics than nonassociated loci (Eckert et al. 2013).

Further, considering selection towards different optima along an environmental gradient, genes and alleles can be experiencing dissimilar selective pressures in different locations. A naïve view based on this aspect would be that at a broad spatial scale the overall selective scheme would resemble balancing selection maintaining variation. At the local scale alleles would be experiencing directional selection (Hedrick et al. 1976, Hedrick 2006, Eckert et al. 2009b, Moeller & Tiffin 2008). Therefore, increased diversity and an excess of intermediate frequency variants would be expected when samples from different environments are analyzed jointly, and effects resembling selective sweeps could be detected locally.

This scenario, however, assumes that allele frequencies between environments at the selected sites differ enough so that the effects of selection pushing alleles in different directions can be seen in the surrounding genomic region. In the case of clinal polygenic selection, the majority of loci experience only weak selection and do not necessarily have significantly different frequencies (Barton 1999, LeCorre & Kremer 2003). Also other population genetic factors, such as the amount of gene flow between populations, have an effect on the patterns of variation (Kelly 2006, Städler et al. 2009). The expectations are thus hard to define for these small effect loci, and new population genetic models for polygenic selection are needed (Pritchard & Di Rienzo 2010, Jain & Stephan 2015, Matuszewski et al. 2015, Remington 2015, Stephan 2015, Yeaman 2015).

1.3.3 Association mapping can reveal the underlying loci

The logic in association mapping (Risch & Merikangas 1996) is the same as in traditional QTL (quantitative trait locus) mapping; the phenotype of interest is measured, and genotypes at the genetic markers determined in the study population. Linkage disequilibrium (Nordborg & Tavare 2002) between the markers and the causative polymorphism enables sorting out the marker that is closest to the causative site. The biggest difference between association and QTL studies is the nature of the study population; while in QTL mapping the progeny of controlled crosses are used, association mapping uses population samples. This leads to a difference in accuracy between these two approaches. In association mapping
population multiple rounds of recombination have segmented the genome into small haploblocks which enables improved resolution. In addition, all variation segregating within the population sample can be used instead of just the variation in the crossing parents of the QTL mapping family (see e.g. Cardon & Bell 2001, Balding 2006).

Association studies have been widely used in human disease genetics (Robinson et al. 2014), but also in studies of adaptation in many species (Atwell et al. 2010, Ingvarsson & Street 2011). Adaptive variation along environmental gradients in forest trees has been studied with association mapping in e.g. González-Martínez et al. (2007, 2008), Ingvarsson et al. (2008b), Eckert et al. (2009a, 2012), Holliday et al. (2010a), Ma et al. (2010), Cumbie et al. (2011), Olson et al. (2013), Prunier et al. (2013) and Evans et al. (2014). In addition, environmental associations (instead of phenotypic associations) have been examined by Eckert et al. (2010a,b, 2015), Keller et al. (2012) and Jaramillo-Correa et al. (2015).

In humans and model species with sufficient genome data, association studies have been carried out as genome wide association studies (GWAS), in which the genetic markers – most often single nucleotide polymorphisms (SNPs) – from the whole genome are used in the analysis. In recent years, next generation sequencing techniques have enabled GWAS studies in many non-model species, too (Ellegren 2014). In species whose genome is still mostly uncharacterized and/or very large and complex, a candidate gene approach is more suited. In this approach markers from preselected areas of the genome (e.g. certain genes or regulatory regions) potentially related to the trait of interest are used. Additional markers from other areas can be used as reference loci. This approach is also useful when the level of linkage disequilibrium is low and, consequently, high marker density is required (Neale & Savolainen 2004).

The success of association mapping is heavily influenced by careful design of the study and the choice of the analysis method. The mixed-model method (Yu et al. 2006, Kang et al. 2008) has been widely used in cases also typical to forest trees where there is a potential continuum of relatedness in the sample. While this method seems to perform better (Zhao et al. 2007) than the basic association methods with correction for population structure (Devlin & Roeder 1999, Pritchard et al. 2000, Price et al. 2006) it still suffers from inflation of test statistics as do the other single-locus methods, too (Yang et al. 2011b). Some multi-locus methods for association have been developed, such as the multi-locus mixed models by Segura
et al. (2012) and Yang et al. (2011a), and Bayesian models by Li et al. (2011) and Kärkkäinen & Sillanpää (2012) (see also Würschum & Kraft 2015).

One of the most important things to control for in association studies is the underlying population structure, whether obvious or hidden. The mixed model (Yu et al. 2006, Kang et al. 2008) allows correcting for population structure and relatedness by using a genomic relationship matrix. The correction can however lead to missing some true variants as they can be mistaken as confounding background variation. As described above, the F_{ST} estimates in Scots pine are generally low within the continuous part of the range. The neutral background population structure thus seems to be fairly weak. However, as the colonization and adaptation have occurred simultaneously, some spatial patterns may have formed also in neutral markers (Klopfstein et al. 2006, Excoffier et al. 2009, Slatkin & Excoffier 2012). Further, other traits that have adapted along the same environmental gradient as the trait in interest may show similar spatial genetic structure. Some confounding population structure may thus exist despite the low F_{ST} values (see also Salmela et al. 2008, Städler et al. 2009, Leslie et al. 2015).

1.4 Aims of the study

The aim of this thesis work was to study population genetic questions related to polygenic adaptation with Scots pine, a species that has adapted to various environmental conditions, is of ecologic and economic importance, shows many biological features that make it an excellent study system, and has ample allozyme diversity and growth trial data from earlier studies. A special trait of interest in this thesis was the timing of bud set, an important adaptive trait that shows fitness related geographical variation, and is of interest to the forest breeding community as well.

Resolving a genetic basis of a complex trait can ideally lead to the identification of all the loci affecting the trait variation, and to determining the effect sizes and potential interactions between these loci. Many population genetic factors, however, affect our ability to find these effects. In this thesis the aim was to study and characterize these factors, and to find part of the loci controlling the variation in timing of bud set. The following themes were addressed: What are the relationships between the three levels of genetic variation studied here; nucleotide variation, allozyme variation and adaptive trait variation? What are the consequences that the historical demographic events, time since colonization and
the dispersal capacity have had on these three levels of genetic variation? More specifically, the following research questions were asked:

1. What is the level of population structure of Scots pine within Europe inferred with nucleotide sequence data and SNP markers? (II, IV)

2. How do allozyme polymorphism data reflect the nucleotide level genetic variation in Scots pine? (I)

3. How is the genetic variation in a quantitative trait (timing of bud set) distributed across a wide latitudinal transect in Europe, and how does this compare to the distribution of molecular variation? (III, IV)

4. How have the past demographical events in the history of the species shaped the genetic variation? (II, IV)

5. What is the underlying genetic background of timing of bud set? (II, III)

6. Do we see signals of selection in sequence and SNP frequency data in loci controlling variation in timing of bud set and in allozyme coding genes? (I,II,IV)
2 Material and methods

A short description of the material and methods is given here. The detailed information can be found in the original papers I–IV.

2.1 Scots pine population samples

In studies I–IV we used partly overlapping sets of populations to describe genetic variation at different levels. In Study I we examined the within population diversity and haplotype structure of six allozyme coding genes with a sample of 35 trees from a southern Finnish natural standard forest. In Study II samples were drawn from ten natural populations of Scots pine natural range in Europe (9 populations) and northern Russia (1 population) to study sequence variation in candidate genes for timing of bud set and cold tolerance. From nine to 20 trees were representing each population. In studies I and II the sequences were obtained from haploid tissue, and one allele per tree was sequenced.

In studies III and IV also ten populations (partly overlapping with study II) from northern and central Europe were included. Four of these originated from seed orchards, which are collections of trees (clonal genotypes) from limited close-by area. The seeds of these genotypes are produced by open pollination by the nearby trees and should thus resemble a local natural stand (Muona & Harju 1989). Six populations were from natural forests. Sample sizes ranged from 18 to 30 mother trees per population. With this set we examined phenotypic variation in timing of bud set in European Scots pine, and conducted an association study to search for loci underlying the trait variation (study III). The phenotype was measured from open pollinated families with 25 seedlings in each, the genotype was determined for the mother tree only. This same set of mother trees was used in study IV to examine the allele frequency patterns of the genotyped loci in detail. The locations and details of the population samples in each study are shown in Fig. 1 and Table 1.

2.2 Generating sequence, phenotype and genotype data

For sequencing in studies I and II the megagametophyte tissue of the seeds of Scots pine was used as a starting material. This tissue is haploid and therefore represents one copy of the mother tree genome. This is a great advantage for sequencing as only one haplotype is present. One contiguous fragment per individual tree was always sequenced from a single megagametophyte. PCR primers for studies I and II (when not available from previous experiments) were designed based on *Pinus* ESTs (expressed sequence tags) accessible in GenBank and EVOLTREE databases, and *P. sylvestris* sequences from previous experiments. Standard procedures for DNA isolation, PCR, and Sanger sequencing were used in both studies.
Table 1. Population samples in studies I–IV.

<table>
<thead>
<tr>
<th>Population</th>
<th>Country</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Number of trees in each study</th>
</tr>
</thead>
<tbody>
<tr>
<td>FINn</td>
<td>Finland</td>
<td>67°11'</td>
<td>24°03'</td>
<td>20</td>
</tr>
<tr>
<td>FINc</td>
<td>Finland</td>
<td>63°45'</td>
<td>24°05'</td>
<td>30</td>
</tr>
<tr>
<td>FINs</td>
<td>Finland</td>
<td>60°52'</td>
<td>21°20'</td>
<td>35, 10</td>
</tr>
<tr>
<td>SWEe</td>
<td>Sweden</td>
<td>66°04'</td>
<td>19°06'</td>
<td>9</td>
</tr>
<tr>
<td>SWEs</td>
<td>Sweden</td>
<td>56°28'</td>
<td>15°55'</td>
<td>30</td>
</tr>
<tr>
<td>LAT</td>
<td>Latvia</td>
<td>56°45'</td>
<td>25°53'</td>
<td>10</td>
</tr>
<tr>
<td>RUS</td>
<td>Russia</td>
<td>66°05'</td>
<td>57°30'</td>
<td>10</td>
</tr>
<tr>
<td>SCOT</td>
<td>UK</td>
<td>57°03'</td>
<td>03°16'</td>
<td>10</td>
</tr>
<tr>
<td>NL³</td>
<td>Netherlands</td>
<td>52°06'–52°30'</td>
<td>05°39'–06°27'</td>
<td>29</td>
</tr>
<tr>
<td>BEL³</td>
<td>Belgium</td>
<td>49°58'–50°20'</td>
<td>04°55'–05°38'</td>
<td>19</td>
</tr>
<tr>
<td>POL</td>
<td>Poland</td>
<td>50°41'</td>
<td>20°05'</td>
<td>20, 30</td>
</tr>
<tr>
<td>GER³</td>
<td>Germany</td>
<td>50°15'</td>
<td>10°30'</td>
<td>18</td>
</tr>
<tr>
<td>SLO³</td>
<td>Slovakia</td>
<td>47°44'–49°37'</td>
<td>16°50'–22°34'</td>
<td>30</td>
</tr>
<tr>
<td>FRA</td>
<td>France</td>
<td>48°51'</td>
<td>07°52'</td>
<td>10, 29</td>
</tr>
<tr>
<td>ITA</td>
<td>Italy</td>
<td>44°37'</td>
<td>10°09'</td>
<td>10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>I</th>
<th>II</th>
<th>III & IV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>35</td>
<td>119</td>
<td>271</td>
</tr>
</tbody>
</table>

¹ Number of trees refers to haploid sample size in studies I and II, and to diploid sample size in studies III and IV. ² In study III this corresponds to the number of mother trees (half-sib families) for which both genotype and phenotype data was available. ³ Seed orchard

In study I, the identity of the allozyme coding genes was first verified in a separate set of 18 trees (Muona & Smidt 1985) with known allozyme genotypes; both enzyme electrophoresis (with standard procedures; Vallejos 1983) and DNA sequencing was conducted in this set of trees using the two halves of the same megagametophytes as the starting material for each molecular method. Following this we associated the enzyme mobility changes in starch gel with corresponding charge changing replacement mutations within each megagametophyte. This initial step was then followed by resequencing the six allozyme coding genes in a sample of 35 trees to produce the sequence data for the population genetic analysis. In study II, 11 fragments from 10 candidate genes for timing of bud set and cold tolerance were resequenced in a sample of ten populations.

The phenotypic data for study III were produced by the Finnish Natural Resources Institute (Luke) in a common garden (greenhouse) experiment in Haapastensyrjä, Southern Finland (60°37', 24°26'). The trial was run in five randomized blocks with 25 open pollinated seeds per mother tree (i.e. half-sib family) sown in the beginning of June 2003. Bud set status of the seedlings was
monitored once per week until November 2003. Best linear unbiased predictors (BLUPs) were used as family-specific means, which served also as the phenotypic response variable in the association analysis.

To obtain genotype data for studies III and IV, a SNP array of 768 single nucleotide polymorphism markers was initially designed. This represented 56 gene fragments sequenced “in house” (including e.g. the candidate gene sequences of study II and allozyme coding genes of study I) and additional 341 fragments from a conifer resequencing project CRSP (Comparative Re-Sequencing in Pinaceae, see Wegrzyn et al. 2008). The SNP array design was done using Illumina ADT (Assay Design Tool, Illumina 2015). The selection of SNPs was based on the ADT score, and the within fragment distance and linkage disequilibrium patterns of the single nucleotide polymorphisms.

The genotyping was done with Illumina GoldenGate assay in CNG (Centre National de Génotypage, Evry, France). On average, 19 megagametophytes were pooled for each sample to obtain the diploid genotypes for the mother trees. The genotypes were filtered to include only those that had MAF < 0.05 in the whole sample, and that had deviations from Hardy-Weinberg equilibrium expectations in at most one population. 351 SNPs of the initial 768 survived the filtering and were included in the association analysis in study III and allele frequency pattern analysis in study IV.

2.3 Sequence material for background demography modelling

For estimating demography with approximate Bayesian computation, 32 previously published gene fragments was used (Pyhäjärvi et al. 2007, Palmé et al. 2008, Wachowiak et al. 2009). The sequences (maximum of five haploid sequences per population) originated from six European (three northern and three central) populations. These data were pooled together to derive a common background model for European Scots pine.

2.4 Data analysis

2.4.1 Population structure

Population structure was studied by estimating F_{ST} between pairs of populations. In study II, the sequences from ten candidate genes were used. The analysis was
done on the genewise level with Arlequin 3.11 (Excoffier et al. 2005). In study IV, the SNP genotype data initially produced for study III were used. As the genotype data for association analysis were chosen to include only SNPs with MAF<0.05, we recovered some SNPs with lower frequencies (but conferring to Hardy-Weinberg equilibrium expectations) for this analysis. The final number of SNPs was 286. Expected heterozygosity from these same SNP markers was also calculated for each population. Estimates from the SNP data were calculated with R (R Core Team 2015) with package ‘Hierfstat’ (Goudet 2014).

2.4.2 Background demography modelling with ABC

We used approximate Bayesian computation (Beaumont et al. 2002, see also Bertorelle et al. 2010 and Csilléry et al. 2010) to infer a demographic background model for European Scots pine. We compared the fit of three simple models; standard neutral model with recombination (SNMR), population expansion model with recombination (PEMR) and an extended bottleneck model with recombination (EBMR). The parameters used were \(\theta \) (population nucleotide diversity) and \(\rho \) (population recombination rate) for all three models, \(a \) (exponential growth rate) in PEMR, and \(T \) (timing of bottleneck) and \(B \) (relative bottleneck size) in EBMR. Uniform priors were used for all these parameters. 1000000 coalescent simulations were run for each model. For each simulation, parameter values were drawn from the prior distributions, and summary statistics \(b_W \) (Watterson estimate of \(\theta \)), \(\pi \) (nucleotide diversity) and \(K \) (number of haplotypes) were calculated based on the simulation outcome. A subset of these simulations (0.5%) that produced summary statistic outcomes closest to the observed data in 32 reference loci was kept. Posterior distributions for the model parameters were defined from this subset. Local linear regression with log transformation was used (Beaumont et al. 2002). The relative fit of the three models was then estimated in two ways, i.e. determining the model probability from an acceptance rate under each model, and by posterior simulations. Demography inference was done with a Python module and application package for population genetics Seqlib 1.4 (De Mita et al. 2007).

2.4.3 Literature review for comparison of \(H_e \) vs. \(\theta \)

In study I the relationship between expected heterozygosity (\(H_e \)) in allozymes and diversity (\(\theta \)) at the nucleotide sequence level between species was studied by reviewing published estimates from 13 tree species and 14 other plant species for
which both estimates were available. Wild species were preferred over domesticated species. Studies with similar sampling design for H_e and θ for each species were included. The relationship between these two estimates was quantified with linear regression analysis.

2.4.4 Sequence analyses

In study I we characterized the within population variation in six allozyme coding loci ($6pgdB$, aco, gdh, $gotC$, $mdhA$ and $mdhB$) with basic population genetics summary statistics such as S (number of segregating sites), N_h (number of haplotypes) and θ_W (Watterson estimate of θ). Synonymous diversity in these genes was compared to a set of non allozyme genes from Pyhäjärvi et al. (2007) with a Bayesian multilocus estimation method (Pyhäjärvi et al. 2007). Linkage disequilibrium was characterized with r^2 and recombination (ρ) with a composite likelihood estimator of Hudson (2001) implemented in LDhat (McVean et al. 2002). Silent site divergence K_{st} was estimated with one *Pinus pinaster* individual as an outgroup. Deviations from neutrality expectations were studied with K_s/K_s ratio, HKA test (Hudson et al. 1987, calculated with a multilocus HKA program by Hey 2010), McDonald-Kreitman test (McDonald & Kreitman 1991), Tajima’s D (Tajima 1989), Fay and Wu’s H (Fay & Wu 2000), the Evens-Watterson test (EW; Watterson 1978), a test combining the latter three ($DHEW$; Zeng et al. 2007) and finally with the Hudson haplotype test (HHT; Hudson et al. 1994). The significance of HHT tests over all allozyme coding genes as a group was estimated with a Z transformation test (Whitlock 2005). The nonequilibrium genetic background due to historical demographic factors was taken into account in HHT by using the bottleneck model from Pyhäjärvi et al. (2007) as a null model. $DHEW$ test should be relatively robust to demography. Tajima’s D, Fay & Wu’s H, EW and $DHEW$ tests were done using DH.jar provided by Kai Zeng. The rest of the descriptive statistics, K_s/K_s ratios and McDonald-Kreitman tests were calculated with DNAsp 4.20.2 (Rozas et al. 2003).

In study II the standard diversity calculations and neutrality tests – Tajima’s D, H_{norm} (a standardized version of Fay & Wu’s H; Zeng et al. 2006) and $DHEW$ – were calculated for a pooled sample of seven main range populations, and for three subgroups of those (Northern Fennoscandia: FINn, SWEn; Southern Fennoscandia and Baltic region: FINs, SWEs, LAT; and Central Europe: POL, FRA, Fig. 1). A multilocus estimate of θ was calculated for each of the ten populations separately using the same method as in study I. K_s/K_s ratios, HKA test and McDonald-
Kreitman tests were done for the main range sample only. One *P. pinaster* individual was used as an outgroup. The significance of Tajima’s D and H_{com} was estimated by using the bottleneck model inferred with ABC (described above) as a null model. We searched for F_{ST} outlier sites with BayeScan (Foll & Gaggiotti 2008) and for allele frequency clines by regressing allele frequencies with latitude (adjusted for multiple testing by false discovery rate with QVALUE; Storey & Tibshirani 2003). Recombination (ρ) was estimated with a composite likelihood estimator as in study I, and linkage disequilibrium characterized with r^2 and $|D|$. Recombination and LD analyses were done only within the two biggest population samples (Northern Finland and Poland, 20 haploid samples in each). Diversity statistics were calculated with a Python module and application package for population genetics “Seqlib” (De Mita et al. 2007), except for silent sites, for which DNAsp 5.10.00 (Librado & Rozas 2009) was used. Also divergence and K_s/K_a ratios were calculated with DNAsp.

2.4.5 Association analysis on timing of bud set

Association analysis to find loci underlying the variation in timing of bud set was done using a novel Bayesian multilocus method introduced in study III. This method is searching for associations both from the within population variation (but combining data over multiple populations) and from the between population component of variation. The method is especially effective in studies where simultaneous colonization and adaptation processes have likely caused same kind of allele frequency patterns. The within population analysis is controlling for spurious associations due to population structure with a requirement of the association being present also within populations. The between population analysis is based on permuting the phenotypic data within populations and associating the allele frequency change with the change in the population mean. This complements the first part, as some associations might be missed if the alleles have very extreme frequencies within the populations. This approach might, however, be more prone to spurious associations. The analysis was done by implementing a Gibbs sampler based on the algorithm presented in Knürr et al. (2013). Associations were searched for within the whole ten population data set, and within the four northern populations (northern data set) and the six central populations (central data set).
2.4.6 Allele frequency clines and allelic covariation

In study IV we examined the prevalence of allele frequency clines and allele frequency covariation in four different SNP classes; 1) SNPs found to associate with timing of bud set in study III, 2) SNPs linked to the associated SNPs (i.e. from the same fragments), 3) SNPs from other candidate genes for timing of bud set or stress (especially cold) tolerance, and 4) reference SNPs (presumably unrelated to timing of bud set or stress). Analyses were done with the whole ten population data set, but also with only the northern data, since indication of genetic heterogeneity between northern and southern populations was found in study III. With the ten population data set, all 22 SNPs showing associations were included in the SNP class 1; in the northern subdata only the 12 SNPs associating in the northern part were included. Class 2 was adjusted for the northern data accordingly.

The slope steepness of allele frequency clines in each SNP was examined by regressing the population allele frequency on latitude of origin. The mean of absolute values of regression coefficients within each SNP class was used as a summary statistic, and the distributions of this statistic in each SNP class were compared with Kolmogorov-Smirnov test. We also checked whether the large effect alleles had steeper allele frequency clines than the small effect alleles.

Between population allelic covariation was studied with the assumption that if the allele frequency covariation is negligible, the potential for allelic covariation does not exist (Kremer & Le Corre 2011). Allele frequency covariation was calculated as sample covariance to describe the between population component of linkage disequilibrium (Ohta 1982). The Pearson correlation was also calculated to obtain a standardized measure. In cases where multiple SNPs existed per gene fragment, only one SNP per fragment was used.
3 Results and discussion

In the following I will sum up the results over the original papers I–IV. I will start by describing the results on basic population genetic issues such as the population structure, and the amounts and distribution of variation. I will then continue by discussing the results on more specific questions about the effects of demography and the adaptive sequence variation.

3.1 Population structure of European Scots pine

The level of population structure and the amount of present day gene flow influence many aspects in study design and interpretation of results in genetic studies. Scots pine has a continuous distribution covering most of northern and central Europe and extending eastwards all the way to the eastern Siberia. At range edges Scots pine is found in more isolated patches (Mirov 1967). Low F_{ST} values (generally well below 0.05) are characteristic for this species (e.g. Goncharenko et al. 1994, Prus-Glowacki & Stephan 1994, Karhu et al. 1996, Pyhäjärvi et al. 2007). We studied the population structure with two partly overlapping sets of populations by examining population pairwise F_{ST} estimates. In Study IV we found that the Finnish populations (northern, central and southern) and the southern Swedish population were least diverged from each other (0.0018–0.0051). Central European populations seemed more diverged from the northern populations (0.0043–0.0260). F_{ST} estimates among the central populations were also higher (0.0065–0.0246).

In study II we found, again, that Swedish and Finnish populations seem least diverged from each other. Latvian, Polish, French and Russian populations also showed some very low population pairwise F_{ST} estimates with these northern populations. Because of smaller sample sizes and fewer loci, these data were less powerful than the data in study IV and therefore had less resolution. Still, we found that the populations from Scotland, Italy and northern Russia were on average more differentiated from the other populations, especially the Italian population that consistently showed population pairwise F_{ST} values around or above 0.10 (see also Wachowiak et al. 2014, Scalfi et al. 2009). The data agree with the suggestion of Gullberg et al. (1985) and Dvornyk (2001) that the central populations have had more time to diverge from each other than the northern populations which have arrived to their current locations later after the last glacial maximum (LGM) and are thus further from the migration-drift equilibrium (Slatkin 1993). For large
populations it may take very long before migration-drift equilibrium is reached (see Whitlock & McCauley 1999).

The relative contributions of a common origin of recolonization and large dispersal capacity through pollen in generating the generally low F_{ST} values in Scots pine should be studied further with better modelling tools and a sampling design better suited to study this issue. According to Städler et al. (2009), the null hypothesis of panmixia can be tested also with site frequency spectrum based tests; the SFS is similar in local population samples, pooled population samples and scattered samples (one sample per population) only under panmixia. In this respect it is interesting that in the candidate gene sequence data of study II we observed this kind of a sampling effect, as Tajima’s D values estimated from individual populations were less negative than when estimated from the pooled data. In forthcoming sequence studies of Scots pine this effect and the potential fine structure in the continuous part of Scots pine range should be examined in more detail and preferably in neutral sequence data. Low F_{ST} estimates do not guarantee a lack of fine substructure capable of biasing results on sequence variation or association studies (see Salmela et al. 2008, Pickrell and Pritchard 2012, Bradburd et al. 2015, O’Connor et al. 2015).

3.1.1 Population structure and diversity in comparison to allozyme level estimates

Although nucleotide level data are getting easier to obtain even for conifers with large and complex genomes, the older data sets obtained with allozyme markers are still a valuable resource. There is a wealth of diversity data measured with allozyme markers for $P. sylvestris$ populations across the wide species range (Gullberg et al. 1985, Muona & Smidt 1985, Muona & Harju 1989, Wang et al. 1991, Goncharenko et al. 1994, Prus-Glowacki & Stephan 1994, Shigapov et al. 1995, Puglisi & Attolico 2000, Dvornyk 2001). From these data it has been learnt that most of the genetic variation resides within populations, and very low level of differentiation (generally $F_{ST} < 0.02$) is found between populations even over great geographical distances, as in many other tree species, too (Hamrick 1992). It is however important to understand how well allozyme level data represents the nucleotide level sequence variation.

In comparison to the allozyme markers, nucleotide level variation is a more accurate tool for measuring diversity differences and divergence. Only a fraction of all nucleotide level variation is translated into such nonsynonymous variation
that can be detected in enzyme electrophoresis (see Ramshaw et al. 1979). In study I we concentrated on the relationship of genetic variation at allozyme (expected heterozygosity, H_e) versus nucleotide level (nucleotide diversity, θ). At the level of diversity differences among species, a correlation between nucleotide diversity and allozyme heterozygosity was strong. Among the six allozyme coding loci that were examined in detail, a lack of correlation was observed in within population data of *P. sylvestris*. The loci we studied were mostly biallelic. Our results suggest that within population, at individual loci, allozyme heterozygosity does not predict the underlying nucleotide variation well. Rather, H_e depends on the allele frequencies of the particular site that determine the mobility of the allele, at least in biallelic loci, and does not describe the overall amount of mutation in the whole gene as θ does. In other words, H_e is affected by mutation in one or a few nucleotide sites at most, whereas θ can combine information over multiple sites. However, when combining data over larger number of allozyme loci (also multiallelic and monomorphic) and over larger taxonomical groups such as species, allozymes reflect the relative amounts of diversity fairly well and effective population size seems to be the main determinant of genetic diversity in multilocus data.

The ability of allozymes to reflect population structure (F_{ST} between populations within species) is most likely somewhere in between that of the two levels mentioned above. This is partly related to the resolution, but also to the fact that highly variable allozyme markers may have been favored. As F_{ST} is a ratio of the difference between the total and within population variation to total variation, F_{ST} values become high when within population diversity is low (Charlesworth 1998). The opposite is true for markers with high within population heterozygosity (Hedrick 1999, Muller et al. 2008). With nucleotide level variation in study II, somewhat higher F_{ST} values were observed in comparisons involving the three marginal populations, especially with the Italian population that had lower diversity (Fig. 2b).

Allozyme markers have often not detected a clear reduction of expected heterozygosity in marginal populations compared to populations in the continuous part of the distribution (Dvornyk 2001). With nucleotide data, in study II, the isolated Italian (Apennine) population was seen to have clearly less variation than the populations from the main range. In an earlier study the Apennine populations had lower heterozygosity in microsatellite markers (Scalfi et al. 2009). With allozyme markers the heterozygosity was slightly lower (Puglisi & Attolico 2000) in an Apennine population than in Alpine populations (part of the main range). Heterozygosity should be less affected by the stochastic processes at range limits
than the number of alleles, another measure of diversity (Nei 1975), some indication of which was found in a meta-analysis of Eckert et al. (2008). The same can hold for comparisons of the relative abilities of allozyme markers and nucleotide variation to uncover true differences in diversity.

3.1.2 Adaptive variation in timing of bud set in Scots pine

In study III we measured timing of bud set in European population samples originating from 10 different latitudes. The phenotypic cline (Fig. 2a) was clear; northern populations set bud earlier than the central ones (overall correlation $R^2=0.98$ between population mean of bud set timing and latitude). The cline was slightly steeper and the variation more closely associated with latitude in the north. The distributions of family means of days to bud set showed differences in the amount of phenotypic variation among populations; the central European populations had clearly larger phenotypic variance of family means in this trait. The smallest variances were found in the three Finnish populations. The population specific heritabilities had similar ranges in central and northern populations (0.35–0.63 in the northern and 0.39–0.75 in central populations). Thus the larger phenotypic variation in central populations is not caused by only larger environmental variance (V_E), but also larger genetic variance (V_A).

At the nucleotide level variation, we did not see a reduction of diversity in the north in the sequence data in study II, which agrees with earlier results on the distribution of nucleotide diversity in European Scots pine (Pyhäjärvi et al. 2007). The reference SNP markers of study IV also showed similar heterozygosities in all populations (Fig. 2c, low frequency <0.05 SNPs included, but note the potential ascertainment bias in the SNP data). This indicates that the reduced trait variance in the north is not a result of colonization bottlenecks, which would lead to decreased amounts of variation in random genetic markers as well. Although we cannot rule out the possibility that the greater variation in central populations is an experimental artefact due to the fact that they were grown in nonnative light conditions (see Olson et al. 2013), these results suggest that timing of bud set is under stronger stabilizing selection in the northern areas and perhaps under directional selection close to the northern range limit (if slightly maladapted, Garcia-Ramos & Kirkpatrick 1997, Kirkpatrick & Barton 1997, Moeller et al. 2011, Polechova & Barton 2015). This is in line with the results of a reanalysis based on transfer trial series data of Eiche (1966) by Savolainen et al. (2007) who showed that the southern genotypes transferred northward have much more decreased
survival and overall fitness compared to northern genotypes transferred southward for a similar latitudinal distance. Another explanation suggested for higher genetic variation is larger environmental heterogeneity (spatial or temporal) at the local scale (Yeaman & Jarvis 2006, Salmela 2014).

This finding of a strong cline in timing of bud set also corroborates earlier studies that find high differentiation in adaptive quantitative traits (Q_{ST}) between populations while genome differentiation (F_{ST}) is low (Latta 1998, Merilä & Crnokrak 2001, McKay & Latta 2002, Leinonen et al. 2013). The indication thus is that natural selection on timing of bud set is strong enough to overcome the maladaptive gene flow from surrounding areas where different phenotypic optima are found.

Fig. 2. The difference in variation at phenotypic and nucleotide level. a) The box and whiskers plot of population specific family means in timing of bud set (study III), b) multilocus theta estimate in sequence data (study II), c) expected heterozygosity in reference SNPs (study IV).
3.2 Impacts of demography on the genetic variation of European Scots pine populations

Demographic events such as population size fluctuations, range contractions and recolonizations are expected to affect the overall amount and pattern of genetic variation. The effects are seen throughout the genome. Controlling for these effects is important when inferring signals of selection in specific loci, since similar changes in diversity and SFS can be caused both by demographic events and selection (Przeworski 2002, Huber et al. 2014). The colonization history, the amount of gene flow between populations, and the resulting present day population structure also has to be taken into account.

3.2.1 Impacts of historical population size fluctuations

In study II we built a simplified background demography model for European Scots pine. The model was not intended to be an exact description of historical events, but a background model to compare the significance of neutrality tests against. Out of three simple models (constant population size, population expansion, and population bottleneck) we found most evidence in favour of the bottleneck model. This model was characterized by a size reduction to about 0.01 relative to current population size roughly about $0.10 \times 4N_0$ generations ago (with duration of the bottleneck fixed to $0.006 \times 4N_0$ generations), and lead to a slightly lowered level of haplotype diversity and a higher proportion of low frequency variants seen as low Tajima’s D values when compared to the standard neutral model. The model obtained was not a perfect fit to the observed patterns, especially with respect to H_{norm} values, which had to be taken into account when interpreting the results of the tests of neutrality. The bottleneck model is, however, conservative with respect to e.g. Tajima’s D; as the model allows for wide distribution of values, the observed test statistic must be fairly extreme to reach significance over the background.

The model obtained was in good agreement with results in previous study on the same issue by Pyhäjärvi et al. (2007), who compared the fit of a bottleneck model against a constant size model with a coarser grid of parameter values, and did not include an expansion model. Similar demographic scenarios were found in the northern and central European areas despite their different post-LGM colonization times. A bottleneck model with rather ancient timing for the bottleneck event has also been inferred for e.g. Norway spruce (Heuertz et al. 2006), European aspen (Ingvarsson et al. 2008a) and Maritime pine (Lepoittevin 2009). The actual
course of demographic events has most likely been more complex. As an example, the effects of recurrent range contractions (with population fragmentation) and recolonizations (a panmictic stage) were modelled by Jesus et al. (2006). They found that the subdivision during long interglacial periods can lead to very long gene genealogies.

The last glacial maximum could be too recent (in the viewpoint of a species with long generation times) to be seen in the SFS of nuclear genome at this point, i.e. not enough mutations have yet accumulated for the detection of the population growth after the glacial period (Wakeley & Aliacar 2001, but see Liu & Fu 2015). Some other aspects of variation might be more informative about recent events, such as distribution of F_{ST} (Lotterhos & Whitlock 2014), or age of rare variants (Mathieson & McVean 2015). Holliday et al. (2010b), nevertheless, found different timing of bottlenecks for different Sitka spruce populations along a postglacial colonization axis with diversity and SFS as summary statistics. The age of the bottleneck correlated with the time of colonization. However, as they noted themselves, demography inference can be strongly affected by the sampling strategy. According to Städler et al. (2009), only under extremely high gene flow ($> 25 \, 4Nm$) is the species wide demography correctly inferred from local samples or from pooled population samples; compared to the scattered sampling (one sample per population) less negative Tajima’s D values are observed. In study II we used pooled data for demography inference, and thus the model estimates here can also be affected by a sampling effect. However, with a purpose of having a background model for testing neutrality in particular genes of interest, it is best to build the background model with the sampling that resembles the structure of the sequence data to be tested for neutrality.

3.2.2 Impacts of present day gene flow and recolonization history

Under the model of stabilizing selection toward different local optima along an environmental gradient, the ability of populations to follow the optimum and locally adapt is defined by “characteristic length” = $\sigma/\sqrt{(sV_a)}$ (Slatkin 1978). This measure depends on the ratio of dispersal distance, and strength of selection and the amount of additive genetic variation. Long average dispersal distances thus make the characteristic length larger, unless the selection is very strong. On the other hand, gene flow can be viewed as an important source of genetic variation enabling adaptation (Slatkin 1987, Lenormand 2002). Previous pollen dispersal estimates (Koski 1970, Robledo-Arnuncio & Gil 2005) suggest that the average
dispersal distances in Scots pine are not extremely high despite the wind pollination. Some effective pollination has been observed over distance of 100 km and the dispersal kernel is very leptokurtic (Robledo-Arnunzio 2011, see also Kremer et al. 2012), but it is not known whether these long-distance pollination events lead to germination and establishment. Assuming average dispersal distance between 100 and 1000 meters, taking the estimates of V_A for timing of bud set in study III (mean $= 58$ days2 for north, mean $= 227$ days2 for central), and assuming fairly strong selection on the phenotype (0.1<s<1.0, stronger in the north than in the central areas), the characteristic length for timing of bud set becomes very small, i.e. less than a kilometre. Larger average dispersal distances or weaker selection lead to more plausible estimates. Nevertheless, the balance between gene flow and selection, i.e. the characteristic length in timing of bud set is small enough to enable the populations to adapt fairly accurately to the climatic gradient, as seen from the phenotypic data (Fig. 2a). Adaptation at small spatial scale despite low between population differentiation has been suggested e.g. in Csillery et al. (2014), Eckert et al. (2015) and Fitzpatrick et al. (2015) (see Richardson et al. 2014 and Scotti et al. 2015 for discussion).

In study III we showed that despite the low F_{ST} values across the main range of Scots pine there still is a need to control for population structure (Fig. 4 in study III). Apparently the colonization process has generated a shallow allele frequency cline in the SNP CL1966Contig1_05-341 that coincides with the phenotypic cline in timing of bud set, but the allelic variation is not associated with the trait within populations in the north. Such clines is neutral alleles can form with the process of range expansion (Klopfstein et al. 2006, Excoffier et al. 2009, Slatkin & Excoffier 2012). Furthermore, in study IV, we saw that in the north the allele frequency clines were on average slightly steeper than in the central Europe, which points to demographic processes generating shallow neutral clines. In forthcoming studies, a spatially explicit model for past demography (e.g. Currat et al. 2004, Ray et al. 2010, Antoniazzza et al. 2014) should be inferred that accounts for both the pre- and post-LGM events.

3.3 Genetic background of bud set timing in European Scots pine

Acknowledging and controlling for the demographic and other relevant population genetic factors discussed above makes the task of finding the genetic background of adaptive trait variation easier, though not easy. In Study III we examined the genetic basis of timing of bud set in an association study that combined ten
populations of Scots pine from northern and central Europe. A candidate gene based approach was used, i.e. SNPs from genes potentially involved in creating and maintaining variation in bud set timing were preferentially selected for genotyping. However, we also had a set of reference SNPs that originated from genes with functions presumably not related to clinal adaptation along a latitudinal gradient.

Associations were found among the candidate genes such as prr1 (pseudo response regulator 1, Turner et al. 2005, Källman et al. 2014), ftl2 (ft/tfl1 -like gene 2, Gyllenstrand et al. 2007, Karlgren et al. 2011, Avia et al. 2014, Chen et al. 2014), and phyn (phytochrome N, García-Gil et al. 2003, Franklin & Quail 2010, Pankin et al. 2014), but also among genes initially categorized as reference loci. A closer inspection of the putative functions of these gene fragments however revealed some potential connections to e.g. dormancy, light signalling, circadian clock and growth. Associations were found also in two allozyme coding genes of study I, 6pgdB and aco. Activity of 6pgd protein seems to be associated in drought stress responses in spring wheat (Chen et al. 2004). Allozyme variation in 6pgd is associated with dark respiration efficacy in perennial ryegrass, although the causal relationship was not established (Rainey et al. 1987). Aconitase is a target of nitric oxide (NO) and indicated in stress response reactions through inhibition by NO in A. thaliana (Gupta et al. 2012). Interestingly, SNPs in putative genes for nitric oxide synthase and calmodulin (which is involved in NO production) were also found to associate with timing of bud set in study III. In study I some closely related subgroups of haplotypes were found in allozyme coding genes unexpectedly often when compared to non-allozyme coding genes.

Some associations might arise for instance through pleiotropic effects and thus not be directly involved in this trait variation; an allele beneficial for a given trait can be selected for even when it has some harmful pleiotropic effects if complementary mutations evolve to correct for these effects (the selection, pleiotropy and compensation (SPC) model; Pavlicev & Wagner 2012). The associations that point to the compensating mutations would, nevertheless, be relevant for both understanding the evolution of the trait and for breeding (see also Rockman 2012 and Marjoram 2014 for discussion on association genetics).

3.3.1 Genetic heterogeneity underlying the timing of bud set

Interestingly, we found that different loci were associated with the trait variation in northern and central European populations. Allele frequency differences in the associating SNPs between these areas were low, and sample sizes comparable.
Since for additive genetic variation $V=2pq\sigma^2$, the different outcomes thus arise from the SNPs having different effect sizes in different parts of the Scots pine range. One potential explanation for the genetic heterogeneity can be the different photoperiodic conditions – i.e. different information content of the light/dark cycle in northern vs. central regions of Scots pine distribution. Different timekeeping mechanisms – light-dominant and dark-dominant – have been suggested for Scots pine, the light-dominant being favoured towards north. Also different light spectral conditions in northern and central areas could lead to differences in timekeeping mechanisms (e.g. Oleksyn et al. 1992, Clapham et al. 1998, Clapham et al. 2002, Dueck et al. 2015, Størmme et al. 2015).

This result is also very exiting considering the continuous distribution of Scots pine within Europe and the seemingly uniform phenotypic cline in timing of bud set. This result resembles conditional neutrality (Schnee & Thompson 1984, Hall et al. 2010, Anderson et al. 2013), a situation where an allele has fitness effects in one environment but not in another environment. Maintenance of long term genetic variation based on conditional neutrality is challenged by gene flow between the different environments (Slatkin 1987). The alleles beneficial in one environment tend to fix across the range as the gene flow pushes the frequency higher also in the environment where the alleles are neutral. This fixation across the range might, however, take a rather long time in a species with long generation time. Antagonistic pleiotropy, on the other hand, can maintain polymorphism more easily in the face of gene flow (Tiffin & Ross-Ibarra 2014, Weinig et al. 2014, Martin & Lenormand 2015, see also Oakley et al. 2014). Distinguishing between these alternatives remains a challenge for the forthcoming studies. Combined studies of multiple adaptive traits (Stock et al. 2014, MacPherson et al. 2015, Oubida et al. 2015) and addition of more detailed landscape data (Sork et al. 2013, De Kort et al. 2014, Eckert et al. 2010a,b, Stucki et al. 2014) can shed some more light on these questions.

3.3.2 Sequence variation in timing of bud set associated genes

The association results discussed above enable us to make some comparisons on the patterns of allele frequencies and sequence variation among loci that were associated to timing of bud set versus loci that were not. Four of the ten candidate genes examined in study II were found to be associated with variation in timing of bud set in study IV. All of these associations arose in northern latitudes. All ten resequenced genes were strong candidates for timing of bud set (or cold tolerance).
The lack of association in some of these can indicate insufficient power, insufficient marker coverage or simply that the gene function is too central and/or conserved to tolerate adaptive variation (see de Montaigu et al. 2015). Insufficient marker coverage could well be the case in e.g. cry1 where only one SNP was successfully genotyped in a region of 4768 base pairs. coll on the other hand seems very conservative at the protein level, as there were no nonsynonymous variation at all. Lack of power can affect any locus that has only small effect size, as our method of association was specifically designed to detect only the largest effect loci among the studied markers.

Among the four associated genes, only phyn had significant Tajima’s D values (-2.539 in the pooled sample of seven main range populations) when tested against the background bottleneck model (discussed in section 3.2.1). However, also prrl and fil2 had Tajima’s D values (-2.244 and -2.039) that were amongst the lowest in study II. lp2 had an intermediate value of D among the ten resequenced loci. With Hnorm (standardized Fay & Wu’s H) we see quite the opposite; lp2 has a second most negative value of Hnorm (though not significant against the bottleneck model), and prrl, phyn and fil2 are amongst the genes with the most positive values. DHEW test does not detect any of the associated genes. Haplotype diversities of these four genes were in the higher part of distribution. Among the nonassociated genes, cry1 had the most significant values in the three neutrality tests. dhnl was characterized by high diversity and relatively high (less negative) Tajima’s D. Overall, while acknowledging the small number of genes in this comparison, timing of bud set associated genes in these data were characterized by lower values of Tajima’s D, higher values of Hnorm and DHEW estimates and higher haplotype diversity in comparison to nonassociated genes. Theta estimates (per base pair) did not differ between associated and nonassociated genes (Table 2). These patterns were approximately the same also for the smaller subsets of data (Northern Fennoscandia, Southern Fennoscandia and Baltic region, Central Europe).

A closer look at the distribution of variation along the fragments (Fig. 3) indicates minor elevation of diversity (0 > 0.005) around the associating SNPs in prrl and lp2. Associating SNPs in fil2 and phyn are are in regions of lower diversity (0 < 0.005). fil2 and phyn were detected by the between population component of association analysis; prrl and lp2 by the within population analysis. This is congruent with the notion that the between population analysis seems to capture associated SNPs with extreme population frequencies that could be missed in the within population analysis. SNPs that have clinal allelic frequency variation tend to reside near Tajima’s D peaks in all four genes. The clinal sites were not the ones
showing the signal of association, however. The linkage disequilibrium patterns between the clinal and associated sites could be studied in more detail.

Table 2. Neutrality test statistics and diversity estimates in candidate genes (study II). The estimates are calculated from the pooled sample of seven main range populations. Ranks of associated genes in parenthesis.

<table>
<thead>
<tr>
<th>gene</th>
<th>D</th>
<th>H_{norm}</th>
<th>D_{HEW}</th>
<th>H_d</th>
<th>θ_W</th>
<th>length</th>
<th>SNPs</th>
</tr>
</thead>
<tbody>
<tr>
<td>cry1</td>
<td>-2.626^{**}</td>
<td>-1.422^*</td>
<td>0.0035**</td>
<td>0.885</td>
<td>0.0043</td>
<td>4762</td>
<td>1</td>
</tr>
<tr>
<td>phy1</td>
<td>-2.539^{**}</td>
<td>0.376 (8)</td>
<td>0.1703 (8)</td>
<td>0.969 (2)</td>
<td>0.0026 (10)</td>
<td>6683</td>
<td>4</td>
</tr>
<tr>
<td>prr1</td>
<td>-2.244 (3)</td>
<td>0.184 (7)</td>
<td>0.1024 (6)</td>
<td>0.943 (4)</td>
<td>0.0035 (8)</td>
<td>4183</td>
<td>8</td>
</tr>
<tr>
<td>ft2</td>
<td>-2.039 (4)</td>
<td>1.042 (11)</td>
<td>0.2479 (10)</td>
<td>0.956 (3)</td>
<td>0.0045 (4)</td>
<td>2545</td>
<td>5</td>
</tr>
<tr>
<td>col1</td>
<td>-1.949</td>
<td>-0.577</td>
<td>0.0237*</td>
<td>0.804</td>
<td>0.0022</td>
<td>3847</td>
<td>3</td>
</tr>
<tr>
<td>gi_f2</td>
<td>-1.829</td>
<td>-0.795</td>
<td>0.0175*</td>
<td>0.639</td>
<td>0.0042</td>
<td>1370</td>
<td>5</td>
</tr>
<tr>
<td>ztl</td>
<td>-1.383</td>
<td>-0.352</td>
<td>0.0348*</td>
<td>0.788</td>
<td>0.0075</td>
<td>1182</td>
<td>3</td>
</tr>
<tr>
<td>lp2</td>
<td>-1.103 (8)</td>
<td>-1.404 (2)</td>
<td>0.0961 (5)</td>
<td>0.920 (6)</td>
<td>0.0052 (3)</td>
<td>1185</td>
<td>4</td>
</tr>
<tr>
<td>myb</td>
<td>-0.578</td>
<td>0.848</td>
<td>0.2180</td>
<td>0.941</td>
<td>0.0040</td>
<td>3113</td>
<td>3</td>
</tr>
<tr>
<td>dhn1</td>
<td>-0.420</td>
<td>0.389</td>
<td>0.1070</td>
<td>0.975</td>
<td>0.0172</td>
<td>1357</td>
<td>2</td>
</tr>
<tr>
<td>gi_f1</td>
<td>-0.189</td>
<td>-0.446</td>
<td>0.3684</td>
<td>0.706</td>
<td>0.0029</td>
<td>402</td>
<td>3</td>
</tr>
</tbody>
</table>

1 Tajima’s D, 2 normalized value of Fay & Wu’s H, 3 p-value of DHEW test, 4 Haplotype diversity, 5 Watterson estimate of theta, all sites, 6 alignment length in study II, 7 number of SNPs successfully genotyped in study III
Fig. 3. Observed sequence variation in four associating genes. Sliding window plots were generated from sequence data in study II. Red vertical lines represent the associating SNPs, blue vertical lines the other SNPs in study III. Black vertical line indicates the overall value of the statistic in the fragment. Red stars indicate allele frequency clines in study III SNP data, black stars mark the locations allele frequency clines in study II sequence data.

The challenge in finding signals of selection in individual loci underlying adaptive polygenic traits (Kelly 2006, Chevin & Hospital 2008, Eckert et al. 2013, Stephan 2015, Yeaman 2015) is obvious in this small data, too. Neutrality tests are well powered to detect classical and complete selective sweeps. For example, Fay & Wu’s H measures the ratio of derived high frequency variants to intermediate frequency variants, which is expected to be elevated in the surrounding areas of a site that has been already fixed due to positive directional selection. Association studies, in contrast, search for loci that are still polymorphic. Unlike Fay and Wu’s H, Tajima’s D is capable of detecting partial hitchhiking events that might be more likely in the scenario of selection towards different trait optima. Tests specifically designed to detect incomplete or soft sweeps (Sabeti et al. 2002, Voight et al. 2006,
Garud et al. 2015) might also be useful. The power of all these, however, depends on the difference between the initial and the equilibrium frequency of the favored allele and timing of selection relative to the sampling (Pavlidis et al. 2012). Eckert et al. (2013) found that loci associated with polygenic traits had more negative Tajima’s D values as a group than nonassociated genes, as was found in our small comparison, too. As suggested by Eckert et al. (2013), the identification of signals of selection might be possible only through comparing groups of genes.

3.3.3 Allele frequency patterns in bud set timing associated loci

Allele frequency patterns at individual polymorphic sites were examined both in study II and study IV. None of the four associated genes (ftl2, phyn, prr1, lp2) had \(F_{ST} \) outlier sites in BayeScan analysis, nor high genewise \(F_{ST} \) in study II. In the SNP data (study IV) one of the associated SNPs (\textit{CL1154Contig1 _02-143}) had a particularly high \(F_{ST} \) estimate (0.1014) among the ten populations when compared to the distribution of \(F_{ST} \) estimates in the reference SNPs. It seems, however, that these high \(F_{ST} \) estimates do not necessarily reflect clinal selection, as seen from Fig. 4. When only northern populations were considered, \(F_{ST} \) of SNP \textit{ftl2_f1-356} was on the edge of the distribution. In this case the high \(F_{ST} \) estimate agrees better with a clinal pattern. The lack of \(F_{ST} \) outliers was also evident in \textit{Populus balsamifera} in genes related to timing of bud set (Olson et al. 2013, Wang et al. 2014).

![Population specific allele frequencies against latitude and their respective regression lines in four SNPs that show pronounced \(F_{ST} \) estimates.](image)

In the case of selection towards different trait optima along a clinal gradient the existence of clinal allele variation can be stronger evidence for selection than high \(F_{ST} \) alone. \textit{prr1} and \textit{ftl2} had significant frequency clines at some SNPs in study II. Unfortunately none of these sites were included in the genotype data in studies III and IV. The SNPs associating with timing of bud set in \textit{prr1} and \textit{ftl2} did not have
frequency clines. In *fil2* one nonassociating SNP exhibited a significant cline (no multiple testing correction) and is very close to the site that showed significant cline in study II.

According to Barton (1999) part of the loci underlying a clinal polygenic trait are expected to show allele frequency clines from close to zero to close to fixation, while other loci contributing to the trait variation show very little differences in their frequencies among populations. In study IV we examined the evidence for this hypothesis. We found that within these data we do not see trait associated loci with steep allele frequency clines, i.e. frequency change from close to zero to close to fixation. Also there was no indication of bigger effect alleles having steeper clines. Instead we found a slight (yet statistically nonsignificant) enrichment of very shallow allele frequency clines among the trait associated loci in comparison to reference loci. Also in Norway spruce, Chen *et al*. (2012) saw a lack of enrichment in bud set candidate genes for bud set when standard regression coefficients in the candidate gene SNPs were compared against the reference genes. Chen *et al*. (2014) found a slight enrichment in Siberian spruce. Both, however, found an enrichment of positive evidence (BF, Bayes factor) for clinal variation within bud set candidate genes when using a Bayesian analysis tool Bayenv (Coop *et al*. 2010). Our data could be further tested with similar approach.

Another theory suggests that selection on beneficial allele combinations can be of more importance than the allele frequency changes at individual loci (Latta 1998, Le Corre & Kremer 2003, 2012, and Kremer & Le Corre 2011, see also Csillery *et al*. 2014). Allelic covariation between bud set timing associated SNPs was also examined in study IV. We did not find an elevated level of covariation of allele frequencies in comparison to reference SNPs. Ma *et al*. (2010) found large covariance in allelic effects in *Populus tremula*. In future studies with (closer to) genome wide data, more powerful statistical methods (such as Berg & Coop 2014) can be used to examine the contribution of allelic covariance further.

The lack of steep clines or increased covariance in these small data can be simply due to the fact that most likely only small part of the causative loci were included among the studied markers. In the model by Barton (1999) only few of the loci contributing to trait variation will show steep clines while most have only very shallow clines. Another possibility is that the time of sampling relative to the stage of selection is not optimal to see these effects; it may take longer than the time since post-LGM colonization for the allele frequency clines to settle. Allele covariance is, however, expected to have an important role especially in the early stages of selection (Kremer & Le Corre 2011). The power to detect greater
covariation among associated loci in comparison to random loci will most likely improve as the discovered proportion of loci underlying the trait increases. Post-LGM demographic modelling with spatial components included can further help to redefine the expectations on allele frequency clines and covariance.
4 Conclusions and future directions

The studies in this thesis aid in painting a more refined picture of genetic diversity in Scots pine at the levels of nucleotide, allozyme and phenotypic variation. Scots pine is in many ways an interesting species for the study of evolution. It is the most widespread of all pine species and is thus an interesting example of a gymnosperm that has managed to evolve and triumph through the history of this ancient lineage, facing many profound changes in its environment. New genetic research added to the wealth of existing older data in the form of allozyme studies and provenance trials offers a particularly rich set up.

In this thesis both neutral and selective aspects of the genetic variation in Scots pine were examined that complement the previous genetic research conducted with this species. Three neutral aspects were studied here, the influence of demographic population size fluctuations on the background sequence variation patterns, the distribution of variation at the nucleotide sequence level, i.e. population structure, and the level of correspondence of diversity estimates at the nucleotide and allozyme levels. We found that the genome of Scots pine is reflecting old demographic (pre-LGM) events and that the background variation can be modelled with a severe, ancient bottleneck. This model, here with more data and dense sampling of the parameter space, is congruent with the earlier demography model inference. An addition is the notion that population growth model does not outperform the bottleneck model. In future studies, more data and a better coverage of the genome are needed, along with new modelling tools that enable using such aspects of the genome data that are informative also about recent colonization history of a long lived species.

We found that F_{ST} estimates were generally low, as has been shown also in the earlier studies. We found indications that the marginal populations are slightly more differentiated than the populations from the main range populations. The northern populations were, however, less diverged from each other than the other main range populations. This gives support to the suggestion made already two decades ago based on allozyme data, that the central European populations have had more time to diverge after LGM than the northern populations that colonized their current location later. An implication from this is that there may exist fine population substructure also within the continuous part of the range despite the generally low F_{ST} estimates. The possibility of the fine structure should be examined with more data and more precise spatial analysis tools, and the possible violation of panmixia
The existing allozyme data in Scots pine has taught many things about this species, in particular that most of the neutral genetic variation is found within populations. We studied how well the allozyme diversity correlates with underlying nucleotide diversity. We found that at the between species level the data are congruent; both allozyme and nucleotide diversities reflect the effective population size. At the within population level, the allozyme heterozygosity is, however, not informative about the actual nucleotide variation in the coding loci. Comparing our new nucleotide data with older allozyme data implies that the between population variation is described fairly well with allozymes, although nucleotide data naturally adds more resolution.

Polygenic adaptation was studied with timing of bud set at the level of the phenotype in a common garden experiment, at the gene level by population genetic analysis of candidate loci, and by association methods combining these two levels. We saw that timing of bud set is well correlated with the latitude of origin. This clinal structure in this trait has been seen already in earlier studies. However, our sampling, covering both northern and central Europe, enabled us to effectively compare the variation in these two regions. Phenotypic and additive genetic variation was smaller in northern Europe, most likely as a result of stronger selection in the harsh northern environment.

Association study within this material, analyzed with a novel Bayesian multilocus method, revealed genetic heterogeneity between central and northern European populations. It is possible that the environmental cues used for the seasonal timekeeping are different in these two areas where the information content of the night length and light spectral qualities differ. Future studies can further reveal whether this heterogeneity implies conditional neutrality or antagonistic pleiotropy. We found associations within candidate genes for bud set timing, but also in genes with looser links to the phenotype. While the risk of false positives is never zero, some of the less expected associations may inform us about the complexity of the molecular networks underlying this trait, and also about the possibility of pleiotropic effects involved in adaptation processes.

The association study results enabled us to compare the population genetic properties of the associated versus nonassociated loci in across Europe. We identified some features that were often characterizing the associated genes, although at the individual loci the features did not deviate from the neutral expectations under the bottleneck demography. These trends need to be further
tested with larger number of genes. We also examined the theoretical predictions of allele frequency clines and allelic covariance among the associated SNP markers. We did not find any steep clines, nor a pronounced level of allele frequency covariation in the associated SNPs compared to the reference SNPs. We also saw that high single locus F_{ST} estimates in data sampled from multiple populations across an environmental gradient do not always reflect biologically meaningful adaptive differentiation.

The study of adaptation benefits from simultaneous analysis on multiple levels of variation. The strongest limitation in the data in this thesis was the low genome coverage that reflects the fact that genomic resources in this species have been sparse. This situation is, fortunately, constantly improving; first full genome conifer sequences have been published, which aids the development of genomic resources for Scots pine, too. Nevertheless, the results in this thesis give further guidelines for future adaptation and population genetic studies in Scots pine and other widespread forest trees. These results will also be of value for breeding and conservation purposes, and add to the discussion on the consequences of the rapid climate warming. I would like to finish with a quote:

“Everything should be made as simple as possible, but not simpler.”

– Albert Einstein
References

Original articles

*authors contributed equally to the manuscript

Reprinted with permission from Springer (I, II).

Original publications are not included in the electronic version of the dissertation.

647. Cherevatova, Maria (2014) Electrical conductivity structure of the lithosphere in western Fennoscandia from three-dimensional magnetotelluric data

650. Shao, Xiuyan (2015) Understanding information systems (IS) security investments in organizations

652. Tolikainen, Mikko (2015) Biodiversity and ecosystem functioning in boreal streams : the effects of anthropogenic disturbances and naturally stressful environments

655. Li, Ying (2015) Users’ information systems (IS) security behavior in different contexts

657. Lappalainen, Katja (2015) Modification of native and waste starch by depolymerization and cationization : utilization of modified starch in binding of heavy metal ions from an aqueous solution

Book orders:
Granum: Virtual book store
http://granum.uta.fi/granum/
Sonja Kujala

DISSECTING GENETIC VARIATION IN EUROPEAN SCOTS PINE
(PINUS SYLVESTRIS L.) – SPECIAL EMPHASIS ON POLYGENIC ADAPTATION