Ville Hakamäki

SEEING BEHIND STRAY FINDS
UNDERSTANDING THE LATE IRON AGE SETTLEMENT OF NORTHERN OSTROBOTHNIA AND KAINUU, FINLAND
ACTA UNIVERSITATIS OLUENSIS
B Humaniora 168

VILLE HAKAMÄKI

SEEING BEHIND STRAY FINDS
Understanding the Late Iron Age settlement of Northern Ostrobothnia and Kainuu, Finland

Academic dissertation to be presented with the assent of the Doctoral Training Committee of Human Sciences of the University of Oulu for public defence in the Wetteri auditorium (IT115), Linnanmaa, on 30 November 2018, at 10 a.m.

UNIVERSITY OF OULU, OULU 2018
Hakamäki, Ville, *Seeing behind stray finds. Understanding the Late Iron Age settlement of Northern Ostrobothnia and Kainuu, Finland*

University of Oulu Graduate School; University of Oulu, Faculty of Humanities, Archaeology

Acta Univ. Oul. B 168, 2018

University of Oulu, P.O. Box 8000, FI-90014 University of Oulu, Finland

Abstract

The dissertation examines the settlement and interactions of the Late Iron Age communities of northern Finland by focusing on the archaeological sites and finds documented in the regions of Northern Ostrobothnia and Kainuu. The point of departure for the study is to understand the data from a local point of view as in the previous evaluations the hunter-gatherer population inhabiting the area has been overlooked with most of the discussions revolving around the peasant influence arriving from southwestern Finland and Karelia. Partially for this reason, the period in question has appeared problematic and many questions regarding the settlement remain unaddressed.

The reason for the poor research situation articulates with the problems related to the archaeological remains. Most of the material must be classified as so-called stray finds or archaeological objects to which no context can be determined without excavations taking place. These stray finds comprise the most significant portion of the available data, as besides them only a few burials, dwelling sites or other feasible remains are documented in Northern Ostrobothnia and Kainuu. In spite of this, the research interest towards these finds has been relatively minor until recent years.

The research questions are approached via three case studies, which represent stray finds that were excavated during the research process of the dissertation. These sites are addressed by taking into consideration their form, function and dating as well as examining their archaeological context on a broader geographical scale. In addition to the case studies, the dissertation considers previously known sites and finds in the research area and elsewhere in the interior and northern Fennoscandia. Based on the study, it is argued that several stray finds are associated with burial sites, dwellings and other indicators of settlement whose formation process has likely been affected by local traditions and subsistence as well as contacts and interactions with other Iron Age communities.

Keywords: burial practices, interactions, Iron Age, medieval period, settlement patterns, stray finds, transculturalism
Tiivistelmä
Tutkimus tarkastelee Pohjois-Suomen myöhäisrautakautista asutusta ja väestön vuorovaikutussuhteita Pohjois-Pohjanmaan ja Kainuun maakuntien alueelta tunnustettujen löytöjen ja kohteiden valossa. Tutkimuksen keskeisimpänä lähtökohtana on näiden teemojen hahmottaminen paikallisenä näkökulmasta, sillä monissa aikaisemmissa tutkinnoissa alueella asunut metsästäjä-keräilijäväestö on jäänyt kohtalaiselle huomiolle keskustelujen keskittyessä Lounais-Suomesta ja Karjalasta tulleen talonpoikaisvuorovaikutukseen. Osittain tästä syystä kyseinen aikakausi on pitkään näyttäytnyt ongelmallisena, eikä moni alueen asutusta koskevaan kysymykseen ole voitu vastata.

Syy myöhäisen rautakauden heikko on tutkimustilanteeseen nivelty arkeologiseen aineistoon liittyvään problematiikkaan. Valtaosa tutkimusalueelta talleetusta materiaalista on luettava niin kutsutuiksi irtolöydetiksi, eli arkeologisiksi esinelöydetiksi, jolle ei ilman kenttätutkimuksia ole mahdollista määrittää tarkkaa löytöyhteyttä. Irtolöydöt muodostavat merkittävän aineistokonaisuuden, sillä niiden lisäksi Pohjois-Pohjanmaalta ja Kainuusta tunnetaan ainoastaan muutamia myöhäisrautakautisia asuinpaikoja, hautoja tai muita arkeologisia kohteita. Tästä huolimatta, niihin kohdistunut tutkimuseläkkeinen mielenkiinto on viimevuosiin saakka ollut pääosin vähäistä.

Väitöskirja lähestyy aineistoa kolmen tapaustutkimukseen nivelttäy arkeologiseen aineistoon liittyvään problematiikkaan. Valtaosa tutkimusalueelta talleetusta materiaalista on luettava niin kutsutuiksi irtolöydetiksi, eli arkeologisiksi esinelöydetiksi, jolle ei ilman kenttätutkimuksia ole mahdollista määrittää tarkkaa löytöyhteyttä. Irtolöydöt muodostavat merkittävän aineistokonaisuuden, sillä niiden lisäksi Pohjois-Pohjanmaalta ja Kainuusta tunnetaan ainoastaan muutamia myöhäisrautakautisia asuinpaikoja, hautoja tai muita arkeologisia kohteita. Tästä huolimatta, niihin kohdistunut tutkimuseläkkeinen mielenkiinto on viimevuosiin saakka ollut pääosin vähäistä.

Väitöskirja lähestyy aineistoa kolmen tapaustutkimukseen nivelttäy arkeologiseen aineistoon liittyvään problematiikkaan. Valtaosa tutkimusalueelta talleetusta materiaalista on luettava niin kutsutuiksi irtolöydetiksi, eli arkeologisiksi esinelöydetiksi, jolle ei ilman kenttätutkimuksia ole mahdollista määrittää tarkkaa löytöyhteyttä. Irtolöydöt muodostavat merkittävän aineistokonaisuuden, sillä niiden lisäksi Pohjois-Pohjanmaalta ja Kainuusta tunnetaan ainoastaan muutamia myöhäisrautakautisia asuinpaikoja, hautoja tai muita arkeologisia kohteita. Tästä huolimatta, niihin kohdistunut tutkimuseläkkeinen mielenkiinto on viimevuosiin saakka ollut pääosin vähäistä.

Väitöskirja lähestyy aineistoa kolmen tapaustutkimukseen nivelttäy arkeologiseen aineistoon liittyvään problematiikkaan. Valtaosa tutkimusalueelta talleetusta materiaalista on luettava niin kutsutuiksi irtolöydetiksi, eli arkeologisiksi esinelöydetiksi, jolle ei ilman kenttätutkimuksia ole mahdollista määrittää tarkkaa löytöyhteyttä. Irtolöydöt muodostavat merkittävän aineistokonaisuuden, sillä niiden lisäksi Pohjois-Pohjanmaalta ja Kainuusta tunnetaan ainoastaan muutamia myöhäisrautakautisia asuinpaikoja, hautoja tai muita arkeologisia kohteita. Tästä huolimatta, niihin kohdistunut tutkimuseläkkeinen mielenkiinto on viimevuosiin saakka ollut pääosin vähäistä.

Väitöskirja lähestyy aineistoa kolmen tapaustutkimukseen nivelttäy arkeologiseen aineistoon liittyvään problematiikkaan. Valtaosa tutkimusalueelta talleetusta materiaalista on luettava niin kutsutuiksi irtolöydetiksi, eli arkeologisiksi esinelöydetiksi, jolle ei ilman kenttätutkimuksia ole mahdollista määrittää tarkkaa löytöyhteyttä. Irtolöydöt muodostavat merkittävän aineistokonaisuuden, sillä niiden lisäksi Pohjois-Pohjanmaalta ja Kainuusta tunnetaan ainoastaan muutamia myöhäisrautakautisia asuinpaikoja, hautoja tai muita arkeologisia kohteita. Tästä huolimatta, niihin kohdistunut tutkimuseläkkeinen mielenkiinto on viimevuosiin saakka ollut pääosin vähäistä.

Väitöskirja lähestyy aineistoa kolmen tapaustutkimukseen nivelttäy arkeologiseen aineistoon liittyvään problematiikkaan. Valtaosa tutkimusalueelta talleetusta materiaalista on luettava niin kutsutuiksi irtolöydetiksi, eli arkeologisiksi esinelöydetiksi, jollei ilman kenttätutkimuksia ole mahdollista määrittää tarkkaa löytöyhteyttä. Irtolöydöt muodostavat merkittävän aineistokonaisuuden, sillä niiden lisäksi Pohjois-Pohjanmaalta ja Kainuusta tunnetaan ainoastaan muutamia myöhäisrautakautisia asuinpaikoja, hautoja tai muita arkeologisia kohteita. Tästä huolimatta, niihin kohdistunut tutkimuseläkkeinen mielenkiinto on viimevuosiin saakka ollut pääosin vähäistä.
For Anna, Verner and Armi
Acknowledgements

This study set out as an attempt to understand the economic practices among prehistoric communities of northern Finland and it was initially intended to include a larger geographical and temporal scope. This fumbling is still visible in the first publication included in the study. It did not take long, however, to understand that issues most interesting to me derived from the Late Iron Age and this mindset was strengthened by interesting field results gathered from the Viking Age and Crusader Period sites since 2013. Therefore, the dissertation eventually transformed into a study of settlement and contacts during this timeframe and the research area was revised to cover regions where I felt the need for this kind of scrutiny was the greatest.

Although, it is stated throughout the study that the focus of the examination lies on stray finds, the bulk of the analyses presented here are actually based on the data excavated during the fieldwork projects of this dissertation and without these excavations, the presentation of this dissertation would be profoundly different. These studies, as well as the writing of this dissertation, would have not been possible without considerable help from others and, therefore, several institutions and individuals are to be thanked for benefiting the study.

First, I would like to offer my gratitude to my supervisors, university lecturer Jari Okkonen and Professor Per H. Ramqvist as well as Professor Eero Jarva, who kindly mentored my research during its early stages. Many ideas and arguments presented in this dissertation are direct consequence of the ideas planted by these great academic minds. On the same note, gratutudes are forwarded at the prereviewers of the dissertation, PhD Anna Wessman and Professor Nils Anfinset for their expert comments on the manuscript of the dissertation.

In addition, I am grateful to my follow-up group for doctoral training, university lecturers Matti Enbuske and Janne Ikäheimo and PhD Kirsti Paavola for overseeing the progress of my work. Janne Ikäheimo is further thanked for greatly contributing to the excavations of Pirttitörmä dwelling site. Furthermore, Professor Vesa-Pekka Herva is to be thanked for providing insightful comments on my work along the way. Great gratitudes are also expressed for my academic colleagues, MA Aki Hakonen, MA Karen Niskanen, PhD Risto Nurmi, PhD Jari-Matti Kuusela PhD Heli Maijanen, PhD Mirette Modarress, Dr Anna-Kaisa Salmi, PhD Timo Ylimaunu and PhD Tiina Äikäls for many interesting discussions, ideas and advices.

MA Mika Sarkkinen of the Museum of Northern Ostrobothnia Museum is thanked for providing information about the most recent finds and the gratitude are
also extended to MA Esa Suominen of the Kainuu Museum. Petri Anttonen and the Kujala brothers (Ollimatti, Harri and Tuukka), are thanked for correspondence and co-operation regarding the most recent Late Iron Age finds of Kainuu and Northern Ostrobothnia. For counsel regarding the Iron Age coins, gratitudes are offered to PhD Tuukka Talvio and MA Jani Oravisjärvi of the Finnish National Museum’s Coin Chamber as well as to MA Frida Ehrnsten of the University of Helsinki.

The writing of the dissertation as well as most of the fieldwork and other analyses discussed in the text were made possible by the Kone Foundation, who financially supported the research project yhteisöjen keskinäinen yhteistyö- ja riippuvuussuhde sosiaalisena ilmiöönä. Sisämaa ja rannikko Pohjois-Suomen rautakauden löytöjen ja kohteiden valossa, which my study was part of until 2016. Other instances who funded my work are Kyllikki Talvitie and Kaarina Lepikkö Foundation, Lehtori Anna Vuorio foundation, the Finnish Doctoral Programme in Archaeology, the Faculty of Humanities of University of Oulu, University of Oulu Scholarship Foundation and North Ostrobothnia Regional Fund of the Finnish Cultural Foundation.

Finally, I would like to thank my family, Anna, Verneri and Armi as well as my parents and siblings, who have always believed in me and supported me on the career I have chosen.

22.9.2018 Ville Hakamäki
Abbreviations

AD Anno Domini
Appx. appendix
BC Before Christ
cf. conferatum (compare)
e.g. exempli gratia (for example)
Fig. figure
i.e. id est (that is)
MA Master of Arts
NM Kansallismuseo (National Museum of Finland)
PhD Doctor of Philosophy
pp. pages
PPM Pohjois-Pohjanmaan museo (North Ostrobothnian museum)
Raä Riksantikvarieämbetet (Swedish National Heritage Board)
Original papers

This thesis is based on the following publications, which are referred to throughout the text by their Roman numerals:

IV Hakamäki, V. & Maijanen, H. Manuscript. Fragmented and separated: Cultural Implications of the Late Iron Age Burial Site of Heinisaari, Northeast Finland. *Fennoscandia Archaeologica*.

Table of contents

Abstract
Tiivistelmä
Acknowledgements 9
Abbreviations 11
Original papers 13
Table of contents 15
1 Introduction 17
1.1 The principal research questions ... 18
1.2 Key concepts of the study ... 20
1.2.1 Stray find .. 20
1.2.2 Settlement ... 22
1.2.3 Social hubs, landscape and contacts ... 24
1.3 Methodology ... 27
1.4 Structure of the dissertation .. 31
2 The major findings 35
2.1 The distribution, location and provenience of stray finds 36
2.2 Heinisaari and the Late Iron Age burial sites of the research area interior ... 42
2.2.1 The burial structure and additional finds 43
2.2.2 Landscape and the archaeological context 46
2.3 Viinivaara E and the inland dwelling sites .. 50
2.3.1 An outline of the site’s past usage .. 51
2.3.2 Excavated features .. 54
2.3.3 Dwelling site indicators and sites in the research area interior .. 58
2.4 Pirttitörmä and the Late Iron Age settlement in the coast 60
2.4.1 Landscape and the Late Iron Age usage of Illinsaari 62
2.4.2 Heating stoves, cellar pits and other structures 65
2.4.3 Dating ... 72
2.4.4 Connection to other coastal sites of northern Finland 75
3 Outlining the Late Iron Age settlement of the research area 79
3.1 Previous interpretations ... 79
3.2 Coastal river estuaries as social hubs .. 82
3.3 Contextualising the inland dwelling sites .. 87
3.4 Cultural contacts and continuation in the inland burial sites 89
3.5 The research area as a transcultural space.. 95
4 Conclusions 101
List of references 105
Appendix 129
Original papers 209
1 Introduction

During the Iron Age (500 BC–AD 1300), the settlement of Finland became increasingly concentrated in a few pivotal areas, and by the Late Iron Age (AD 800–1300), most of the communities were established at the arable plains and river valleys of Finland Proper, Uusimaa, parts of Ostrobothnia, Åland, Satakunta and Tavastia in southwestern Finland, and Karelia in modern-day northwestern Russia (e.g. Huurre [1979] 2005: 158–172; Lehtosalo-Hilander 1984: 328–330; Viklund 2002; Raninen & Wessman 2016: 299–303; Wessman 2016). With hundreds of cemeteries, villages, hill-forts and other notable features, these Late Iron Age groups are well perceptible in the prehistoric record and frequently discussed among academics (e.g. Schwindt 1893; Kivikoski 1939; Lehtosalo-Hilander 1982a; Lehtosalo-Hilander 1982b; Lehtosalo-Hilander 1982c; Lehtosalo-Hilander 2000; Taavitsainen 1990; Uino 1997; Purhonen 1998; Wessman 2009). Meanwhile, the Late Iron Age material of the interior and northern Finland has not received as much scientific attention, although occasional contributions have been made since the 19th century (e.g. Snellman [1887] 2010; Erä-Esko 1978; Närhi 1978; Huurre 1983, 314–429; Huurre 1986: 124–163; Taskinen 1998; Halinen et al. 2013; Kuusela 2013: 141–154). Therefore, most of the issues regarding the Late Iron Age and early medieval settlement of these areas remain largely unaddressed – at least in comparison to the studies of southwestern Finland and Karelia.

Although, the reasons for this can be partially explained by the southbound research tradition, the insufficient understanding of the Late Iron Age settlement is mostly attributed to the somewhat abrupt turn in the archaeological record at the end of the Early Metal Age. This change includes the apparent cessation of many activities associated with the previous settlement as well as the disappearance of the many familiar features including the cairn cemeteries, dwelling sites and cooking pits linked with the Stone Age and the Early Metal Age cultures (e.g. Mäkivuoti 1996; Okkonen 2003; Okkonen & Åikäs 2006; Kuusela 2013: 39–48).

1 The dissertation adopts the commonly established chronology of the interior and North Finnish prehistory, which, for the metal periods, is organised in the following way: Early Metal Age (including the Bronze Age and the Early Iron Age) from the 1900 BC to the AD 400, Middle Iron Age (the Migration Period and the Merovingian Period) from the year 400 to 800 and Late Iron Age (the Viking Age and the Crusader Period) from the year 800 to 1300. It should be noted, however, that in many areas, this chronology is problematic. For example, in parts of Kainuu and Lapland the prehistoric period is considered to continue up to the 17th century. The term “Sámi Iron Age” is sometimes used to describe the period between 300 BC and AD 1600 (e.g. Kleppe 1977: 32, 57; Olsen 1985; Simonsen 1982; Sarvas 1986: 109; Carpelan 1987; Mulk 1994: 4–5), but as this terminology is mostly utilised in Lapland and places much emphasis on ethnicity, this dissertation maintains the traditional chronology.
Perhaps, the archaeological circumstance at the end of the Early Metal Age is best summarised by archaeologist Matti Huurre, who in his seminal volume on the prehistory of Northern Ostrobothnia and Lapland states:

“At the end of the Early Metal Age, the inhabitants of the area seem to lose their identity in the find material. All dateable artefacts are of foreign origin and mostly stray finds. Although, occasionally found in the older dwelling sites, they seem to somehow lose and lack any connection to the previous material. Based on the stray finds alone, one might be led to believe that the earlier population disappeared and left their territories in the hands of the foreign hunters” (Huurre 1983: 324 [Translation by the author]).

The paucity of identifiable archaeological features noted by Huurre persists until the end of the Iron Age and still holds largely true during the early medieval period. Only a few dwelling sites, cemeteries or other archaeological sites dating to the Middle or the Late Iron Age are thoroughly documented in northern Finland so far and most of the available data must be regarded as stray finds apart from the excavated sites in Northern Ostrobothnia and Sea Lapland (Taaflitsainen et al. 2009; Kuusela & Tolonen 2012; Kuusela et al. 2013; Kuusela 2015; Kuusela 2017) as well as the Sámi dwelling and sacrificial sites documented in the northern Lapland (Hamari 1996a; Hamari 1996b; Hamari 1998; Halinen 2009; Halinen et al. 2013; Äikäis 2015).

1.1 The principal research questions

The aim of this dissertation is to analyse and organise the Late Iron Age material of northern Finland by focusing on regions of Northern Ostrobothnia and Kainuu2 (Fig. 1). With roughly 62 000 square kilometres in surface, the research area is topographically diverse, ranging from the coastal plains of Northern Ostrobothnia to the highlands and swamps of Kainuu. Shaped by the Last Ice Age and the subsequent post-glacial land uplift, the research area has been settled since the Mesolithic (e.g. Huurre 1983: 64–238; Halinen 2015) and the evidence of this can

2 The municipalities involved in this study are: Alavieska, Haapajärvi, Haapavesi, Hailuoto, Ii, Kalajoki, Kempele, Kuusamo, Kärsämäki, Liminka, Lumijoki, Meriäjävi, Lumijoki, Muhos, Nivala, Oulainen, Oulu, Pudasjärv, Pyhäjoki, Pyhäjärvi, Pyhätä, Raahe, Reisjärvi, Sievi, Siikajoki, Siikalatva, Taivalkoski, Tynävä, Utajärvi, Vaala and Ylivieska in the region of Northern Ostrobothnia and Hyrynsalmi, Kajaani, Kuhmo, Paltamo, Puolanka, Ristijärvi, Sotkamo and Suomussalmi in the regions of Kainuu.
be followed until the above-mentioned change in the archaeological record after the Early Metal Age. Although, the neighbouring areas, such as Finnish Lapland and the Scandinavian interior, have seen a reasonable amount of archaeological interest during the recent decades (e.g. Zachrisson 1997; Hedman 2003; Hedman & Olsen 2009; Bergstol 2008; Jarva et al. 2011; Halinen et al. 2013; Hansen & Olsen 2014), in the research area of this study the understanding of the Late Iron Age settlement is largely imperfect and based on somewhat anachronous conceptions.

Fig. 1. The research area (marked in black) and major regions, rivers and archaeological sites outside of the research area mentioned in the text: 1) Gamla Kyrkbyn; 2) Kyrkudden/Kannala; 3) Valmarinniemi and Länkimaa 1; 4) Hiukka; 5) Lautamäki; 6) Majakangas. The agricultural area represents the Viking Age situation.
With this being said, the principal research questions for this dissertation are as follows:

- What is the archaeological research potential of the Late Iron Age stray finds in the research area?
- What are the regional differences present in the archaeological material, such as stray finds, dwelling sites and burials, with respect to different environments, such as the inland and coastal areas?
- What does the archaeological record tell us about the area’s Late Iron Age settlement and social organisation?
- How were intercultural contacts and interactions (if any) organised, and what was the role of the local population in these interactions?

The point of departure for addressing these questions rests on the local settlement. As evident in the above-cited notion by Huurre, for example, most of the older analyses regard the Viking Age and Crusader Period material as inherently foreign and thus link them with non-local rather than a local population. As argued in this dissertation, the foreign point of view maintained by the older interpretations bears the risk of drawing an exceedingly one-sided and somewhat shallow picture as many aspects of the Late Iron Age record may as well be linked with the local hunter-gatherer populations.

1.2 Key concepts of the study

Several concepts are incorporated in the research questions presented above and these notions are consistently utilised in the following discussion as well. Therefore, before moving towards the subject matter, it is necessary to conceptualise some of the key terminology involved in the study.

1.2.1 Stray find

According to the established archaeological terminology, stray finds are defined as objects found outside of a distinct archaeological context and usually by accident (e.g. Darvill 2009). In the research area, these include artefacts that are discovered as by-products of agriculture, road building, construction-work, soil extraction and other intrusive activities, usually by non-archaeologists (e.g. Huurre 1986: 130–134; Huurre 1991: 53; Koivunen 1985: 59–63; Taskinen 1998; Paper I). Material recovered by metal detectorists and amateur archaeologists are also often classified
initially as stray finds if no clear evidence of graves, fireplaces or other archaeological features are noticed (for examples, see e.g. Hakamäki & Anttonen 2017; Paper II).

Therefore, shovel test-pits, trial trenches and other investigations are usually needed to understand the context of the stray find artefacts. For a variety of reasons, however, fieldwork regarding these finds is not always possible until years or decades later and, therefore, many stray finds are left in the state of ambiguity for a very long time.

When compared to the analyses on other types of archaeological remains, the discussion regarding the stray finds – whether theoretical or practical in nature – is generally less frequent. The term acts as an intermediary, a tool for archaeologists to classify material outside of the typical dwelling site–burial site dichotomy until further clarification of their context is obtained. Several synonyms or near-synonyms are used in tandem with the term. These include “loose finds” and “isolated finds” which tend to point to the practically same category of material with only small conceptual differences. In Finland, the word “loose find” (irtolöytö) is utilised usually when discussing the finds that are not found in clearly distinguishable archaeological contexts while the word stray find (hajalöytö) is used to define objects whose find conditions are even more nebulous (perhaps with the resolution of a municipality, a parish, a lake or a swamp) (Nordqvist 2005: 6). While the term stray finds could be used as an umbrella for all non-excavated material (Kunnas 2011: 17), also excavated finds may present similar problems if no associated cultural layer or structures can be identified (e.g. Korhonen 2008; Okkonen 2012a).

For the sake of clarity, the dissertation utilises the term “stray find” as it is the most commonly used to describe finds without clear archaeological context and the term is systematically applied in the papers written for the purposes of this study (Papers I–V). These stray finds constitute most of the Late Iron Age data in the research area and are among the principal reasons for the poor understanding of the area’s Late Iron Age occupation. To date, stray finds are documented in over a hundred individual locations throughout the area making them the most abundant

\[5\] Most of the problematics regarding stray finds can be contributed to the lack of documentation. Many stray finds originate from times when Finnish archaeology was still in a nascent state and were, therefore, often overlooked due to their distant location or lack of representativeness. For many stray finds, the specifics and conditions of the initial discovery cannot be determined and for others even the location remains unknown. Sometimes also the artefact has been lost leaving behind only photos, drawings or other documents (Appx. 1: 14, 27, 30–31, 43, 104).
source of information regarding the Viking Age and Crusader Period settlement in the North Ostrobothnia and Kainuu regions.

1.2.2 Settlement

Settlements constitute a major theme in the analysis of past cultures and many seminal studies on settlement patterns, households, domestic spaces and practices as well as other focal issues are published in the field of settlement archaeology over the past decades (e.g. Willey 1953; Trigger 1967; Evans & Gould 1982; Brück & Goodman 1999; Webley 2008). Yet, the very definition of the settlement remains elusive and it has not received as much attention as other facets of the field. On the one hand, the concept is used to address the process of settling or colonising a certain region and, on the other, to describe specific types of sites. Often, these sites are self-contained entities distinct from the surrounding space and other archaeological remains such as cemeteries and monuments (Brück & Goodman 1999). For example, the Concise Oxford Dictionary of Archaeology defines the concept of settlement in the following way:

“An area of habitation comprising dwellings and associated private and communal facilities, perhaps surrounded by associated closes, fields, paddocks, approach ways, and other features, which together constitute a living space for the inhabitants of the settlement” (Darvill 2009).

This definition approaches the concept of settlement by placing an emphasis on concrete remains and features and, as such, bears an undercurrent of power over the space in which the settlement exist. Areas of inhabitation are marked with man-made structures, routes and farmlands, which separate the area of inhabitation from the uninhabited surroundings. The definition is also inherently agrarian and seems to derive from the post-colonial thought; settlement is something that is carved into the untamed landscape and controlled by the settlers thereafter. In this context, the concepts of settlers and settlements are widely used to describe European colonists and their oversea holdings (e.g. Denoon 1979; Denoon 1983; Evans 2003; Ashcroft et al. 2007: 193–194). However, the dichotomy of inhabited and uninhabited carries over to the discussion of ancient times as well.

Most notably for the present case, this dichotomy is demonstrated by the conceptual differences in the various modes of settlement. Peasants of southern Scandinavia are often seen as local cultural hegemons from whence new ideas, innovations and ideologies, such as metal artefacts, were conceived and forwarded.
At the same time, the hunter-gatherer peoples of the interior and northern regions are seen as mere recipients of cultural influence and providers of raw-materials such as furs (for more discussion, see Forsberg 2012: 33–34). As noted by Lars Forsberg (2012: 35). The southern hegemony is evident also in the established chronology of the Fennoscandian interior, where such terms as “Epineolithic”, “Early Metal Age” and “Sámi Iron Age” are often used to characterise more familiar terminology of Neolithic Stone Age, Bronze Age and Iron Age (see Footnote 1).

Another point to be made is in respect to the conception of ownership and control over the land. Groups with different cultural background had varied goals and motivations and thus perceived their habitational areas differently: hunter-gatherers were mobile, and their subsistence was largely based on seasonality suggesting that their conception of land differentiated from food producing and sedentary peasants (Forsberg 2012).

While the Iron Age communities of the southwest regions and Karelia tend to fall under the above-discussed definitions as such, the settlement of the interior and northern Finland is more difficult to classify and often seen as deriving from colonial condition set by the southern peasants (e.g. Vahtola 1980a; Julku 1985: 83–84; Keränen 1986: 244–254, 262–262). This line of interpretation is, however, likely to offer an over-simplified picture as inland regions were hardly “empty” – local hunter-gatherer groups, such as the Sámi, inhabited these areas and probably had a significant role in the formation of the archaeological record. In this context, the issue lies in the land control and settlement pattern. Large cemeteries and dwelling sites of northern Finland are mostly located along the coast (e.g. Kuusela et al. 2013; Paper II; Paper V), while the inland populations were mobile and relied on seasonal camps, which are usually difficult to detect in the landscape (Hamari 1996a; Hamari 1998; Hedman & Olsen 2009; Halinen 2009; Halinen et al. 2013: 152–182).

Acknowledging the problematics related to the concept of settlement, this dissertation makes use of it when addressing continuous and archaeologically detectable Late Iron Age occupation of certain geographical area whether this residency was permanent or perpetual in nature. This is synonymous for the Finnish term *asutus*, which is frequently used in archaeological and historical analyses. Features such as individual dwellings, burial sites and other remains are among the indicators of settlement, but some of the stray finds can be discussed in similar terms as well. Further, the concept functions separate from the term “dwelling site” (*asuinpaikka*), which is utilised when referring to individual locations used for
living or camping, i.e. sites shown by fireplaces or other associated structures and settlement finds.

1.2.3 Social hubs, landscape and contacts

In addition to dwelling sites, the study utilises the concept of “social hub”, which is used to describe an area of activity toward which people of different backgrounds and places of origin gravitated in preference over other places. The reasons for the usage of these central areas are varied. On a general level, they might have been permanently occupied in the same way as towns of the historical period were and containing many of the features associated with dwelling sites, or they may have been seasonally used, such as fairs, monuments or other recurring meeting places.

In the research area, hubs were most commonly located along important thoroughfares and natural landmarks like islands and river estuaries along the Bothnian Bay coast, thus serving practical purposes for travelling and gathering (Paper III; Paper V). These hubs can also be regarded as an important tool for the understanding of the contacts and connections taking place in the prehistoric Northern Fennoscandia, especially when discussing the interactions between the coastal and inland communities (Damm 2012; Forsberg 2012). With this in mind, hubs are perhaps best identified by observing the archaeological data (which tend to be inherently diverse with respect to provenience) and by reviewing the historical land use as many of the sites evolved into marketplaces and religious centres during the medieval period as will be discussed later in the dissertation.

Lastly, it is likely that these places were also laden with intangible meanings and symbology that are more difficult to identify from the archaeological data as these abstract conceptions have likely shifted and transformed over time (e.g. Bradley 2000: 3–44). However, when concerning the location and topography of social hubs, it seems likely that at least landscape played a role in their placement, and the same can be said for the distribution of stray finds as well.

Like settlement, the concept of landscape is difficult to define conclusively. Often characterised with expressions such as duplicitous (Thomas 2012), temporal (Ingold 1993) or ambiguous (Gosden & Head 1994), the meaning of landscape is shifting and can be used to address the topography or land form of a given region, the terrain within which people operate or a portion of environment visible from a certain vantage point (Ingold 1997: 29; Olwig 1993: 307; Thomas 2012). As postulated by Lemaire (1997: 5), the landscape can be an object, an experience or a representation, but often these notions merge and form unique conceptions. The
archaeological study of landscape is called landscape archaeology, a popular, but also critiqued (e.g. Fleming 2006) field which has roots in the 1950s England and is today highly prominent due to the availability of online map services and geographical information system (GIS). Definition of the term is complex, but in short, landscape archaeology can be understood as a multidisciplinary field, which draws from archaeology, history, geography, ecology, anthropology and other scientific fields and attempts to understand the relationship between the ancient societies and the environment in which they operated (e.g. Fleming 2006).

While this study does not fall under the category of landscape archaeology per se, nor is the term used in the research questions, the consideration of the archaeological remains as a part of the environment in which they exist poses an important underlying theme in the formulation and understanding of the Late Iron Age settlement. Here, the above-discussed question related to the land ownership as well as the issues of social change as discussed by Dodgshon (1998) and the differences between various types of landscape play the role. As this dissertation seldomly addresses monuments or built environments, the discussion revolves around natural and unaltered landscapes, such as islands and rivers which in themselves could be regarded as monuments (Bradley 2000: 97–113). Furthermore, landscape contributes to the two final concepts utilised in this study: routes and interactions.

Routes are used to depict thoroughfares suited for the movement and transportation of people and material. The first major roads appeared in northern Fennoscandia during the 16th century and prior to that, the travelling took place via natural overland routes and waterways (Bergman et al. 2014). In the research area, the seaway along the Bothnian Bay served as the main route of communication towards the north and south, but lakes and rivers offered an equally important avenue for travelling in the inland regions. The usage of the waterways is most apparent during the historical period. For example, the bulk of the tar produced in the inland regions was transported to the coastal ports through these waterways (e.g. Keränen 1986: 579–581) and their utilisation is depicted in some of the older accounts, such as the Historia de gentibus septentrionalibus written by Olaus Magnus in 1555 (e.g. Linnilä 2002: 52, 84–86). Based on the large number of archaeological material along the lakes and rivers, however, it seems evident that the importance of waterways has prehistoric origin (e.g. Huurre 1983: 430–434; Huurre 1984; Huurre 1986: 28–30; Hakamäki & Anttonen 2017). This is probably the case also with the overland routes, although, they tend to be more difficult to discern with respect to the period in question. Considering the terrain of the
research area, however, it seems likely that these pathways were focused on highlands and ridges, which could be travelled in summertime, and on swamps, which were easily traversable in winter.

Means in which these routes were travelled are many: boats probably served as the main transportation vessels during the summer and skis, sledges and sleighs were used to cross the frozen waters and wetlands in winter (e.g. Bergman et al. 2014). Most of the routes were probably travelled somewhat locally, but especially the waterways reached distant areas, such as Scandinavia, southwestern Finland and Karelia as well as Lapland and northwestern Russia. Many of these were travelled from the Stone Age (e.g. Huurre 1983: 222–227; Huurre 1986: 76–80) and this seems to have persisted up to the period in question (Huurre 1983: 414–426; Huurre 1984; Huurre 1986: 151–157). This brings us to the last key concept of this study: contacts.

Recently, it has been proposed that instead of borders and other artificial demarcations, the history of northern Finland should be understood through contacts and connections (Ylimaunu et al. 2014). In archaeological research, contacts are usually incorporated in the concept of interactions, which, in turn, form the basis of many approaches through which ancient cultures are understood. Therefore, the concept is inherently diverse with respect to its usage and scope (Knappet 2011: 15). In most instances, contacts are represented by the distribution of certain objects, sites, monuments and other features within a given space, but they are used to express face-to-face meetings, dynamics within a specific household or other archaeologically perceivable micro-scale encounters as well (Knappet 2011: 61–97).

Trade and exchange are arguably at the core of these interactions and are considered most prominent in the formulation of the Late Iron Age record of the research area (Huurre 1983: 414–426; Huurre 1986: 151–157; Kuusela 2013: 32–34, 147–154; Raninen & Wessman 2015: 320–325, 361–363). During this period, Northern Ostrobothnia and Kainuu were neighboured by several contemporary societies and can be seen as a melting pot of cultural influences. To the south, the neighbours were the Fenno-Ugric and Germanic peasant communities of southwestern Finland, Karelia and southern Scandinavia, while the areas to the north were inhabited by the Sámi. Further to the east, there was the Permian Iron

4 Although, these vessels rarely survive the acidic Finnish soil, several specimens of Late Iron Age skis and sledge-runners are recorded in the regions of Northern Ostrobothnia and Kainuu (Appx. 1: 35, 47, 56, 60, 96). No boats are currently documented in the research area, but examples can be pointed out elsewhere in the Finnish interior (e.g. Taavitsainen et al. 2007).
Age culture and the Bjarms, a group of people, who according to Othere – a 9th century seafarer who later accounted his experiences to English King Alfred the Great – supposedly occupied the entrance area of the River Dvina along the coast of the White Sea (e.g. Koskela Vasaru 2016). Another group mentioned in the Othere’s account (and some of the Nordic Sagas as well) are kvens, who allegedly occupied coastal regions of the Bothnian Bay east coast since the Late Iron Age, but the matter of their origins and geographical scope remains somewhat disputed (for overview, see e.g. Vahtola 1980:459–488; Valtonen 2008). Coming to the historical period, the people of these coastal areas became known as birkarls, a group of powerful fiscals who possessed the privilege of collecting taxes and trading with the inland Sámi populations.5

Although contacts between these people are best shown by the historical accounts (for example, Olaus Magnus describes in great length the various trading practises of the North Fennoscandian hunter-gatherers [Linnilä 2002: 84–86]), these interactions are also shown in the Late Iron Age data, which is mostly defined by foreign character (e.g. Huurre 1983: 324). It should, however, be noted that, in addition to the materiality, these encounters were likely to alter the worldviews, cultural conventions and other abstract concepts, which too may be detectable in the archaeological record. With this in mind, the area of research is discussed in terms of transculturalism, a concept used to depict environments and communities existing in an interface of cultural influence and, therefore, constantly negotiation and forming new practises (e.g. Van Pelt 2013). This phenomenon may be expected in such places as social hubs, for example, which were regularly receiving and transmitting new ideas and conventions.

1.3 Methodology

The methodology of this dissertation rests on archaeological fieldwork, intra-site and inter-site analyses of the excavated data and cataloguing and examining of the previously documented material. The fieldwork makes up the greater part of the research and produces the most tangible results of this dissertation. These investigations include the excavations and mappings of several Late Iron Age stray finds with the aim of determining their archaeological context, extent, age and other

5 Historical records first mention birkarls in AD 1328, when King Magnus Eriksson appoints them with the privilege to trade with the inland Sámi population (e.g. Vahtola 1991: 219). It is likely, however, that the origins of birkals harken back to the 13th century or earlier (Bergman & Edlund 2016).
relevant issues. Both the fieldwork methods and other applications are described in more detail in the following.

The excavated stray finds were selected by considering three basic questions. First, what kind of pre-existing information was related to the site? In many instances the stray finds of the research area are decades old and challenging to approach with respect to archaeological fieldwork due to the insufficient level of documentation. Therefore, most of the investigations conducted for the purposes of this dissertation were aimed at newer material and especially towards sites discovered by amateur metal detectorists. Metal detector finds particularly are an ongoing issue in the Finnish archaeology as their number has increased drastically during the recent years raising many questions concerning the management of cultural resources and the role of amateurs in the archaeological research. Metal detectorists, of course, have existed for as long as metal detectors, but systematic search for Iron Age objects, at least in the magnitude of current situation, is a relatively new phenomenon.

Reasons for this are many. On the one hand, the price development of metal detectors has been favourable, and their availability has greatly improved during the present decade making the equipment available for the public. On the other hand, the Finnish legislation, most notably the Everyman’s Right (Jokamiehenoikeus), is relatively permissive and allows the usage of metal detectors in places where it is not specifically forbidden (such as known archaeological sites) and does not needlessly harm the environment. Furthermore, the coverage given by the media has been generally positive with only a few critical approaches (Immonen & Kinnunen 2014; Rohiola 2014; Siltainsuu & Wessman 2014; Hakamäki & Anttonen 2017). While responsible metal detecting can be fruitful, the current development does not come without problems: in many areas officials are struggling to process the new data while in others, significant damage has been done to archaeological sites and monuments such as the Raasepori Castle\(^6\) which was pillaged in 2017. Moreover, many metal detector finds are essentially stray finds as their context cannot be identified unless excavations or other investigations are conducted. Yet, these finds provided the most feasible starting point for the fieldwork conducted for the purposes of this dissertation and sometimes the studies were executed in co-operation with the metal detectorists (e.g. Hakamäki & Anttonen 2017; Paper III).

\(^6\)Raasepori, Raaseporin linna (835500006).
The second issue to consider was the condition of the archaeological context. As stated in the earlier, many stray finds are initially discovered as by-products of intrusive actions, and, therefore, many sites can be expected to have been destroyed in the past. Further, especially in the interior municipalities, the artificial water-level regulation caused by the damming of the great rivers has exposed many sites to destructive shoreline erosion (e.g. Huurre 1986: 130–134; Taskinen 1998). Instead of contexts which are likely to be destroyed, the fieldwork was aimed at sites which remained in a relatively good condition.

A third question considered when planning the fieldwork was the location of the excavated sites. Since one of the focuses of the research was to survey the differences in the archaeological record between the coastal area and the inland, it was necessary to include sites from both areas.
Based on these three considerations, nine archaeological excavations were conducted at five different locations (Fig. 2), and for the most part these investigations provided results highly applicable with respect to the research questions of this dissertation. The sites studied are:

- Heinisaari in the municipality of Suomussalmi
- Viinivaara E in Utajärvi
- Illinsaari 3 (hereafter Pirttitörmä) in Ii
- Illinsaari 1 in Ii
- Parsiaismaa in Pudasjärvi.

Of the five sites, the main case studies are represented by the three first-mentioned, while Illinsaari 1 and Parsiaismaa are discussed in Appendix 1 because their archaeological context remains ambiguous, despite the investigations conducted during the study (Appx. 1: 3, 44).

The fieldwork was carried out as a series of trial excavations and mappings. In general, the excavated areas were extensive enough to observe the condition and quality of the cultural layers, but at the same time, sufficiently small so as not to needlessly harm the site. Several aspects were taken into consideration during the fieldwork. These included the characteristics and the extent of the archaeological context, the function of the site, the preservation of the cultural layers as well as the overall scientific potential of the given site. While most of the fieldwork was conducted during one field season, in some instances the investigations transformed into multi-year projects. This is the case in Pirttitörmä, where annual excavations were conducted between the years 2014 and 2017 and in Viinivaara E where the excavations and mapping were carried out in 2013 and 2014.

In addition to fieldwork, other approaches were utilised during the study with both the excavated stray finds and the previously documented Late Iron Age material. For the most part, the analyses of the excavated remains were, conducted with GIS, which allowed the mapping of the documented features and finds, but other methods, such as artefact-typology were applied to the excavated materials when relevant. In some cases, the location of the site enabled the usage of the shore-

7 Suomussalmi, Heinisaari länsi (1000028151).
8 Utajärvi, Viinivaaran itäpää (1000022658).
9 Ii, Illinsaari 3 (Pirttitörmä) (1000023381).
10 The excavations and mappings conducted during the study are reported following the requirements of the Finnish Heritage Agency. Original manuscripts (Hakamäki 2013; Hakamäki 2014a; Hakamäki 2014b; Hakamäki 2015a; Hakamäki 2015b; Hakamäki 2016a; Hakamäki 2016b; Hakamäki 2016c; Hakamäki 2017) are archived in the archaeology laboratory of the University of Oulu.
displacement chronology, a tool built on the post-glacial land uplift phenomenon and utilised to produce *terminus post quem* dates in certain areas (see Okkonen 2003: 84–96). This is especially so in the coastal areas of Northern Ostrobothnia, where emerging landmasses are steadily forming new islands, wetlands and plains along the coastline. This relatively flat landscape reaches approximately one hundred kilometres inland until being replaced by landscape of highlands and lakes of northeast Finland. Unlike the Bothnian Bay coast, the region of Kainuu and the inland areas of Northern Ostrobothnia are not subjected to a robust environmental change and, therefore, shore displacement chronology is largely inapplicable. Therefore, also other methods, such as radiocarbon dating, and numismatics were utilised when determining the age of the excavated sites.

Apart from the case studies, other archaeological material is taken into consideration. This includes the conceptualising and analysing of the previously documented Late Iron Age burial sites, dwellings and other archaeological remains as well as cataloguing the currently known stray finds (Fig 2; Fig. 3). The information regarding the stray finds comes from several sources. Most of the material is recorded in the Registry of Sites and Antiquities (2017) but are rarely discussed in detail nor are pictures or any other specifics usually offered. Furthermore, many stray finds are discussed in the local history volumes by Huurre as well (e.g. 1983: 1986) and while these analyses are feasible they are bound to the data documented prior to the 1990s after which only a few stray finds have been published (e.g. Taskinen 1998). For these unpublished finds, the material has been mostly documented in the archives of the Finnish Heritage Agency or in the Archaeology Laboratory of the University of Oulu.

1.4 Structure of the dissertation

Most of the interpretations and conclusions presented in this dissertation are based on the following five papers (hereafter Papers I–V):

- **Paper I** takes a landscape archaeological viewpoint on the Early Metal Age and Iron Age stray finds of Northern Ostrobothnia, Kainuu and Lapland\(^{11}\). The study argues that these finds tend to be located in archaeologically diverse

\(^{11}\) The paper overlooks certain aspects of the Late Iron Age record. For example, the Late Iron Age dwelling sites documented in Lapland are not included in the analysis presented in the paper, which is an unintentional and critiqued flaw (Halinen 2016: 161). For the purposes of the research area, the discussion takes into consideration most of the available data and the interpretations are thus valid.
environments and frequently surrounded by remains from all the prehistoric periods as well as from the historical times. The stray finds are often situated along the easily distinguishable landmarks such as island, river confluences and ridges. This, on the other hand, suggests that the deposition of these artefacts follows a pattern and has been intentional. Therefore, they can be seen as an evidence of more systematic human activities than what has been previously assumed.

- **Paper II** gives a thorough presentation on the dwelling site of Pirttitörmä. Based on the 2014 trial excavation, the paper analyses the site by taking into consideration its documented structure remains and associated finds, the dating, the archaeological context and the overall research potential of the site. Based on the study, Pirttitörmä is interpreted as an extensive and possibly a long-lasting dwelling site, which has been an integral part of the Late Iron Age trade-network of the northern parts of the Bothnian Bay.

- **Paper III** introduces the dwelling and burial site complex of Viinivaara E and interprets it from a transcultural point of view. The site is discussed by taking into consideration the structure remains and finds documented during the fieldwork, but also by examining the natural and historical setting of the Northern Ostrobothnia interior. Based on the analysis of the site as well as its topographical, archaeological and historical context, Viinivaara E can be associated with interactions and cultural exchange between local hunter-gatherer groups and foreigners from neighbouring areas. As presented in the paper, the site has likely served as a local meeting place for these parties and the importance of the area is seen with both older and younger remains documented in the area. The transcultural mechanics shown in the archaeological record are tied to corresponding dynamics on a broader geographical scope as well.

- **Paper IV** discusses the Late Iron Age burial sites documented in the interior and northern Finland by focusing on the Viking Age cremation of Heinisaari. Excavated during the field season of 2015, the site is analysed by taking into consideration the burial form and practise, the usage of grave goods and the location of the site before interpreting the site from a broader geographical perpective. The scientific basis of the paper rests on both the fieldwork in Heinisaari as well as the analysis conducted for the other documented inland burial sites. Based on the study, it seems relatively evident that these burial sites share enough similarities to be understood as a distinct archaeological category. The connection between the inland burials in relation to prehistoric
and historic burial tradition of the Finnish interior as well as in Scandinavian inland is discussed.

- **Paper V** re-interprets the concept of the settlement history of the Bothnian Bay coast between the 13th and the 15th centuries. In the previous interpretations, the settlement of the area has been attributed to a somewhat one-sided conquest by neighbouring powers such as the Kingdom of Sweden and Novgorod. Yet, as is argued in the paper, the process of colonisation was likely more complex as the archaeological record documented around the Bothnian Bay shows continuity of local customs throughout the Late Iron Age and up to the historical period. The strong local identity demonstrated in the cemeteries, dwelling sites and other archaeological data indicates that the colonisation was based on co-existence and mutual agreements rather than on conquest.

Out of these papers, II–IV are devoted to the discussion of the principal fieldwork results, while the first and the last address the research questions from a more general point of view. Apart from the Introduction, the dissertation is organised into three main chapters each of which serves its own purpose. Chapter 2 focuses on the Late Iron Age record in the research area and approaches the matter via the above-mentioned cases studies and their implications. In Chapter 3, the main results of the dissertation are further discussed and placed into a wider context. Apart from the case studies and other Late Iron Age sites, the stray finds are incorporated in the discussion, but they are presented in Appendix 1 as including them in the main text would not be feasible due to the number large of data.
2 The major findings

This chapter addresses the main case studies of the dissertation, the burial site of Heinisaari, the long-term occupational area of Viinivaara E and the dwelling site of Pirttitörmä. These sites are discussed with respect to the first two research questions, the scientific potential of stray finds and the regional differences in the presentation of the archaeological data. The case studies are addressed thematically. Heinisaari is considered with reference to the other Late Iron Age cremation burials documented in the interior parts of the research area while Viinivaara E is used to shed light on the inland dwelling sites and the problematics in their interpretation. Finally, the dwelling site of Pirttitörmä is addressed by placing emphasis on the coastal settlement as shown by the Late Iron Age and early medieval dwelling sites and cemeteries. However, before proceeding towards the subject matter of this chapter, an overview of the stray finds is offered, as they comprise the largest available set of Late Iron Age data and should offer a necessary background for the discussion regarding the case studies. The geographical distribution of the material under discussion is presented in Figure 3.

Fig. 3. The Late Iron Age stray finds with known location. The numbering on the map refers to Appendix 1. Base map © National Land Survey 2015)
2.1 The distribution, location and provenience of stray finds

The Late Iron Age stray finds of Northern Ostrobothnia and Kainuu are comprised of a wide variety of different artefacts including weapons, tools, ornaments and transportation equipment. The detailed information regarding the portion of specific artefact types is presented in Table 1. In most cases, these finds tend to be small and relatively self-contained, but larger and more widely dispersed assemblages are also documented. For example, in the municipalities of Utajärvi and Pudasjärvi in Northern Ostrobothnia and in Suomussalmi in Kainuu, several large artefact assemblages are registered (e.g. Taskinen 1998; Hakamäki & Anttonen 2017; Paper IV; Appx. 1: 47, 49, 91, 94, 106). These sites are, however, yet to be excavated and cannot be reliably linked to a specific archaeological context despite quite obviously belonging to one. Also the four silver deposits registered in the research area are usually included in the stray finds, as the background for their deposition is rather debatable (Björkman 1957; Sarvas 1986: 123–139; Huurre 1983: 395–395; Talvio 2002: 164; Okkonen 2002; Okkonen 2013; Appx. 1: 18, 22, 23, 55).

Statistically, the largest category of finds consists of tools and implements. Of these, the axe-blades are in the clear majority with 56 artefacts. For the most part, they are classified as woodcutter’s axes, but also several blades used as weapons are documented. This is best shown by the battle-axes of Petersen’s M-type (Petersen 1919: 46) which in the research area amount to four (Appx. 1: 24, 28, 52, 102). Apart from the axe-blades, some of the other tools are relatively common with, for example, knives amounting to 16 and various metal container fragments being documented in 13 sites. It must be kept in mind, however, that the actual figure of small tools and implements is likely to be somewhat higher than the one presented in the Table 1 as these tend to be very challenging to date without information regarding their context (e.g. Huurre 1983: 367; Huurre 1986: 134). For example, several knives, strike-a-light irons, trident fragments and fishing hooks discovered in the research area over the decades cannot be conclusively placed in the studied period and are therefore left out of the data.12

Table 1. The stray find data sorted by artefact type.

<table>
<thead>
<tr>
<th>Artefact type</th>
<th>N. Ostrobothnia</th>
<th>Kainuu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Axe-blades</td>
<td>23</td>
<td>33</td>
</tr>
<tr>
<td>Penannular brooches</td>
<td>15</td>
<td>7</td>
</tr>
<tr>
<td>Neck-rings</td>
<td>11</td>
<td>2</td>
</tr>
<tr>
<td>Knives</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Armrings</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>Pendants</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Spearheads</td>
<td>4</td>
<td>9</td>
</tr>
<tr>
<td>Copper-alloy sheets/other fragments of metal containers(^1)</td>
<td>4</td>
<td>9</td>
</tr>
<tr>
<td>Arrowheads</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>Skis</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Oval brooches</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Chain-dividers</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Round brooches</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Sledge runners</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Strike-a-light irons</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Belts</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Swords</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Bow</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Box brooches</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Ear spoons</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Miscellaneous finds</td>
<td>6</td>
<td>5</td>
</tr>
</tbody>
</table>

\(^1\)The figures presented here indicate the number of sites including the copper-alloy sheets

In addition to the battle-axes, other types of weapons are relatively frequent with spearheads being the most commonly documented, followed by arrowheads and battle-axes. Interestingly, apart from the fragmentary and well-published specimen in Pudasjärvi (e.g. Snellman [1887] 2010: 42; Huurre 1983: 365; Moilanen 2016: 359; Appx. 1: 45), no Late Iron Age swords are recorded in the research area.\(^{13}\)

At the same time, the stray finds of the research area include a rather significant number of ornaments. Especially, brooches are strikingly common with the data containing penannular, oval and round brooches as well as a fragment of a Scandinavian box-brooch (Appx. 1: 40). When added together, the number of brooches soars to 30 with 11 originating from two silver deposits in Kuusamo (Björkman 1957; Sarvas 1986: 123–139; Huurre 1983: 395–395; Appx. 1: 22, 23).

\(^{13}\)In general, swords tend to be extremely uncommon in the interior and northern Finland. In Lapland, for example, only two Late Iron Age swords are currently documented in Rovaniemi and Kemi (see e.g. Huurre 1983: 365–366; Hakamäki et al. 2013c).
These deposits increase the number of other ornaments types as well, such as neck rings, pendants and armrings. This is the case also with coins, all of which come from the silver deposit of Pyhälahti in Kuusamo (e.g. Okkonen 2002; Okkonen 2013; Talvio 2002: 164; Appx. 1: 18). Finally, the prehistoric record holds wooden transportation equipment, such as the skis and sledges of which a portion are dated to the Viking Age or the Crusader Period by C-14 analyses or other reliable methods (e.g. Sauramo 1945; Okkonen 1993: 35–36; Forss 1997: 54–55; Appx. 1: 35, 47, 56, 60, 96).

The provenience of stray finds is diverse with artefacts typologically akin to the material recorded in the neighbouring areas, but also to those documented in more far-away regions (Fig. 4). In most instances, the data derives from nearby locations around the Baltic Sea (e.g. Huurre 1983: 350–408; Huurre 1986: 134–146; Koivunen 1985: 59–63; Taskinen 1998), while artefacts with more distant provenience tend to originate from Central Europe and the Middle East (e.g. Huurre 1983: 365–366; Talvio 2002: 164; Moilanen 2016: 359). There are also a relatively large number of finds which cannot be analysed due to the poor condition or other problems posed by the artefacts. For instance, some objects in silver deposits belong to types of which no consensus has been reached with respect to their place of origin, and this is the case with knives, arrowheads, strike-a-light irons and other small artefacts as well. Yet, many larger objects offer a basis for the typological examination (Närhi 1978; Huurre 1983: 350–386; Huurre 1986: 134–146; Koivunen 1991: 59–63).

To summarise the information presented in Appendix 1, weapons tend to include many objects of Scandinavian style such as the battle axes of Petersen’s M-type (cf. 1919: 46–47) and the spearheads of E type (cf. Petersen 1919: 26–28, 35) with only a few specimens associable with Russia or the Baltic States (e.g. Huurre 1986: 139). An exection of this are the spearheads of Petersen’s M-type, which were previously thought to be Scandinavian, but are today regarded as originating from southwest Finland or the Baltics (Creutz 2003; Moilanen 2015: 314; Moilanen 2017). Tools and implements, on the other hand, seem to be more varied. The woodcutter’s axes, fall into several categories including Finnish-Russian, Finnish, Scandinavian and other western axes as well as those of Karelian, Russian and Baltic origin (Wuolijoki 1972; Huurre 1983: 374–382; Huurre 1986: 143–145).

14 For example, the braided neck-rings which are among the more common ornaments in North Finnish silver deposits are associated with several neighbouring regions such as Karelia, Baltics, Gotland, southwestern Finland while others see them as local manufacture (e.g. Björkman 1957; Härth 1976: 48, f. 52; Huurre 1983: 398; Okkonen 2002: 64-6).
Brooches and other ornaments tend to be equally heterogeneous. For example, the Penannular brooches are almost universally of southwestern Finnish or Scandinavian origin (Huurre 1983: 350–355; Huurre 1986: 134–135; Hakamäki & Anttonen 2017) and the same trend is true with round brooches with only one cartwheel-shaped brooch originating from Karelia (Appx. 1: 33). The oval tortoise brooches, on the other hand, tend to be more diverse with both Karelian and Scandinavian specimens (Huurre 1983: 356–358; Huurre 1986: 135–136; Hakamäki & Anttonen 2017; Appx. 1: 5, 10, 11, 37, 66, 95). Some ornaments can be associated with areas even further to the east, which seems to be the case with some of the artefacts originating from the Permian Iron Age culture (Appx. 1: 12, 39, 67, 107).

![Fig. 4. The provenience of stray finds. Eastern artefacts derive mostly from northwestern Russia and the Baltic countries, western from southwestern Finland and Scandinavia and others from Central Europe and similar distant areas.](image)

Although, the geographical distribution of the Late Iron Age stray finds covers most of the research area, the material is unevenly spread and the significant concentrations of data are followed by large areas still in a state of almost complete vacuum with respect to the period in question.¹⁵ As shown by the map in Figure 3,

¹⁵ The municipal distribution of stray find locations is as follows. Northern Ostrobothnia: Haapavesi (1), Ilj (2), Kalajoki (2), Kemplele (1), Kuusamo (14), Kärsämäki (3), Liminka (1), Merijärvi (1), Muhos (1), Nivala (1), Oulainen (1), Oulu (4), Pudasjärv (8), Pyhäjoki (1), Pyhääjärvi (1), Pyhäntä (1), Sievi (2), Taivalkoski (1), Utajärvi (5) and Vaala (3). In Kainuu: Hyrynsalmi (1), Kajaani (3), Kuhmo (6),...
most of the stray finds are documented in the inland parts of the research area with especially the region of Kainuu being overly emphasised. Here the largest number of data is documented in Suomussalmi, where several Viking Age and Crusader Period stray finds have been recorded since the early 20th century and are still frequently found especially by the metal detectorists (e.g. Huurre 1986; Huurre 1992; Taskinen 1998; Hakamäki & Anttonen 2017; Paper I; Paper IV; Appx. 1: 66–100). However, the plurality of inland finds is also seen in Northern Ostrobothnia, where the major concentrations of data are mostly focused on the interior municipalities such as Kuusamo, Pudasjärvi and Utajärvi (Huurre 1983: 350–444; Sarvas 1986: 109–224; Raninen & Wessman 2015: 324–325, 361–363; Paper III). Although the amount of the Late Iron Age stray finds has increased in the coastal area during the recent years (e.g. Appx. 1: 34, 40, 41, 42), their numbers are still relatively minor.

There are noticeable differences in the dispersion of specific categories of stray find artefacts. Some of these categories tend to be documented throughout the research area, but others are quite strictly concentrated in certain areas. For example, spearheads and battle-axes are currently heavily concentrated in the inland areas, and this is the case with more uncommon weapons such as swords (Kuusela 2013: 123; Hakamäki et al. 2013c). The large ornament assemblages, such as silver deposits can also be regarded as an inland phenomenon, while tools and individual ornaments seem to be more evenly distributed and are documented in the coastal municipalities as well.

Several reasons for the scarcity of coastal finds can be pointed out. First, it should be kept in mind that, while there are fewer numbers of stray finds in the coast, these areas are far from being devoid of Late Iron Age material. In fact, areas such as Ii, Oulu and Siikajoki contain several sites which have been excavated and do not appear in the stray find data (Sarkkinen 1995; Kuusela & Tolonen 2011; Kuusela 2013: 76–88; Kuusela et al. 2013; Kuusela 2015; Paper II). Secondly, coastal municipalities usually harbour towns with a long history of agriculture, industry and housing. In most cases, there activities have had a highly destructive effect on the archaeological record and probably explain the paucity of finds in densely populated areas. Finally, based on the recent finds and subsequent archaeological investigations, a large portion of the Late Iron Age data is probably

Paltamo (1), Puolanka (4), Sotkamo (5) and Suomussalmi (35). The municipalities lacking any Viking Age or Crusader Period stray finds are Alavieska, Haapajärvi, Hailuoto, Lumijoki, Siikajoki, Siikalatva and Tynnävä in the region of Northern Ostrobothnia as well as Ristijärvi in Kainuu.
yet to be discovered in the coastal municipalities. For instance, in Liminka – one of the oldest towns in the research area – the first Late Iron Age artefact was not found until 2017 (Appx. 1: 34).

Topographically, stray finds seem to exist in a wide variety of settings. In most cases, however, the sites are located near the river estuaries, confluences, islands or other water-bound locations as well as other prominent topographical markers such as ridges and woodlands (e.g. Huurre 1984; Huurre 1986: 157–163; Papers I–V). By and large, this can be seen as an indicator of practical reasons as many of these locations can be regarded as landmarks and logical target areas for various activities, such as making camps, meeting others and acquiring raw-materials.

However, coming back to the natural landscapes mentioned in Chapter 1.2.3, other issues might also be relevant in this context – or as stated by Bradley these environments “have an archaeology because they acquired a significance in the minds of people in the past” (Bradley 2000: 35). By addressing the landscape of stray finds, one may point out several issues on how these significances might be reflected upon. Highlands, for example, that are universal to the landscape of the Finnish inland might have had similar supernatural meanings than mountains in Scandinavian interior (Manker 1957; Bradley 2000: 5–13) and could be amongst the explaining factors on why many Late Iron Age finds are situated on ridges and hillocks or in their immediate vicinity (e.g. Appx. 1: 6, 18, 42, 62, 98, 102–103). The same can be said also for wetlands and bodies of water. Swamps for example are generally accepted as having been liminal in nature and, therefore, suitable for depositing the dead amongst other things, while lakes, rivers and rapids were laden with various other ritualistic purposes (e.g. Manker 1957; Tilley 1991: Chapter 9; Bradley 2000: 5–13; Van de Noort & O’Sullivan 2006). For some finds, the significance of the landscape is observable in the toponym (Appx. 1: 18, 22, 68, 85) as they are situated in areas named after *Ukko* or *Pyhä* or death related terminology like *Kalmo*, all of which are usually linked with places that are sacred or otherwise special (Ruohonen 2002; Äikäs 2015: 21, 65). Finally, islands seem to have held a special significance for the Late Iron Age communities as shown by a significant number of artefacts found in these areas (e.g. Appx. 1: 3, 16, 39, 64, 71, 79–81, 99, 105).

With this in mind, the discussion is now aimed at the first case study of this dissertation, the cremation burial documented on the island of Heinisaari in Suomussalmi and its implications for the mortuary data on the interior regions of the research area.
2.2 Heinisaari and the Late Iron Age burial sites of the research area interior

The burial site of Heinisaari (Paper IV) is located on the forested island at the south-central part of Suomussalmi, approximately 8.6 kilometres northwest from the municipal centre of Ämmänsaari. Standing on the southern end of Lake Kiantajärvi, the island forms one of the largest of its kind in the Mikkoslahti bay area, which in turn connects the site with the age-old network of waterways. The site was first discovered in December of 2014 by a local metal detectorist, who after exploring the western shores of the island came across with several Late Iron Age objects. The assemblage of artefacts consisted of an axe-blade of Finnish-Russian style, a spearhead of Petersen’s M-type as well as two silver coins, one of which was issued by the Samanid Emir Mansur Ibn Nuh in AD 968–969 and the other by an unknown German ruler in Ulm sometime during the 11th or 12th centuries.16 In addition to these, another Finnish-Russian axe-blade as well as a tanged spearhead were unearthed but left in situ together with several unexposed metal signals. The metal detectorist promptly reported the finds and archaeologists first visited the site in the following summer (Hakamäki 2015b). Based on the artefacts alone, it was possible to approximate the dating of the site roughly to the 11th century. However, many questions regarding the context of these artefacts as well as their implications for the overall Late Iron Age record of Suomussalmi could not be answered and, therefore, more thorough archaeological fieldwork was required to understand the site. The excavations took place in August of 2015 and during the fieldwork, it was concluded that the artefacts belong to a small Viking Age cremation burial (Fig. 5).

16 NM 40337: 1–4.
2.2.1 The burial structure and additional finds

The grave is situated at the edge of a gently sloping shore embankment only a few metres from the waterline. No noticeable structure, such as a mound, a cairn or a stone setting were detected prior to or during the excavation, but instead the burial structure was only indicated by a densely backed burned bones laid on a level-ground and in a non-articulated manner. Approximately 380 grams of highly fragmented bones were recovered during the fieldwork and although largely beyond recognition, a few fragments were identified as belonging to one adult individual. Interestingly, also a few fragments of animal bone were recovered and while they cannot be conclusively identified, it seems likely that they originate from a bird (Maijanen 2016). Including animal bones in the graves is a somewhat common phenomenon in both cremation and inhumation burials (e.g. Schwindt 1893: 187–188; Lehtosalohilander 1982a; Vanhatalo 2005; Kivikero 2011; Kuusela et al. 2013) and several explanations ranging from the ritual meals, offerings and sacrifices as well as protective wards are presented (for summary, see Kivikero 2011: 65–74). In the Heinisaari burial, the number of animal bones is very diminutive and provides no grounds for a more thorough analysis. Two samples of
the skeletal matter were dated and the analysis results points to the Viking Age (Fig. 6).17

Fig. 6. The radiocarbon dates obtained from burned bone specimens of the cremation. The laboratory numbers are shown on the left.

The human remains were detected just under the turf indicating that initially the bones were placed either on top of the ground or under a thin layer of soil. The burial structure was brought together on an elongated area of some 40 centimetres in diameter suggesting that a container was used to house the remains. Ceramic vessels, leather pouches and especially birch-bark wrappings were commonly used in the Late Iron Age burial traditions (e.g. Hougen 1935: 9; Itkonen [1948] 1984; Paloniemi 1960; Cleve 1978: 82; Lehtosalo-Hilander 1982a: 35; Uino 1997: 65; Kristoffersen & Oestigaard 2008: 129; Mikkola 2009; Lund 2013) and could explain the dense composition of the bones. However, as no concrete evidence of a container was detected, the matter cannot be confirmed.

The grave was equipped with several artefacts (Fig 5; Fig. 7).18 When adding together with the objects recovered by the metal detectorist, the grave goods include one penannular silver brooch with rolled end-knobs, one bronze strap-tag, two Finnish-Russian axe-blades, one spearhead of Petersen’s M-type, one small tanged spearhead, one oval strike-a-light iron and one knife (for the axe-blades cf. Appx. 1: 20, 52, 89, 91 and for the spearhead, cf. Appx. 1: 63). In addition to the above-mentioned pair of coins, a third coin – struck by Knut the Great during the early 11th century – was recovered during the excavation. All three coins contain punctured holes showing that, instead of having a monetary value, they were more likely understood as ornaments. Artefacts recovered in the grave are mostly unburned suggesting that they were not attached to the body at the time of the

18 NM 40555:1-134 (including the bones).
burning. Most of the artefacts are typologically dated to the 11th century therefore conflicting to some degree with radiocarbon dates (Paper IV).

Fig. 7. A selection of artefacts recovered in the grave (after Figure 4 in Paper IV). The objects are as follows: NM 40337: 1, coin (Mansur ibn Nuh); 40337: 2, coin (anonymous); 40337: 3, the socketed spearhead; NM 40555: 1, the penannular brooch; 40555: 2, the coin (Knut the Great); 40555: 3, the strap tag; 40555: 4, one of the axe-blades; 40555: 5, the knife; 40555: 6 – the strike-a-light iron.

Instead of being placed within the grave, most of the artefacts were dispersed around the site of the burial. While, this could be partially explained by the sloping terrain and the post-depositional processes, such as the root-intrusion and the ground-frost, considering the composition of human remains this seems somewhat peculiar. Artefacts might have rather been originally placed on top of the ground, on some form of wooden stand or brought to the site sometime after the initial burial ritual when the exact spot of the grave was forgotten. As the body was not equipped at the time of the burning, the late inclusion of artefacts might be the most likely cause for the scattering of the artefacts. Similar practises are documented in the Iron Age burial grounds in southern Finland and elsewhere in Europe (e.g. King 2004; Wessman 2010: 89–99). This might also explain the time difference between some of the artefacts vis-à-vis the C-14 dates.
2.2.2 Landscape and the archaeological context

Prehistoric societies frequently dedicated islands and other wetland contexts for special purposes and it is likely that also for Heinisaari the location bore significance in the selection of the site (Fig. 8). Activities such as trade, religious ceremonies, legal proceedings and burying the dead were often undertaken on islands due to their marginality, controllability and, arguably, liminal nature (e.g. Van de Noort & O’Sullivan 2006; Brink 2001: 92–98; Herva 2009). In Finland, especially old burial sites – whether prehistoric or historical – are often situated on islands (e.g. Laitinen 2001; Ruohonen 2002; Taavitsainen 2003; Saipio 2015; Herva 2009; Wessman 2010: 21–26) and while this practice is not entirely understood several potential explanations are suggested. On the one hand, this has been seen as a way to keep animals from scavenging the human remains or to stop the spread of illnesses and, on the other, to capture the essence of the deceased in a specific and safe place to prevent supernatural beings from escaping the grave (Koivunen 1990; Jokipii 2001; Mönkkönen 2001). In Heinisaari, it seems evident that a distinct spatial and mental line between the living and the dead was drawn to consummate the burial, but currently the exact logic behind the placement of the grave cannot be determined (for more discussion, see Paper IV). The undoubted monumentality of the island might have also held significance in the placement of the grave as the burial site itself is merged with the landscape. Following this line of interpretation, it might have been more important to emphasise the location of the burial site rather than the actual grave.

Fig. 8. The island of Heinisaari after figure 5 in Paper IV. The white circle indicates the site of the burial.
However, it seems equally clear that waterways and overland routes of the area contributed to the site’s formation. As mentioned in the previous chapter, the municipality of Suomussalmi has for a long time stood out as a regional concentration of archaeological data and the rich prehistoric record is often explained specifically through these routes (e.g. Mustonen 1884; Huurre 1959; Huurre 1973; Huurre 1983: 430–434; Huurre 1984; Huurre 1986: 28–30, 76–80, 151–157; Huurre 1992; Lavento 1992; Taskinen 1998; Okkonen 2012a; Hakamäki & Anttonen 2017; Paper IV). The area stands on the intersection of several major waterways reaching southwestern Finland, Karelia, northern Fennoscandia as well as the Bothnian Bay coast (e.g. Huurre 1984; Taskinen 1998). Historically, these routes were used to transport exportable goods such as tar (e.g. Keränen 1986: 579–581), but their usage can be considered stretching to the ancient times as shown by the non-endemic materials and phenomena such as flint, amber, rock art and bronze-casting moulds present in the prehistoric record (Taavitsainen 1979; Huurre 1986: 100–105; Lahelma 2008: 267–268). Accordingly, the importance of these routes is also seen during the studied period.

To date, the number of Late Iron Age material adds up to nearly 60 individual stray finds, burials and other sites, most of which can be linked with neighbouring areas (e.g. Huurre 1986: 130–163; Huurre 1992: 50–58; Hakamäki & Anttonen 2017; Paper IV). Geographically, the Iron Age data is mostly found on the northern part of Lake Kiantajärvi, some 30 kilometres from the Heinisaari burial, but also the southern end is known for many finds some of which seem to be closely associated with Heinisaari (e.g. Huurre 1992: 52–58; Okkonen 2012a; Hakamäki & Anttonen 2017). The most notable of these are the penannular brooch of southwestern Finnish type and an axe-blade fragment recorded on the island of Vehmassaari, approximately 1, 3 kilometres southeast from Heinisaari (Appx. 1: 80). Based on the location of the find, these artefacts might originate from a burial site largely similar to the one documented in Heinisaari although the matter cannot be determined without further investigations. Another interesting find is documented in the Määrännönkangas area just 800 metres to the west from Heinisaari, where a metal detectorist discovered a Crusader Period ear-spoon of Karelian style in 2015 (Appx. 1: 97). In addition to the artefact, this discovery contains burned bones indicating a fireplace or a cremation burial, although, yet again, no further investigations are conducted. The eastern axe-blades documented in Määrännönlahti about a kilometre to the west from Heinisaari can

19 NM 40331 1–2.
also be linked with early settlement and contacts, albeit these objects seem to originate from the medieval period.

Although the record holds several occupational areas, such as Kalmosärkkä and TB:n ranta, which were used during the studied period and are quite extensively excavated (Appx. 1: 68, 76), the Late Iron Age settlement of Suomussalmi remains difficult to understand. Most of the available data must be classified as stray finds and this is true for the material recovered in the long-term sites as well. In most instances, these sites offer substantial evidence of Stone Age and Early Metal Age usage, but only a few Late Iron Age finds (Huurre 1983: 403–407; Okkonen 2012a). With these problematics in mind, burial sites such as the one documented in Heinisaari are currently the best archaeological sources of information regarding the Late Iron Age settlement of Kainuu and Northern Ostrobothnia interior.

In the research area, these burials are largely concentrated in Suomussalmi, where three such graves are registered in addition to Heinisaari (Fig. 2; Huurre 1973; Huurre 1983: 353–354, 360–361, 389–391; Huurre 1986: 130–132; Vanhatalo forthcoming). These documented graves tend to be largely parallel to each other: they are small and contain the remains of only one individual buried in a seemingly marginal location, such as an island or woodland. The deceased were cremated and, in all cases, the graves were established by placing the burned bones and grave goods either on top of the ground or under a thin layer of soil. Therefore, when studied they are usually found immediately below the turf with no notable markers or structures. While the amount of human remains is often small, several weapons, ornaments and other grave goods are usually recovered in these cremations.

Out of these, the oldest is the one, found on the island of Mikonsärkkä in 1969. Prior to the discovery, the shores of the island were severely damaged by the shoreline erosion and the burial site was mostly destroyed. However, based on the observation made by Huurre (1983: 389–390; 1986: 130) the grave belonged to an individual whose remains were placed on flat ground and equipped with a number of artefacts including a 10th century southwest Finnish neck ornament. In addition to the Late Iron Age burial, the site was used during the Stone Age and the Early Metal Age as shown by the number of stone artefacts and ceramics recovered on the island. A somewhat similar cremation is registered on the island of Kivisaari about 30 kilometres northwest from the Mikonsärkkä burial. The site

20 NM 19879:1–2; 20800; 21018: 1; 22065: 1; 22438.
21 E.g. NM 14833; 19540; 21018 2–36; 26391; 33074: 1.
was detected in 1962 by a group of children, who accidentally came across with several Late Iron Age artefacts and a small number of burned bones on the sand bank along the shore of the island. The site was excavated in 1970 and despite the context being largely destroyed, it is estimated that only one person was buried in a small and discrete grave near the waterline. The grave was equipped with a relatively large number of artefacts, such as three penannular brooches, two axe-blades, chain links, a knife, a strike-a-light iron and fragments from bone artefacts (Huurre 1973; Huurre 1983: 390; Huurre 1986: 130–141). These objects are mostly of southwest Finnish style and based on their type, the grave has been dated to the 12th century.

Of the cremation burials of Suomussalmi the most recently investigated is the Iso Märentö burial, which was discovered by a local metal detectorist in 2015 and investigated by the Finnish Heritage Agency almost simultaneously with the excavations in Heinisaari. The site is located at a wooded neck between the bay of Mikkoslahti and the Iso Märentö pond just 870 metres northwest from Heinisaari thus contributing to the collection of Late Iron Age remains documented in a relatively confined district around the Mikkoslahti bay area. The grave contained approximately 800 grams of burned bone fragments, which were scattered in an area of a couple of metres in diameter. No clear structures were detected during the fieldwork, but instead the human remains were recovered on a flat ground immediately under the topsoil. The grave furnishings included three axe-blades, several knives and their scabbards, penannular brooches, pendants, the pieces of a copper container, strike-a-light irons and other fragmented objects. The C-14 samples dated from the bone suggest that the cremation was made during the latter half of the 11th century, therefore correlating relatively well with the dating of the Heinisaari burial.

In addition to the documented graves, several stray finds can be assumed to originate from burials as well (Huurre 1986: 132–134; Taskinen 1998; Hakamäki & Anttonen 2017). For example, the assemblage of artefacts recovered in Tyynelänranta during the summer of 1996 is likely to have belonged to a burial site, although the specifics of the contexts remain unknown (Taskinen 1998; Appx. 1:

22 NM 15722:1-12; 18057: 1–61.
23 No catalogue number was available for these finds during the writing of the dissertation.
24 No report or publications other than the press release by the Finnish Heritage Agency were available during the writing of this dissertation. Most of the information provided here is based on the press release (18.11.2015) and the personal communication with the excavation director Simo Vanhatalo of the Finnish Heritage Agency (pers. comm. 10.11.2016).
The same ambiguity applies to Jysmänniemi, where several Late Iron Age artefacts and burned bones were discovered on a wooden promontory in 2016 (Hakamäki & Anttonen 2017; Appx. 1: 98). Currently, the site is interpreted as a likely cremation burial or even a small cemetery, but the context cannot be discussed in detail until further studies are conducted.

Considering the other inland parts of the research area, the mortuary data is much more problematic. Currently the burial site documented in Viinivaara E representing the only Late Iron Age cremation burial outside of Suomussalmi. Apart from the burial site, however, the site offers an interesting outlook on the inland dwelling sites and, therefore, sheds light on a subject of which concrete evidence has been almost completely missing previously. Thus, in Chapter 2.3, a thorough look is taken on the Viinivaara E and its Late Iron Age context.

2.3 Viinivaara E and the inland dwelling sites

The site is located on the easternmost tip of the Viinivaara ridge, a prominent topographic formation ranging from the highlands of northeast Finland and reaching as far west as the headwaters of the River Kiiminkijoki near the Bothnian Bay coast. Standing by the southern shore of a small lake called Iso Olvasjärvi, the landscape surrounding the site is dominated by boggy woodlands with no modern housing or other signs of large-scale land use apart from a few nearby estates and farmlands. In 2012, a group of local metal detectorists discovered several Late Iron Age artefacts in the area. The bundle of artefacts included two axe-blades, a knife, a strike-a-light iron as well as a knife scabbard and other smaller objects such as burned bone fragments. The finds were scattered in a large area and were mostly concentrated on four distinct spots: two of these concentrations were located at the summit, while the other two were situated on the northern slope and the base of the ridge. In each case, the artefacts were situated immediately under the turf and no visible features such as pits, mounds or depressions were detected prior to the excavations.

The site was initially surveyed by the Museum of Northern Ostrobothnia in 2012 (Sarkkinen 2013). As the result of the fieldwork, the site was determined to have a high archaeological research potential, but the context of the finds could not be determined. Therefore, the site was initially registered as a stray find (Sarkkinen 2013; Hakamäki et al. 2013a). To examine the context of these finds, the site was...
studied during the field seasons of 2013 and 2014 (Hakamäki et al. 2013b; Hakamäki 2015d; Paper III). The fieldwork comprised a trial excavation and mapping in 2013 and a follow-up excavation in 2015. Based on these studies, it has been determined that the site contains a cremation burial and a dwelling site both of which belong to the Viking Age (Fig. 9). What these studies also showed was that other archaeological remains, some of which were documented during the previous surveys, dotted the landscape surrounding the site. Therefore, before proceeding to the Late Iron Age findings, it is necessary to examine Viinivaara E with respect to its usage prior to and after the studied period.

Fig. 9. An overview of Viinivaara E and its landscape (after Figure 2 in Paper III). Aerial photo © National Land Survey 2010.

2.3.1 An outline of the site’s past usage

The prehistoric remains documented in Viinivaara E and its immediate vicinity range from the Stone Age to the historical times. The oldest of these is a small prehistoric house-pit, which was excavated during the fieldwork of 2014 in tandem with the studies on the Late Iron age dwelling site (Paper III). The house-pit was located immediately next to the Late Iron Age context and best shown by a small amount of burned bones and stone implements as well as by a few structural indicators such as stones from a fireplace and partial remains of a wooden wall enclosure. House-pits such as this are a common sight in the Stone Age dwelling
sites throughout Finland, but their specific dating is often difficult without C-14 analyses or other absolute methods. According to studies, however, most of the prehistoric house-pits seem to originate from the Middle Neolithic while the Late Neolithic and the Early Metal Age specimens are more uncommon (Mökkönen 2002; Mökkönen 2011: 25–29; Pesonen 2002). Therefore, it seems likely that the usage of the feature took place sometime during the Late Stone Age or, at the latest, during the Early Metal Age. Based on the excavation, it seems likely that during this time, the site served as a short-term hunting base rather than a permanently occupied dwelling site and this theme seems to carry to the Iron Age and historical occupation as well (Paper III). However, it is notable that similar, albeit larger, house-pits are documented on the northern side of the lake as well (e.g. Sarvas 1970; Sarkkinen 2014a; Sarkkinen 2014b).

Apart from the prehistoric house-pits, historical features as well as remains that are problematic to determine with respect to their age and function are present in the surroundings of the site (Fig. 10). During the historical period, the area was a part of the tar production network of which several tar-burning pits are still visible in the landscape.26 It is impossible to date these remains with certainty, but they are likely no more than a few centuries of age. Similar problematics are presented by two pits visible in the boulder field near the summit of the ridge.27 No feasible estimates of their date can be offered, but these pits are already noted by Snellman ([1887] 2010: 112) showing that they were considered to be of archaeological interest already during the 19th century. The pits may be related to the prehistoric usage of the site – they seem to bear a close resemblance to ancient storage pits (rakkakuoppa), which are usually linked with prehistoric times (Sarkkinen & Mäkivuoti 2000: 144). In addition to these, stone settings, trapping pits and other features that are even more nebulous with respects to their age, are documented in the area (Fig. 10).

Despite the marginal location, these remains show that the surroundings of Lake Iso Olvasjärvi were quite intensively used in the past. Accordingly, the importance of the area is apparent when considering the Iron Age finds. Apart from the excavated burial and the dwelling site, the most notable of these are two assemblages of artefacts recovered in Pitääminmaa and Kokkomaa on the northern side of the lake, approximately two kilometres north of Viinivaara E (Appx. 1: 49, 26 E.g. Utajärvi, Iso Olvasjärvi 2 (1000008771); Utajärvi, Kiiskikaito (1000008770); Utajärvi, Kirkaslampi 2 (1000008767); Utajärvi, Kirkaslampi 3 (1000008768).
27 Utajärvi, Iso Olvasjärvi 1 (1000009428).
Discovered by metal detectorists in 2013–2014, these sites contain many Late Iron Age artefacts scattered in a relatively broad area, but also other remains, such as the above-discussed Stone Age house-pits and an undated iron smeltery. Apart from the survey conducted by the Northern Ostrobothnia Museum (Sarkkinen 2014a; Sarkkinen 2014b), archaeological investigations are yet to be conducted in these sites and thus they are currently difficult to evaluate. This is the case also with the Late Iron Age axe-blade found in the 1960s or 1970s near Lake Marttisjärvi, which is approximately four kilometres southeast of the site (Fig. 10; Okkonen 2009; Appx. 1: 104).

Fig. 10. Viinivaara E and archaeological sites documented in the area (after Figure 6 in Paper III). The Iron Age objects presented in the figure on the right are as follows: a) axe-blade found in Marttisjärvi (drawn after Okkonen 2009: 281, published by permission of the author); fishing-hook found in Kokkomaa; c) spearhead found in Kokkomaa (for further discussed see Appx. 1: 49, 104, 106).
The past communities’ continuing gravitation towards the area can be partially explained through the location of the site (Paper III). With over 20 kilometres in length, the ridge of Viinivaara represents a link between the highlands of northeast Finland and the plains and river valleys of the Bothnian Bay coast. Therefore, the formation likely served as a natural thoroughfare, which, apart from being an easy-to-distinguish landmark, has offered a traversable route through the ubiquitous swamps and woodlands. In this setup, the easternmost tip of the ridge functions as a bottleneck for traffic and this role probably affected the site formation. Furthermore, the area is quite rich also in natural resources and some of these raw materials likely bore significance during the studied period as well: fish, game and timber were bountiful in the woodlands and lakes while fresh drinking water was readily available in the nearby Viinilä spring. Lake Iso Olvasjärvi is known to contain iron ore and the ore was processed at least in the Pitääminmaa area where slag and other remains of a smelter are documented. Although, the age of the smeltery is unknown, several Iron Age artefacts are documented in its vicinity showing that it could be related to the studied period (Fig. 10; Appx. 1: 49).

2.3.2 Excavated features

The cremation burial of Viinivaara E is situated near the summit of the ridge and stands on a scenic location overlooking the lake and the wetlands to the north. Excavated in 2013, the grave was initially concealed by a moss-covered boulder field, but the first burned bone fragments were revealed immediately after the removal of the turf. The human remains were deposited among the crevasses of the stones and the grave seemed to have been largely merged with the landscape. At the same time, the overall location is highly prominent and easy-to-see, which can be interpreted as an attempt to emphasise the significance of the landscape rather than the actual grave (Paper III).

The grave contains a total of 296 grams of burned bones, which were distributed in an area of roughly one metre in diameter. While the first bone fragments were detected during the removal of the turf, most were recovered under the boulder field together with a small amount of ashes and coal from the funeral pyre (Hakamäki et al. 2013b; Paper III). For the most part, the skeletal matter recovered from the grave was highly fragmented, but based on the osteological analysis, the deceased is most likely an adult male (Kuvaja 2014). Two C-14
samples were dated, and they place the burial at the Viking Age\(^{28}\), although there is a slight deviation between the two samples. The reason for this is likely methodological as dating of cremated bones is reported to be restrained by similar problematics than dating of wood (Olsen et al. 2013).

No finds were recovered in the grave apart from the bones. However, it must be kept in mind that one of the axe-blades as well as the knife and the strike-a-light iron recovered by the metal detectorists were situated immediately next to the grave and can be interpreted as grave goods. The strike-a-light iron is of lyre-shaped style and, therefore, one of the most widely distributed and long-lived types in Finland with parallels commonly documented in the Viking Age contexts, but occasionally in older and younger contexts as well (Cleve 1943: 152; Kivikoski 1973: Abb. 641, 1008, 1248; Lehtosalo-Hilander 1982b: 73; Uino 1997: 388). The axe-blade can be classified as a bearded Finnish-Russian type which is most commonly met in the Viking Age and Crusade period contexts in southwestern Finland and Karelia (Wuolijoki 1972: 9–11; Lehtosalo-Hilander 1982: 51, Fig.16: 2–3; Uino 1997: 384), but in the interior and northern Finland as well (Appx. 1: 20, 52, 89, 91). The knife is fragmentary and, as such, difficult to date. Considering the context, however, the artefact can be placed at the Viking Age (Hakamäki et al. 2013a).

Interestingly, the artefacts detected from the grave are not the only ones recovered at the summit of the ridge. Another axe-blade of Finnish-Russian type has been found in a similar rocky setting less than a hundred metres to the southwest of the excavated burial site. Although more fieldwork is required to understand its context, it seems relatively clear that also other burials were established on the ridge. With this in mind, Viinivaara E could represent a small cremation cemetery rather than an individual burial site.

During the excavation of 2013, the area surrounding the cremation was prospected with metal detectors and as a result of this, more than 30 signals were documented around the ridge. For the large part, these signals were concentrated in three clusters aligned in the east-west oriented row along the base of the ridge (Hakamäki et al. 2013; Paper III). A few of the signals were inspected with small test-pits and while some were proven to originate from modern scrap-metal and forestry tools, most of the signals derived from copper-alloy sheets from a broken metal container or containers. As copper-alloy sheets are a common feature in many Late Iron Age and early medieval contexts in the research area and elsewhere in northern Fennoscandia (e.g. Zachrisson 1984; Wallerström 1987; Taavitsainen

In 2014, the westernmost of the metal signal clusters was excavated and, during the fieldwork, the copper-alloy sheets were linked with a small hearth (Fig. 11a; Hakamäki 2015d; Paper III). The hearth was built on a relatively rugged soil where it was first detected soon after the removal of the turf. The structure was about a metre in diameter and oval although the specifics concerning the extent and
morphology of the fireplace are somewhat unclear due to the natural rockiness of the surrounding terrain. Apart from the small clearance surrounding the excavated fireplace, no signs of a wall enclosure, post-holes or other evidence of a superstructure were detected during the fieldwork. This suggests that the fireplace was unsheltered or only covered by a lightweight structure of which no traces have survived. The assemblage of finds recovered within this clearance included several fragments of a metal container (including a handle), two flint flakes from strike-a-light stones and 34 grams of burned bones most of which were distributed around the hearth. The knife scabbard found by the metal detectorists in 2012 was also recovered from this context. Most of the finds offer no basis for typological dating due to their broken state. For example, the handle is somewhat similar to a few Late Iron Age specimens (Anttila 2002: 60, 62), but no exact parallels can be pointed out. This is also the case with the scabbard, which seems like local handiwork patched together from the copper-alloy sheets. Most of the bones are also unidentifiable due to the high level of fragmentation, but some seem to originate from fish and cervids. The C-14 sample (Fig. 12) dated from the bone indicates that the hearth belongs to the Viking Age and is, therefore, roughly of the same age as the nearby cremation.

Based on the excavated structure and associated finds, also the other metal signals documented in the area can be expected to represent similar small hearths (Fig. 11b). While further excavations are obviously needed to confirm this hypothesis, the small test pits established in these concentrations shows that the metal signals

Fig. 12. The radiocarbon dates obtained from burned bone specimens from the hearth (above) and the datings obtained from the cremation burial. The laboratory numbers are shown on the left.

Based on the excavated structure and associated finds, also the other metal signals documented in the area can be expected to represent similar small hearths (Fig. 11b). While further excavations are obviously needed to confirm this hypothesis, the small test pits established in these concentrations shows that the metal signals

29 Beta 410071: 1110±30 BP, AD 885–995.
originate from copper-alloy sheets parallel to those documented in the excavated hearths. According to the distribution of the metal signals, the dwelling site seems to be organised along the lower contours of the ridge with approximately 60 metres between each fireplace (Hakamäki 2015d; Paper III).

2.3.3 Dwelling site indicators and sites in the research area interior

The distribution of the Iron Age dwelling sites is heavily focused on the southern regions (e.g. Uino 1986; Schulz 1992; Schulz & Schulz 1992; Nuñez & Uino 1998: 142–149; Vuorinen 2009; Raninen & Wessman 2016: 299–310; 350–353). Prior to the studied period, these dwellings were probably a family-specific farmsteads comprising houses, outbuildings, fields and nearby cremation cemeteries, and while this is largely true for the Late Iron Age sites as well, by that time some of the farmsteads may have turned into village-like settlements (Lehtosalo-Hilander 1982c; Liedgren 1991: 127–129; Kotivuori 1992: 71; Uino 1986: 85–94, 154–161; Viklund 2002: 26; Nissinaho 2003; Salo 2004: 294; Mikkola 2005; Wessman 2010: 25–26; Raninen & Wessman 2016: 288). However, currently no Iron Age village has been exhaustively excavated and the notion of such remains a debated matter (Raninen & Wessman 2016: 310–311). Although certain regions, such as the Åland Islands and the western part of Uusimaa, seemed to become somewhat devoid of archaeological material by the end of the Viking Age (Raninen & Wessman 2016: 299–301; cf. Wessman 2016), the population-numbers probably increased steadily throughout the course of the Late Iron Age. At the same time, the peasant way of life spread in new areas such as Savo in southeastern Finland (e.g. Lehtosalo-Hilander 1988: 171–224).

In the interior and northern Finland, on the other hand, the settlement was mostly based on seasonal hunting, fishing and gathering (e.g. Raninen & Wessman 2016: 320–326, 361–363). These communities were mobile and did not normally establish large dwelling sites, but short-term camps instead. Such camps comprised lightweight shelters instead of cabins, houses or other robust structures and are, therefore, often difficult to distinguish from the terrain. Currently, dwelling sites such as these are documented mostly in Lapland (e.g. Hamari 1996a; Hamari 1998; Halinen 2009; Halinen et al. 2013: 152–182; Halinen 2016: 162–166), while the rest of the interior and northern Finland seem to be largely lacking the remains associated with dwelling sites. In the research area, it has been proposed that some of the long-term occupational areas, such as the above-mentioned sites of Kalmosärkkä and TB:n ranta, could be interpreted this way, but their function as
dwelling sites cannot be determined, as no hearths or other structures are documented (Huurre 1986: 406; Okkonen 2012a). Furthermore, in Sotkamo, a penannular brooch was found under a rectangular stone setting, which could be interpreted as a hearth or a fireplace, but also in this case the nature of the structure remains ambiguous and some suggest it to be an inhumation burial instead (Laulumaa 1997: 49–50; Korhonen 2008; Appx. 1: 64).

As such, the site of Viinivaara E offers mere glimpses on the dwelling site patterns, household dynamics and division of domestic space amongst the inland populations and obviously more fieldwork must be done to understand these important issues. However, when considering the find material recovered in the excavated hearth, a certain group of finds seems to bear significance in prognosticating possible dwelling sites from the stray find data: the copper-alloy sheets (Hakamäki & Anttonen 2017; Paper III).

Often cut, bent, folded and containing rivers, rivet-holes or seams, these sheets are commonly identified as the fragments of metal containers, which were destroyed and sometimes made into small tools and ornaments (e.g. Anttila 2002; Bergman 2007). They are documented in a wide variety of Late Iron Age and medieval sites throughout northern Europe and this is so also in Finland where they are met in dwellings, hill forts, cemeteries and medieval towns (e.g. Schwindt 1893; Taavitsainen 1990: 201–2014; Anttila 2002: 33–36; Vuorinen 2009: 152, 159, 182, 186). In northern Scandinavia, the copper-alloy sheets are normally documented in the Sámi dwellings and sacrificial sites (e.g. Zachrisson 1984; Bergman 2007; Hedman & Olsen 2009; Halinen et al. 2013) and while this is partially true in northern Finland as well, only a few siedis have so far offered these fragments (Okkonen 2007). Instead, in the interior and northern Finland, copper-alloy sheets seem to be more focused on dwelling sites (e.g. Sarkkinen 1995; Hamari 1996a; 1998; Halinen 2009; Hakamäki et al. 2013b; Hakamäki 2015d; Paper II; Paper III).

In the research area, these copper-alloy sheets are found mostly in the inland areas and they seem to be especially common in the municipality of Suomussalmi, where six stray find assemblages are currently known to contain metal container fragments (Hakamäki & Anttonen 2017; Appx. 1: 68, 91, 94–95, 99, 100). Some of these finds are located near burials, such as the one documented in Heinisaari, suggesting that the other documented cremations may also be linked with nearby

30 The number presented here is likely to be somewhat biased as Suomussalmi harbours an active metal detector community. The number of these materials is likely to increase in the future as the copper-alloy sheets tend to be strikingly common in the finds assemblages discovered by metal detectorists at least in northern Finland (e.g. Hakamäki & Anttonen 2017).
dwelling sites. Although it is evident that archaeological excavations are required to specify the context of these finds, based on the documented sites in the research area and elsewhere in northern Fennoscandia, they may be preliminarily interpreted as dwelling sites (Hakamäki & Anttonen 2017; Paper IV). However, it must be kept in mind that some of the copper-alloy sheets may represent other contexts as well. For example, in Iso Määräntö, several fragments of a metal container were documented in a cremation burial (Vanhatalo forthcoming), and this seems to be the case with the assemblage of artefacts recovered in the presumed burial site of Kuusela in the municipality of Kempele as well (Appx. 1: 10).

Along with the issues discussed here, questions related to inland dwelling sites and settlement patterns can be placed amongst the more significant unsolved questions regarding the Late Iron Age settlement of Finland (the issue is further discussed in Chapter 3.3.). Yet, in the coastal area the situation has somewhat improved over the years and especially the past few decades have seen several interesting discoveries (Eskola & Ylimaunu 1993; Koivunen & Sarkkinen 1994; Sarkkinen 1995; Kuusela & Tolonen 2011; Paper II; Paper V). One of the focal points for these studies for the last few years has been the island of Illinsaari in the municipality of Ii, where several Late Iron Age and early medieval sites and finds are documented. Amongst these new discoveries there is the final case study discussed in this dissertation, the dwelling site of Pirttitörmä, which will be discussed in the following chapter as it offers an encompassing example of coastal settlement.

2.4 Pirttitörmä and the Late Iron Age settlement in the coast

With approximately two square kilometres in surface area, the island of Illinsaari forms one of the most notable topographical features in the entrance area of the River Iijoki. Despite being surrounded by modern-day housing areas and roads, the island has remained largely free of recent land use; apart from the heavily housed area on the southern perimeter, most of the island is sparsely populated with only a few farmsteads, summer cottages and fields. This has enabled the survival of many archaeological remains most notable of which are the Late Iron Age sites documented during the recent years (Hakamäki et al. 2013a; Kuusela et al. 2013; Kuusela 2015; Kuusela 2017; Paper II; Paper V).

The dwelling site of Pirttitörmä is based along the edge of a steeply dipping ancient shore embankment on the northeast corner of the island. The site was initially discovered in the summer of 2013 by a local metal detectorist who at that
time unearthed dozens of Late Iron Age and early medieval artefacts\(^{31}\) from an area of some 30 metres in diameter. The assemblage of finds includes several knives, copper-alloy sheets, fishing hooks and other small metal implements, but also more prominent artefacts such as a gilded bronze mount of Anglo-Saxon style, a Southwest Finnish penannular brooch, a Karelian animal-shaped pendant and a lock (Fig. 13; for more discussion, see Paper II; Paper V). While most of these artefacts belong to the Crusader Period, some specimens – most notably the ornate mount – seem to originate from the Viking Age (Paper II; Hemminki 2016).

Fig. 13. Some of the metal detector finds in Pirttitörmä (after Figure 1 in Paper II): a) NM 39520: 4, the lock; b) 39520: 2, the animal-shaped pendant; c) 39520: 1, the penannular brooch; d) 39520: 3, the gilded mount.

To understand the context of these finds, a trial excavation was conducted in the site during the field season of 2014 and due to the highly promising results, these investigations were resumed in 2015, 2016 and 2017. Before proceeding to the

\(^{31}\) NM 39520: 1–36.
fieldwork results obtained in Pirttitörmä, an overview of its archaeological context is offered.

2.4.1 Landscape and the Late Iron Age usage of Illinsaari

Based on the shore displacement chronology presented by archaeologist Jari Okkonen (2003: Appx. 3, 9), the island of Illinsaari emerged from the waters of the Bothnian Bay during the course of the Iron Age and by the Late Iron Age the small islets had merged into a two-part entity largely equivalent to the current form of the island. As the result of the post-glacial land uplift and the subsequent shore displacement, the island is today set approximately seven kilometres in the inland. However, during the Late Iron Age, Illinsaari was situated immediately at the estuary of the river and this central position has likely affected the way archaeological record has accumulated.

The River Iijoki forms one of the major arteries towards the inland and thus its entrance area has stood out as a centre of traffic for centuries (e.g. Kallio-Seppä et al. 2011). For example, the medieval marketplace of Hamina, which is located immediately on the western side of Illinsaari, was among the most important trading hubs in Northern Ostrobothnia since the medieval period, and studies show that a church and a graveyard were built in this area as well. While the main phase for the usage of this marketplace falls in the 16th and 17th centuries, the site was likely used as early as the 13th century (e.g. Luukko 1954: 481; Elo et al. 1998: 15, 22, 25; Kallio-Seppä et al. 2009; Kallio-Seppä et al. 2011). Another example of the long-reaching contacts and trade during the medieval period is offered by the tin-pitcher32, which was discovered on Illinsaari during the late 19th century (Ikäheimo 2014).

Other than this, no concrete evidence of early contacts or settlement were recorded on the island prior to the discovery of the first Late Iron Age artefacts in 2011 (Hakamäki et al. 2013a). Since then, the area has been the target of an increased archaeological interest with fieldwork and other studies being conducted annually. Apart from the dwelling site of Pirttitörmä, the studies have produced

32 PPM 1; The tin-pitcher’s site of discovery is not known with certainty as the Kellolampi pond, in which it was presumably found, was completely overgrown during the mid-1950s and it location is now forgotten. The artefact has sometimes been seen as a chalice and thus indicative of a medieval chapel, which, according to the local legend, was located on the island of Illinsaari until its burning by the Russian raiders (e.g. Elo et al. 1998). However, the more recent studies have questioned the ecclesiastic nature of the pitcher instead regarding it as evidence of trade contacts to central Europe (Ikäheimo 2014).
several highly interesting discoveries (Fig. 14) of which one of the more notable is the cemetery of Suutarinniemi.33

The site was discovered by a local metal detectorist in 201134 and has since been investigated on two occasions (Kuusela et al. 2013; Kuusela 2015). During the excavations, 19 inhumation and cremation burials were detected and out of these, eight inhumations and two cremations were excavated. However, the prospecting conducted with the ground-penetrating radar brought to light even more, suggesting that at least 20–30 burials are present in the area (Heikkinen 2014). The deceased

33 Il, Illinsaari 2 (Suutarinniemi) (1000019094).

34 The initial finds were an oval brooch and a chain-divider (NM 38884: 1–2).
are buried in a supine position and oriented in the west–east fashion, seemingly following the Christian funerary traditions. Further, a structure remain was documented in Suutarinniemi, and while this feature offered no significant finds or dateable materials, it has been associated with the burials some of which were placed underneath the structure. While most of the burials are unfurnished, in some cases the deceased were equipped with metal artefacts and excess bones. According to the osteological analyses, these bones come from humans and moose (or similar large cervids) (Kuusela et al. 2013).

Several C-14 samples were dated from the skeletal matter found in the inhumation burials and they point towards the 14th century. The cremations, on the other hand, seem to be somewhat older, with dates pointing towards the 11th and 13th centuries, which is interesting as they were detected right next to or on the top of the inhumations (Kuusela 2015). As cremations are not normally associated with Christian worldviews according to which the body was to be kept intact during the burial (Madsen 1990; Valk 1999; Taavitsainen et al. 2009), the close connection between these two burial forms has been interpreted as a sign of complex process-burials involving both Christian and non-Christian ways (Kuusela 2015). Currently there are no clear indicators of a funerary pyre or other remains related to the burning of the bodies within the boundaries of the cemetery. However in 2015, an assemblage of Late Iron Age artefacts including a pennannular brooch, a knife and several metal artefact fragments (all of which are burned) were detected in the site called Illinsaari 7 (hereafter Kiviharju W) approximately 800 metres to the south from Suutarinniemi. The site was excavated during the field season of 2016 and it was concluded that the set of artefacts originated from a small red-burned feature, which contained a small amount of burned bones and other finds. Although the context of these finds is somewhat ambiguous, currently the site is interpreted as a place of cremation used for the purposes of the cemetery (Kuusela 2017).

Equally ambiguous is the context of the comb-shaped bronze pendant and copper-alloy sheets, discovered by a metal detectorist in the site of Illinsaari 1 approximately 300 metres southeast of Suutarinniemi and 700 metres of the dwelling site of Pirttitörmä. The site was surveyed by the Museum of Northern Ostrobothnia (Sarkkinen 2011) soon after the initial discovery, but apart from the nearby historical remains including a tar-burning pit, old fields and remains of an

35 In Finnish archaeology, cremation burials piled together in inhumation cemeteries are sometimes called “bone-pile burials” (luukasahauta) (e.g. Taavitsainen et al. 2009: 205–206).
36 II, Illinsaari 7 (Kiviharju W) (1000027754); the initial finds are catalogued as NM 40717: 1–10.
37 NM 41106: 1–49.
old cabin, no archaeological features were detected. Further investigations were conducted in 2015, but no structures or additional Late Iron Age finds were documented (Hakamäki 2015c). The site of Illinsaari 1 is further discussed in Appendix (Appx. 1: 3).

Fig. 15. A plan showing the excavated areas and the aboveground features documented in Pirrtitörmä.

2.4.2 Heating stoves, cellar pits and other structures

Coming back to the dwelling site of Pirrtitörmä, the archaeological features documented during the multiyear excavations include two large heating stoves (hereafter Heating stoves 1 and 2) as well as several smaller structures and above ground features all of which seem to be suggesting a relatively large and well-connected Crusader Period community (Fig. 15). As only the results of the trial excavation are discussed extensively in the papers (Paper II; the follow-up studies are briefly mentioned in the Paper V), a somewhat thorough look is necessary to comprehend the facets and implications of the site. Thus, in the following presentation, archaeological features documented in Pirrtitörmä are addressed in
more detail than with the previous case studies. A site plan showing the features mentioned in the text is presented in Figure 15.

The heating stoves were situated on the plateau besides the old shore embankment and positioned at approximately 12 metres from each other. The Heating stove 1 was located near the eastern edge of this plain and it ostensibly represents the easternmost extent of the site. Studied in 2015, the stove was almost completely collapsed, and its proportions or form could not be initially determined. However, after the dismantling of the uppermost stone layers, it was concluded that the base of the hearth was about three metres in width and 2.5 metres in length as shown by the distribution of sand (some of which was red-burned by the fire) and underlying clay, which was most likely used to insulate the fireplace. A distinct cultural layer expanded around the heating stove, but due to the limited scope of the excavation, it was not possible to determine the proportions or the nature of the surrounding structure (Fig. 16). The Heating stove 2 was also largely collapsed and the size or the shape could not be distinguished conclusively until several stone layers were removed. At the base of the structure, however, a rectangular stone enclosure with layers of sand and clay was detected. With 2.3x1.3 metres in size, the structure and the underlying strata were organised in a similar fashion than with the Heating stove 1.

The finds recovered around and within the heating stoves are a few and contain mostly bone fragments, flint flakes, copper-alloy sheets, nails and rivets. The more uncommon finds recovered in the connection to the heating stoves include a bronze needle, a spindle whorl and a fragment of a wooden artefact, a piece of a Karelian ceramic and a shard of a blueish glass.38 Bones associated with the heating stoves are mostly burned and amount to less than a hundred grams in total. In most cases, the osteological material cannot be identified due to the highly fragmented state, but at least bones from fish and large mammals are present in the data. The copper-alloy sheets are similar to those discussed in connection with Viinivaara E, although their number is significantly larger when taking into consideration those dug up by the metal detectorist. Most of the sheets appeared unmodified, but some were reworked into small artefacts, such as rivets and fittings (Paper II).

The spindle whorl is more difficult to interpret. The artefact is made of antler and decorated with nested ring patterns and small holes aligned with the edges of the object. In spite of being quite numerous in the Finnish archaeological record, no exhaustive studies regarding spindle whorls have been conducted (e.g. Appelgren 1891: Figs. 88, 90–91; Petersen 1951: 302–311; Kivikoski 1973: Figs. 69, 175, 379, 380, 629, 973–974, 1232–1233; Lehtosalo-Hilander 1982b: 61–62; Uino 1997: 191). No parallels are currently documented elsewhere39, but a somewhat similarly decorated spindle whorl of antler is recorded in the hill fort of Hämeenlahti in ceded Karelia (Appelgren 1891: Fig. 88). The wooden object is thoroughly burned and relatively difficult to identify. However, it is quite close to the Iron Age and

39 It must be kept in mind, however, that small artefacts such as these were probably local handiwork and, therefore, counterparts are probably impossible to point out elsewhere.
medieval rake tines, which is interesting as agricultural implements are rarely
documented in the Iron Age contexts of the research area (Kuusela 2015: Fig. 5
Forss & Jarva 1992: 66–67) and currently only one rake with a possible Iron Age
dating is documented in northern Finland (Koivunen 1988). Other finds, such as
the bronze needle – which seems to have belonged to a penannular brooch – the
shard of glass and the ceramics provide little information regarding the usage of
the site although especially the glass and ceramic fragment are interesting as neither
are normally found in the Late Iron Age contexts of the research area.

The heating stoves were adjoined by a pit-feature, which in both instances was
situated immediately on the eastern side of the stove. The one associated with
Heating stove 2 was excavated and identified as a storage or a cellar pit, which has
been dug right next to the fireplace. The feature was about 1.5 metres in diameter
and approximately a metre deep. The cross-section showed that the feature
contained an alternating stratum of sand, charcoal and occasional stones some of
which might have migrated from the nearby stove. The number of stones increased
towards the bottom and some of them appeared as if being placed intentionally at
the edges of the structure. The sealed conditions of the pit have allowed the survival
of some organic materials, such as wood suggesting that the cellar was equipped
with a hatch or a lid of which a few fragments were detected during the excavation.

The finds recovered in the cellar pit are sparse and include mostly small
amounts of bone fragments and flint flakes as well as a table knife and a silver
coin. The coin is severely weathered, but most likely identifiable as a penny
issued by King Magnus Eriksson between the AD 1340 and 1354 (see Paper II for
more discussion). The table knife, is similar to the medieval knifes commonly
used as personal tools in Germany, Netherlands, England and elsewhere in Central
Europe (e.g. Cowgill et al. 2013). Table knives are among the first utensils to find
their way into more sparsely populated regions of Europe and in northern Finland,
they are documented in historical towns such as Oulu and Tornio as well as in Sámi
Although table knives have not been previously documented in Late Iron Age sites
of the research area, the artefact shows that the roots of their influx are in the Late
Iron Age and the early medieval period. This is also shown by the medieval table
knifes documented elsewhere in Finland (e.g. Heikkinen 1994: 242–245; Koivisto

41 NM 4002: 887.
42 NM 40556: 152.
In addition to the coin and the knife, the above-mentioned animal-shaped pendant found by the metal detectorist probably originates from the pit-feature although the exact location is unknown.\(^{43}\)

Apart from the number of birch-bark fragments and the cultural layer signifying the floor-level, no clear evidence of associated structures, such as wall-enclosures or post-holes were detected around the heating stoves. Therefore, it is difficult to draw precise conclusions about the proportions and the form of the surrounding structures, although it seems clear that the stoves were part of a house or a cabin. In this context, the birch bark-fragments seem relevant because bark was used as insulators either under the wall foundation or on the roof since the Iron Age and up to the 17th and 18th centuries (e.g. Salonen & Haggrén 2016).

The house type most commonly documented in the Late Iron Age dwelling sites in the southern regions is a longhouse (e.g. Uino 1986; Nuñez & Uino 1998; Viitanen 1995; Vuorinen 2009). With a gabled roof supported by poles as well as long and slightly curved walls, these longhouses were commonly built since the Late Bronze Age and they remained in use until the Crusader Period when log cabins became the preferred house-type (e.g. Vuorinen 2009: 26–46). Unlike the longhouses, where the open fireplaces were the main source of light and heating, the log-houses were often equipped with stone-laid and non-mortared heating stoves (*kiuas*) which, in the archaeological record, appear as low cairns or stone settings (Luoto 1984: 15; Sarkkinen 1995; Korkeakoski-Väisänen 2002; Korkeakoski-Väisänen 2009; Vuorinen 2009: 40–41; Raninen 2015: 10–11; Raninen & Wessman 2015: 350–351; Knuutinen 2016: 116–118).

In principle, these stoves can be seen as the precursor to the historic smoke cabins (*savupirtti*) built until the early 20th century. Based on the architecture of the smoke cabins (e.g. Talve 1980: 37–38; Valonen 1984; Valonen 1994: 17–21; Vuorinen 2009, 50–51) as well as the interpretations made of the previously documented Iron Age heating stoves (e.g. Sarkkinen 1995; Korkeakoski-Väisänen 2002; Korkeakoski-Väisänen 2009), it seems most likely that the houses of Pirttitörmä were small log-built cabins with a dirt or clay floor. Following the organisation of the domestic space in the historical parallels, the stoves were probably located at the corner closest to the entrance or at the back of the cabin (e.g. Talve 1980: 37; Haggrén 2015: 488; Knuutinen 2016), a feature documented in some Late Iron Age houses as well (e.g. Ramqvist 1998: 43–88). These stoves were

\(^{43}\) According to the finder, the point of discovery for the pendant (NM 39520: 2) is located at the top layer of the said pit-feature.
chimneyless meaning that the smoke was let inside the building and conveyed through the small openings in the walls. Neither range nor an oven were included in the heating stoves and, therefore, they were poorly suited for cooking. Instead, the main purpose of these stoves was the heating. The usage was seasonal and due to the dangers of fire and carbon monoxide poisoning, the stoves were normally heated only in winter when it was necessary. In Pirttitörmä, the scarcity of bone material around the stoves can be, to a certain degree, used as an argument for their purpose being mainly that of a heating the cabin rather than a food preparation (e.g. Talve 1980: 36–37).

In both of these cabins, a cellar pit was dug next to the fireplace and these storage spaces were probably accessible from within the cabin with entrances situating next to the fireplace. Having a cellar underneath the house is a common feature in historical houses, but in the Late Iron Age data, examples are sparse and difficult to interpret (e.g. Sarkkinen 1995). Placing the cellar pit next to the fireplace is also known to have taken place: for example, in Tornio this phenomenon seems to have existed in some of the 17th century houses (Nurmi 2004: 26–29) while the deserted medieval village plot of Mankby 44 in Espoo features an indoor cellar dating to the 14th–15th century (Salonen & Haggrén 2016). Furthermore, the feature bears resemblance to the so-called kolpitsa stoves, which were mainly built in the southeast regions of Finland as well as in Karelia during the medieval period (Valonen 1994: Fig. 16; Talve 1980: 37; Korkeakoski-Väisänen 2002). The stoves of this type had a folding bench leading to the cellar or the stall of the house and the entrance was typically located next to the fireplace in the same way as in Pirttitörmä. While kolpitsa stoves belong to the younger times, this similarity is rather striking, especially when taking into consideration the Karelian influence seen in the artefactual material. While probably not a directly parallel to kolpitsa stoves, the fireplaces in Pirttitörmä could represent a variant of this form.

In addition to the heating stoves, different type of fireplace is documented in Pirttitörmä. With about 1.5x1.5 metres in size, this structure was smaller and comprised of a rectangular and flat stone enclosure filled with red-burned sand (Fig. 17). The structure was largely broken and based on the absence of stone material near the fireplace it seems that the dismantling of the fireplace took place intentionally, perhaps to reuse the stones elsewhere. Akin to the heating stoves, the bottom of this fireplace was insulated with alternating layers of sand and clay and its surroundings were characterised by a dark cultural layer. This layer contained a

44 Espoo, Mankby (Mankki) (1000001861).
relatively large number of bones (approximately 530 grams) as well as flint flakes, copper-alloy sheets and other artefacts such as a glass bead, Karelian ceramics, rivets and fittings45 (for more discussion, see Paper II).

Beneath the cultural layer surrounding the fireplace, a set of small pole-stains was documented. These features were arranged around the fireplace in a circular fashion and were easily discernible from the otherwise sterile soil. Thus, it seems clear that the fireplace was originally framed by a light wooden superstructure. As this feature is only slightly larger than the fireplace, it is likely that instead of a dwelling the structure has been used for other purposes. The feature suggests a cooking hut (\textit{keittokota}), a structure type which was an integral part of the Finnish rural yard until the early 20th century and possibly used in the Iron Age dwelling sites as well (Meinander 1977: 11–43; Vitanen 1995: 74–75). While the main function of these cooking huts was to prevent the dangers of smoke and overheating in the main building by preparing the food elsewhere, they were also used for other purposes (e.g. Vuorela 1975: 375–376). In Pirttitörmä, the versatility of the cooking hut is best shown by the find assemblage, which in addition to bones, bears the evidence of other mundane tasks, such as the repurposing of metal artefacts as indicated by cut copper-alloy sheets and make-shift rivets and fittings made of these.

Apart from the excavated structures, several above ground features such as depressions, pits and mounds are documented in Pirttitörmä (see Fig. 15). Most of these are difficult to evaluate without further fieldwork while others seem to be easier to read based on the investigations conducted so far. Out of these, the most notable are the two stone-backed mounds located just 18–24 metres west from the Heating stove 2. With approximately seven metres in between, these mounds seem to correlate with the pre-excavation state of the excavated stoves suggesting at least two additional cabins. They are approximately 2–2.5 metres in diameter and are aligned along the same east-west oriented row with the excavated stoves. Further, both of these mounds are accompanied by gentle pit-features situated immediately on their eastern side and in both cases, the metal detector prospecting produced several signals around these features. One of these signals was dug up and proven to originate from a nail typologically parallel to those found around Heating stove 2.

45 NM 40025: 1–886.
Fig. 17. The supposed cooking hut documented in 2014 (after Figure 2 in Paper II): a) the fireplace and cultural layer surround the structure; b) pole stains suggesting a lightweight shelter around the fireplace.

2.4.3 Dating

The dating of Pirttitörmä can be constructed through several approaches including radiocarbon analyses, typological studies and shore-displacement chronology. According to the Okkonen (2003: Appx. 3, Appx. 9), Pirttitörmä and its surroundings emerged from the sea by the 10th century, but during this time the area was most likely a wetland marginally suited for long-term occupation. Therefore, it was probably not until the 11th century when the site was fit for a
settlement. As mentioned earlier in the dissertation, during this time, Illinsaari composed of two main islands of which Pirttitörmä was located on the larger and the Suutarinniemi cemetery on the smaller suggesting that, similar to inland population, also the coastal communities wanted to separate the burial site from their everyday environment. Based on the topography of the area, the site has been located on the entrance of the channel parting these two islands. This channel overgrew during the 13th century but is still visible in the landscape as a marshy gully leading across the island (Paper II).

The cessation of the site’s usage seems to take place during the latter part of the Crusader Period. This is demonstrated by C-14 samples collected from all the excavated structures (Fig. 18). Analysed radiocarbon dates paint a somewhat consistent picture of the site’s period of usage. The sample dated from Heating stove 1 falls between the 13th and 14th centuries, and this is the case with two samples analysed from the burned bones recovered from Heating stove 2. Two samples of the fireplace of the possible cooking hut seem to follow suit with dates pointing to the Crusader Period or the early medieval period. With most of the dateable artefacts belonging to the Crusade period or the medieval period, the dates offered by the artefact typology seem to concur with the age estimates offered by the shore displacement chronology and radiocarbon dates (Paper II). Therefore, the main phase for the occupation of Pirttitörmä seems to fall within the 13th and 14th centuries, but the site may have remained in use up to the 15th century. By this time, the settlement gradually shifted west from Illinsaari and took root at the Hamina area next to the modern-day town-centre of Ii.

46 Ua-54848: 682±23 BP, AD 1270–1310.
49 While the main phase for the usage of this marketplace falls in the 16th and 17th centuries, the site may have been used as early as the 13th century thus theoretically overlapping with the previous settlement. However, the medieval period of Illinsaari is currently represented only by the tin-pitcher mentioned earlier in the dissertation (Ikäheimo 2014).
The starting point for the occupation of the site is more difficult to establish, but it seems possible that the usage originates from as early as the 11th century. While the earlier occupation is to a certain degree visible in some of the artefacts documented in Pirttitörmä,\(^{50}\) the nearby Suutarinniemi cemetery and Kiviharju W, both of which have provided relatively old dates, are currently the strongest indicators of this phase. In Suutarinniemi – which was likely maintained by the occupants of Pirttitörmä – the oldest graves (cremations) are dated to the 11th century and in Kiviharju W, the dates predate even this (Kuusela et al. 2013; Kuusela 2015; Kuusela 2017). Apart from Illinsaari, archaeological sites dating to the studied period are sparse and currently only a handful of sites are documented in the coastal municipalities. Some of these remains, whether dwelling sites or cemeteries seem to bear resemblance with those discussed in this chapter and are thus addressed in the following.

\(^{50}\) Typologically, the oldest artefact recovered in Pirttitörmä is the gilded mount (NM 39520: 3) found by the metal detectorist in 2013. The mount is of Anglo-Saxon origin and, based on its style, the artefact was probably manufactured in East England during the 9th century and possibly transported to northern Finland via Scandinavia (Paper II; Paper V). The validity of this artefact for the dating of the site is problematic, however, as the period of circulation prior to its arrival in Illinsaari cannot be determined and it may as well represent later contacts.
2.4.4 Connection to other coastal sites of northern Finland

In the coastal municipalities of northern Finland, currently the oldest Late Iron Age dwelling site is located in the municipality of Kemi, where two hearths were detected during the excavations of the Länkimaa site\(^{51}\) in 1992 (Fig. 1; Eskola & Ylimaunu 1993). These hearths were rectangular and, apart from a small number of burned bones and possible quartzite artefacts,\(^{52}\) contained no finds or clear cultural layers suggesting a short-term camp rather than a stable dwelling site. While the site remains difficult to interpret in detail, the C-14 dating of charcoal from one hearth places the dwelling site at the end of the Merovingian period or at the Viking Age (Eskola & Ylimaunu 1993). In addition to hearths, a cairn cemetery is documented in Länkimaa, but these burials are almost 500 years older, with finds pointing towards the Migration period. Considering the short-term nature and the dating of the dwelling site, connecting Länkimaa with Pirttitörmä is challenging and, perhaps to some degree, the site seems to bear closer relation to the dwelling sites of the interior and northern Finland.

Another small and somewhat problematic coastal dwelling site is located in the municipality of Siikajoki where several Late Iron Age artefacts were found by a local metal detectorist in an area called Rutelo\(^{53}\) near the Church of Siikajoki in 2011 (Fig. 1). The assemblage of artefacts\(^{54}\) consisted of a penannular bronze brooch, a bronze pendant, a knife scabbard-shaped needle-holder and a lyre-shaped strike-a-light iron. The first excavations in the site were conducted soon after the initial discovery and investigations were resumed in 2015 (Kuusela & Tolonen 2011; Kuusela 2015). The results are somewhat difficult to interpret as no clear structures or large quantities of finds were detected. However, at least two of the features documented during the fieldwork were interpreted as small hearths based on the red-burned sand and charcoal observed during the fieldwork. Based on the artefact typology as well as the C-14 sample from one of these hearths, the site of Rutelo can be placed between the 12th and 13th centuries (Kuusela 2013: 76–77).

A third documented dwelling site situated along the Bothnian Bay coast is located in the village of Kello approximately 15 kilometres north from the city of Oulu (Fig. 1). The Satalahti Lopakka\(^{55}\) site was excavated in 1990–1991 in search

\(^{51}\) Kemi, Länkimaa 1 (240010048).

\(^{52}\) NM 27701.

\(^{53}\) Siikajoki, Rutelo (1000019255).

\(^{54}\) NM 39017: 1–5; also NM 40178: 1–3.

\(^{55}\) Oulu, Kello Satalahti Lopakka (84010028).
of an old chapel presumed to have been built in the area during the medieval period (Koivunen & Sarkkinen 1994; Sarkkinen 1995; see also Vahtola 1980b: 13–17; Julku 1985b: 131; Luukko 1954: 262; cf. Jussila 1966). The investigations provided many historical finds, but the evidence regarding the chapel remained sparse. However, one of the trenches offered the remains of a log-built cabin and adjoining fireplace, which, based on the bronze-chain, finger-ring, spearhead, several copper-alloy sheets and other finds56 was placed at the 13th or 14th century. The building was rectangular and approximately 6x6 metres in size while the fireplace (as shown by a heap of densely backed burned stones) was about 1.4 metres in diameter. A pit-feature was detected at the eastern edge of the fireplace and based on this and other factors the structure-complex was interpreted as a log-built cabin with a large heating-oven and a possible storage or drainage pit (Sarkkinen 1995).

Whilst the structure documented in Satalahti seems to represent close parallel to those documented in Pirttitörmä, it should be kept in mind that these remains are somewhat difficult to analyse as no further studies are so far conducted and most of the material was largely mixed in with younger remains. Currently, the dating of the structure is largely based on artefacts (of which some undoubtedly belong to the Late Iron Age) and no absolute dates are available. Interestingly, several Late Iron Age and early medieval artefacts including a comb-shaped pendant similar to the one documented on Illinsaari were found near the site by metal detectorists in 2015 (Appx. 1: 41). These new discoveries seem to strengthen the significance of the area.

Apart from Länkimaa, where the adjoining cairn cemetery is significantly older than the excavated hearths, none of the dwelling sites discussed above is associated with burial sites or other adjoining Late Iron Age sites. In fact, currently the only other burial site, which can be evaluated in these terms, is the cemetery of Valmarinniemi57, which is located in the municipality of Kemimmä just 100 kilometres north of Illinsaari (Fig. 1; Koivunen 1982; Taavitsainen et al. 2009; Pelttari & Koponen 2016). The cemetery was discovered during the excavations of 1981, which aimed to locate the remains of the wooden church assumed to have been built in the area in 1431 and subsequently burned by the Russian raiders in 1517 (Koivunen 1982; Koivunen 1997: 46–47). Although these studies brought to light remains, which may be linked with a church predating the 15th century, most

56 NM 40368.
57 Kemimmä, Valmarinniemi (241010037).
of the attention was aimed towards the burial ground discovered during the excavations.

One hundred and fifty-seven inhumation burials were detected during the fieldwork and 88 of these were excavated (for the overview, see Pelttari & Koponen 2016). As at the Suutarinniemi cemetery, the graves of Valmarinniemi followed the Christian practises with most of the individuals being laid to rest in a supine position and oriented in the west–east fashion. In many instances, wooden remains were detected suggesting the use of coffins. Although the graves were largely unfurnished, some contained small artefacts such as ornaments, tools and coins originating from Norway, Germany and the Baltics. Based on the issue dates of the coins, the inhumations can be dated to approximately between the 14th and 15th centuries (Jylkkä 2004; Jylkkä 2006). Ten cremation burials were also registered during the excavation and while some of them stand out as isolated most were situated next to or on top of the inhumations. As we know, this feature is present in Suutarinniemi cemetery and a few other Late Iron Age burial grounds in southwestern Finland and Karelia (e.g. Schwindt 1893: 6; Lehtosalo-Hilander 1988: 197–198; Uino 1997: 68–69). These cremations were densely packed with burned bones placed in a small area without notable structures. While a few contained grave goods, in most cases the cremations only included human remains (Pelttari & Koponen 2006; Ikäheimo et al. 2017). Several C-14 samples were analysed and based on the results some of the cremations seem to belong to the Late Iron Age (for further discussion regarding the dating of the graves, see Taavitsainen et al. 2009; Ikäheimo 2017; Ikäheimo et al. 2017).

Similarities between the cemeteries of Suutarinniemi and Valmarinniemi are striking. In addition to the burial practises, these sites are comparable with respect to location and the history of land use as well as the artefactual evidence (Paper V). Considering the other coastal sites, such as the dwelling sites of Pirttitörmä and Rutelo, many aspects present in the archaeological data suggest that these communities were well connected with the surrounding communities and the same argument can be made with respect to inland regions. This, on the other hand, begs the questions: how should we understand the Late Iron Age settlement and how were these connections organised? These issues, as well as others, are explored in the next chapter.

58 NM 39304: 1–1728.
3 Outlining the Late Iron Age settlement of the research area

This chapter contextualises the case studies presented in Chapter 2. The discussion begins with a review of some of the past interpretations regarding the Late Iron Age settlement of the area and proceeds with a reflection of the new data as interpreted with the older notions. In addition to the Finnish material, the data is drawn from interior and northern Scandinavia, as these areas can be held largely parallel to the research area with respect to their natural conditions, location and Late Iron Age record. The focus of the debate rests on the questions of the settlement and contacts, but other problems specified in the Introduction are addressed as well. The topics for the following discussion are the coastal communities, which are understood as local organisers of trade, and the inland settlement, which is approached by contextualising the dwelling site pattern and burial practises as making broad generalisations based on such a small set of data, is currently problematic and bears the danger of producing biased notions. Finally, an attempt is made to understand the research area as a transcultural space where several cultural norms and conventions coexisting during the studied period and beyond.

3.1 Previous interpretations

As mentioned in Chapter 2.1., the Late Iron Age stray finds of northern Finland tend to be similar to artefacts documented in the core areas of southwestern Finland, Scandinavia and Karelia while the locally manufactured finds seem to be largely absent from the archaeological record. In general, this is true for the interior areas of Scandinavia as well. For example, in northern Norway, the term “findless period” (den funntomme perioden) has been applied by some scientists when discussing the last prehistoric centuries (e.g. Schanche 1992) and these problematics can be seen in other parts of Boreal Europe and Russia (Taavitsainen 1978; Taavitsainen 1990; Taavitsainen et al. 1998; Makarov 1998). In the context of northern Finland, Matti Huurre (1983: 260; Huurre 1988: 54–59) refers to the period between AD 300 and 1300 as the “the Dark Age of the North Finnish Prehistory” due to the cessation of ceramic manufacture and iron production as well as the disappearance of the dwelling sites and burials.

Based on the previous analyses, such as those made by Liisa Erä-Esko (1978), Kirsti Närhi (1978) and Matti Huurre (1983: 414–426; 1986; 151–157; 1992: 52–58), the provenience of the finds follows a certain chronological pattern. A
summary of this chronology encapsulates the way Late Iron Age has been comprehended. According to these studies, Scandinavians – most notably those of Norse background – used the rivers and lakes of northern Finland to reach their contact areas by the White Sea. Most of this traffic took place during the early stages of the Viking Age when the sea route to northern Russia was not yet discovered and is indicated by the Scandinavian artefacts most of which are dated to the period between the 9th and 10th centuries. The Scandinavian influence declined in the 10th century during which Southwest Finnish groups from the regions of Tavastia, Finland Proper and Satakunta extended their hunting and fishing expeditions to the northern areas. Suggested by the artefacts from these areas, the Finnish influence lasted until the 12th and 13th centuries after which the contacts seem to have largely diminished. Karelians were the last to include the research area in their sphere of influence as shown by the increase in the number of artefacts typical for the Karelian Crusader Period culture.

As mentioned earlier in the dissertation, the stray find artifacts are usually almost exclusively linked with passers-by from these regions and, for the most part, the outside viewpoint resonates to the interpretation of the excavated sites as well. For example, the above-discussed cremation burials of Suomussalmi are typically understood to be foreign, while the possibility of their local nature is disregarded (Huurre 1973; Huurre 1986: 130–134; Taskinen 1998). This interpretation is to some degree understandable, as – especially for the older presentations – only a small amount of documented data was available and, therefore, many inland and northern regions such as Savo, Ostrobothnia, Central Finland, Kainuu and Lapland were regarded as sparsely populated wilderness areas (e.g. Tallgren 1931a: 208–223; Kivikoski 1961: 277–285; Lehtosalo-Hilander 1984: 385–391).

While some of the nuances included in the previous interpretations such as the chronological patterning of stray finds still hold true, understanding the interior and northern Finland solely in terms of wilderness is likely to draw a rather simplified picture of the settlement and contacts during the period in question. In the Western thought, the wilderness (erämä) as a term has its roots in modern ecology and is most commonly used to characterise an environment, which remains in a natural state and lacks modern infrastructure (Kirkik 2012). For modern people, wilderness is mostly tied to nature conservation and recreation. However, the concept is rather multifaceted and different cultures are prone to conceive it in distinct ways.

In Finland, prehistorians usually associate the wilderness with eränkäynti, a wilderness utilisation system comprising of fur-trapping, fishing and trading
expeditions aimed at the wilderness areas and their peoples.59 The practise goes back for millennia, but it allegedly intensified at the beginning of the studied period, when a large number of foreign artefacts emerged in the archaeological record of these wilderness areas (e.g. Taavitsainen 1990: 112–114). Therefore, in many older presentations, the last stages of the Iron Age as well as the early medieval period in these wilderness areas are called the “hunting period” (eräkausi) (e.g. Voionmaa 1947; Kallio 1972: 66–99; Laukonnen 1989: 26–29).

Another commonly held explanation regarding the Late Iron Age settlement of Northern Ostrobothnia and Kainuu is the notion of colonisation. This is especially so along the Bothnian Bay coast, where the medieval settlement has often been linked with an influx of foreign peasant populations (e.g. Luukko 1950; Vahtola 1980a; Julku 1985: 187; Julku 1988: 84; Orrman 2002). According to this line of interpretation, the migration movement begun during the Viking Age and peaked during the Crusader Period and medieval period when peasant colonists from southwestern Finland and Karelia settled the river estuaries of the Bothnian Bay, thus displacing the former hunter-gatherer population. Both the archaeological record and the onomastics are used to demonstrate this development (e.g. Vahtola 1980a; Vahtola 1998: 17–18; Enbuske 2008: 83), and the situation is largely similar with the discussions regarding the roots of the inland occupation. For example, in the regions of Kainuu, the permanent settlement is often associated with the 15th century peasant expansion from southeastern Finland (Huurre 1986: 157–163; Keränen 1986: 244–254, 262–265, 313–348).

Although, these earlier interpretations acknowledge that also local hunter-gatherers, such as the Sámi operated in these “wilderness” areas, they are usually regarded as passive and their role is often seen as that of adapters to change rather than active participants in contacts and encounters. This is probably best summarised by Huurre in his depiction of the northern populations at the end of the prehistoric period:

“The poorly organised hunter-gatherers could not defend their position nor were their opinions asked while the territories were divided, and the conditions stabilised. The Sámi were left as the bystanders of history” (Huurre 1983: 444 [translation by the author]).

59 With this in mind, the concept of wilderness can be used almost synonymously with the term frontier (rajaseutu), which is used to describe kind of a “no man’s land” between cultures and is often seen as untamed territory ripe for the taking (Haila 2003: 177–178; Taavitsainen 1990: 48–52, 112–117; Taavitsainen et al. 2007: 91, 99; Kirkinen 2012).
In recent times, however, more emphasis has been placed on these groups and their level of involvement in the settlement history. In Scandinavia and, to some degree, in Finnish Lapland, the research interest stretches further in history (e.g. Itkonen 1945; Serning 1956; Zachrisson 1984; Hansen & Olsen 2013; Bergman et al. 2016; Halinen 2016) while in the research area, the turn derives largely from the studies conducted during the past few decades. For example, the above-discussed sites of Rutelo and the Suutarinniemi are considered to be associated with local communities (Kuusela & Tolonen 2011; Kuusela et al. 2013; Kuusela 2015; Kuusela 2017), and the sites excavated for the purposes of this dissertation can be discussed from a similar point of view (Papers II–V). In the following presentation, the Late Iron Age settlement of Northern Ostrobothnia and Kainuu is constructed based on these studies. The discussion is first aimed at the coastal communities and their role in the Bothnian Bay trade network.

3.2 Coastal river estuaries as social hubs

Based on the distribution of the archaeological material, the coastal settlement of northern Finland was mostly concentrated on the estuaries of the major rivers of Northern Ostrobothnia and the Sea Lapland (Fig. 1; Paper II; Paper V). As discussed in the introduction of this dissertation, during the Late Iron Age and the medieval period, waterways formed a significant avenue for transportation and especially the entrance areas of the coastal rivers acted as important links in the Bothnian Bay trade-network, thus forming desirable target areas for traders. This is especially so since the early medieval times when such political powers as the Kingdom of Sweden and Novgorod begun a systematic economic rivalry over northern Fennoscandia and its resources, the most notable of which were the furs and fish (e.g. Julku 1972; Friberg 1983; Lundholm 1991; Vahtola 1991a; Wallerström 1995a; Söderberg 1996). During this time, most of the river estuaries developed into marketplaces and ecclesiastical centres (e.g. Wallerström 1983: 35–39; Wallerström 1995b: 179–180; Hiltunen 1996: 275, 323; Vahtola 1997: 84; Vahtola 2004: 47, 71; Ylimaunu 2007: 25, 28–29; Kallio-Seppä et al. 2011), but archaeological material shows that these centres – or social hubs as they are called in the dissertation – have roots in the prehistory.

The usage of these hubs can be discerned as early as the Neolithic, during which many cooking pits, cairns and non-endemic raw materials such as flint and amber appear in the archaeological record of the river estuaries (e.g. Okkonen 2003; Okkonen & Äikäs 2006; Kuusela 2013). The prominence of these hubs can be
followed until the end of the Early Metal Age, when most of the prehistoric material of the interior and northern Finland seem to vanish. Although, no clear evidence of the Middle Iron Age settlement is currently documented, there is no reason to believe that the river estuaries would have become depopulated at any point in history. Instead, it is more likely that the variation in the archaeological record resulted from social changes among the northern communities (Kuusela 2013: 141–143). Therefore, when coming to the medieval period it seems clear that the local communities maintaining the acquisition and distribution of tradeable resources already had a long history within this network of interactions and were sufficiently organised to actively participate in the trade dynamics (Paper V: 179).

Considering the location of the Late Iron Age hubs as a part of the Bothnian Bay trading network, the communities occupying the river estuaries can be argued to have been extremely well placed. They existed at the interface between the Baltic Sea route and the inland waterways, many of which could be easily accessed through the coastal rivers. During the Late Iron Age, most of these hubs were situated on islands, which – following the discussion presented in Chapter 2.2.2 – offered a controllable and easy to find forums for special purposes such as trade and burials, which seems to have been the case with Illinsaari, for example (Fig. 19). This feature is, however, also present in several historical marketplaces of the Bothnian Bay coast (e.g. Cleve 1955; Vahtola 1980b: 503; Vahtola 2005: 18, 21; Ylimaunu 2007: 24–30). Furthermore, communicating with the coastal hubs was regulated by seasons. The sea route could only be travelled during the summer when the waters were free of ice and the inland was most likely accessed during the winter via frozen lakes, rivers and swamps otherwise difficult to cross (Outhier 1744; Okkonen 2012b; Bergman et al. 2014; Kuusela 2015: Paper V). This predictable pattern provided the communities of the river-estuaries a certain level of control over the movement of people and materials: travelling towards the inland required information and contacts with the inhabitants of the coastal hubs, which in this setting acted similarly to gateway communities, a classic concept utilised by archaeologists when analysing communities controlling the chokepoints between different social or natural environments (for more discussion see e.g. Hirth 1978; Nicholas 2003). Furthermore, these groups acted as intermediaries between two distinct social environments: the peasant communities of the Scandinavia and Finland and the inland hunter-gatherers of northern Fennoscandia.
The encounters between different groups likely resulted in a certain level of cultural exchange and, considering their social and geographical position, it was probably the coastal communities, who most readily adopted novel conventions and worldviews. Apart from the artefactual evidence, some of the innovations and traditions likely changed hands as the result of these interactions.

In the research area, this is best seen in the estuary of the River Iijoki, where the Late Iron Age hub on the island of Illinsaari predated the medieval marketplace and a church. The archaeological material documented on the island show that the area was well connected with the Bothnian Bay trade-network prior to the medieval marketplace and these connections likely affected the formation of sites in the area. In the dwelling site of Pirrititörmä, for example, several artefacts and remains typical for southwestern Finland, Karelia, Scandinavian, central Europe and England are documented while the graves in the Suutarinniemi cemetery suggest both non-Christian and Christian worldviews (Kuusela et al. 2013; Kuusela 2015; Paper II; Paper V). Similar connections are shown by the entrance of the Siikajoki River, where a marketplace and a church (both of which can be traced back to the 16th century) succeeded the Late Iron Age hub established during the Late Iron Age. In this case, the archaeological evidence – collected from the dwelling site of Rutelo – shows connections to southwestern Finland, Karelia and the Baltics (Kuusela & Tolonen 2011; Kuusela 2013: 76–77).

The estuary of the river Oulujoki can be discussed in these terms as well, but the matter is difficult to evaluate in detail as no archaeological sites belonging to the period in question are currently documented. However, several Late Iron Age stray finds are recorded in the vicinity of the river estuary (Appx. 1: 10, 34, 42) and the early settlement is also suggested by the medieval coin deposit\(^{60}\) recorded in

\(^{60}\) The coin deposit of Ala-Kaakinen was discovered in 1959 near the old marketplace of Oulunsalo. The deposit contains 98 coins issued by the king Albrekt of Mecklenburg during the 14th century (e.g.
Oulunsalo, just 11 kilometres south of the entrance of Oulujoki (Paper V). These finds can be regarded as precursors to the medieval centres, such as Turkansaari61, which was established at the entrance of the river at the latest during the 15th century or Vanha Kirkko62 in Hailuoto, where studies have revealed a number of graves dating to the 14th century (e.g. Paavola 1998: 127–140). Considering the smaller river estuaries, such as those of Kiiminkijoki, Kalajoki and Lestijoki, the evidence is more problematic, but these areas also tend to contain Late Iron Age finds many of which can be held as evidence of trade contacts (e.g. Kuusela 2013: 76–88; Paper V; Appx. 1: 8, 9, 40, 41).63

In the Sea Lapland and northern Sweden, the placement of the coastal data seems to be largely parallel to those in the research area and these sites are usually associated with historical marketplaces as well. In the Sea Lapland, the previously mentioned Valmarinniemi cemetery in the Kemijoki river estuary is currently the strongest indicator of the Late Iron Age settlement (Taavitsainen et al. 2009; Ikäheimo 2017; Ikäheimo et al. 2017). Like Suutarinniemi cemetery, the graves of Valmarinniemi show combination of Christian and non-Christian burial practises, but outside influence is also shown by the grave goods, which originate from southwestern Finland, Scandinavia, Germany, Russia and the Baltics (Jylkkä 2006: 392–395; Koivunen & Vahtola 1997: 44–45; Ylimaunu et al. 2014).

In northern Sweden, the Late Iron Age settlement is associated with entrance areas of such rivers as Tornio and Piteå (Fig. 1) to mention but a few (for more detailed discussion see Paper V: 183–192). In Piteåriver, the settlement during the Late Iron Age and medieval period is indicated by the Gamla Kyrkbyn site64, which – during the medieval period – stood on the southern bank of the river estuary. The site contains several house remains and artefacts belonging to the 14th and 15th centuries and these suggest a well-connected community with links to southern Scandinavia and Germany (Segerström 1995: 22; Wallerström 1995a: 81–82; Wallerström 1995b: 78; Paper V). In Tornio River, the evidence of Late Iron Age

61 Oulu, Turkansaari (564010017).
62 Hailuoto, Vanha Kirkko (72010005).
63 It should be noted that some stray finds appear outside of the river estuaries therefore deviating from the general pattern (Appx. 1: 10) and this is true for some of the excavated sites as well (Eskola & Ylimaunu 1993).
64 Raä 106: 1.
settlement is best shown by Kyrkudden. The site is located on the western bank of the river more than 50 kilometres north of the Bothnian Bay coast and it is comprised of a cemetery and a marketplace. It is located immediately opposite the medieval dwelling site of Kannala, and before the establishment of the 1809 border between Finland and Sweden, these sites seem to have formed a single entity called Kainuunkylä (or Hälsingby in Swedish) (Julku 1972; Koivunen 1977; Koivunen 1991: 146–149; Julku & Sundström 1983). Although the marketplace of Kyrkudden was officially established during the 14th century, the oldest graves documented in the cemetery belong to the 11th century showing that the usage of the site predates its formal beginnings. In Kyrkudden, the archaeological finds tend to be highly diverse with respect to their provenience, and the cemetery is equally heterogeneous containing grave types typical for Scandinavian, Finnish and Karelian burial traditions (Wallerström 1987: 145–156; Wallerström 1995a: 114–115, 119, 130; Wallerström 1995b: 155, 158).

Although all the above-discussed hubs bear evidence of interactions and mixture of cultural traits, the coastal communities seem to have maintained their local character until the historical period (Paper V). This is demonstrated, on the one hand by the cemeteries, which during the Crusader Period harboured non-Christian cremation burials and, on the other, by the subsistence strategy, which still relied largely on hunting and fishing. Some researchers (e.g. Vahtola 1980a; Julku 1985: 187; 1988: 84) have suggested that the practise of agriculture gained foothold in the Bothnian Bay coast already during the Late Iron Age as suggested by pollen analyses made in Finland and Sweden (Reynaud & Hjelmroos 1980; Hicks 1988; Segerström 1995; Vuorela 2002; Hörnberg et al. 2014; Josefsson et al. 2014; Bergman & Hörberg 2015). However, these indicators prove only that a small-scale crop cultivation was probably practised alongside the hunting and fishing, which most likely remained the main source of subsistence until historical times. The signs of systematic agriculture are also largely absent in the archaeological record – apart from the fragmented rake of Kannala and the rake tine and a spindle-whorl documented in Pirittitormä, none of these hubs bear signs of farming, and the situation is similar to that in other inland and northern areas as well (for more discussion, see Kuusela 2015: Fig. 5; Paper V with references).

65 Raä 326: 2; the marketplace of Kyrkudden remained in use until the 16th century when it was moved to the newly founded town of Tornio (Wallerström 1995b: 179–180).
66 Ylitornio, Kannala (1000009929).
With this in mind, an argument can be made against the Late Iron Age colonisation of the Bothnian Bay, at least in the sense in which it has been previously understood, i.e. forcible introduction of the peasant way of life to the river-estuaries. These areas were not occupied by peasant communities until the historical times, and, even then, the process probably derived from mutual relationships and gradual merging of these lifestyles rather than one-sided exploitation. This co-existence was based on the status and the position of the coastal communities as well as their role as informants and local contacts for the peasant traders and the inland hunter-gatherers. These interactions are encapsulated in the early historical depictions, such as those by Olaus Magnus as well as in the concept of birkarls. These traders and taxmen of the inland Sámi communities were previously interpreted as deriving from the colonisation movement aimed at the North by the southern peasants, most notably from the municipality of Pirkkala in Tavastia (Jaakkola 1924; Fjellström 1965; Favorin 1968), but this interpretation has been rejected by modern researchers. According to the recent analyses, the institution was formed locally and initially based on reciprocal interactions between coastal and inland communities (Hederyd 1991: 215–219; Bergman & Edlund 2016). Obviously, both the depictions of Olaus Magnus and the birkarl movement are largely medieval, but offer an interesting outlook on the early intercultural interactions and probably reflect the Late Iron Age dynamics as well.

So far, most of the archaeological fieldwork has been focused on the coastal municipalities, and, when discussing the Late Iron Age settlement of the inland areas, analyses must still be largely based on stray finds. These finds do not draw a clear picture regarding the dwelling sites, as, apart from the copper-alloy sheets, no typical settlement debris, such as ceramics, slag or daub are present in the stray found artefact assemblages. Obviously, this does not mean the absence of settlement, but rather that the inland communities are read differently from the archaeological record than the peasant societies and their dwelling sites in southern Fennoscandia. Therefore, it is paramount to understand the inland settlement and contacts by contrasting the archaeological record with material documented in other “wilderness” regions of northern Fennoscandia. The discussion is started by discussing the dwelling sites in this framework.

3.3 Contextualising the inland dwelling sites

The small hearth excavated in Viinivaara E currently represents the only Late Iron Age dwelling site properly documented in the interior parts of the research area.
According to the picture formulated during the fieldwork, the site comprises several small hearths, which were organised in a linear row along the lowest contours of the ridge and protected by lightweight shelters rather than by cabins or houses. This should come as no surprise, as prehistoric hunter-gatherers are known to have relocated their camps synchronically to the seasons and this mode of settlement still existed during the studied period. Out of these dwelling sites, the best documented – and most closely related to the understanding of the research area’s settlement pattern – is the category of row-organised dwelling sites.

Located in the northernmost parts of Finland, Sweden, Norway and quite possibly Kola Peninsula in Russia\(^67\), these dwelling sites became numerous during the Viking Age and remained in use until the end of the Iron Age (e.g. Hamari 1996a, 1998; Halinen 2009; Hedman & Olsen 2009; Halinen et al. 2013: 152–182; Halinen 2016).\(^68\) The defining feature of these sites is the stone-built rectangular hearth. These hearths are organised in a linear pattern along the lakeshores or next to swamps, ridges or other areas that are sheltered and suitable for migratory lifestyle (Hamari 1996b: 129). The distribution of sites tends to follow the general topography of the area and the spacing between each hearth is typically somewhat symmetric. Approximately 1–10 hearths are typically present per site, but no other structures are usually discerned. This has led scientists to assume that only lightweight superstructures, such as huts, tents, *lavvu* or *goahti* were used to shelter the fireplaces (e.g. Hedman & Olsen 2009; Halinen 2016). The excavations at the row-organised dwelling sites usually recover burned animal bones, flint flakes and small metal artefacts such as knives, strike-a-light irons and copper-alloy sheets from metal vessels (Hamari 1996a; 1998; Bergman 2007; Halinen 2009; Hedman & Olsen 2013).

In spite of dividing archaeologists’ opinions in the past\(^69\), today row-organised dwellings are usually linked with the early Sámi communities and their mobile way of life. The linear organisation of these dwellings has been interpreted in different ways ranging from changes in substance strategies, religious mindscapes and socio-economic structures (Odner 1992; Storli 1993, Storli 1994; Mulk 1994; Schanche

\(^{67}\) In principle, the fireplaces excavated in Länkimaa are similar to the hearths found in the Sámi dwelling sites of northern Fennoscandia, but no in-depth analysis of this link has been done (Eskola & Ylimaunu 1993; Ylimaunu 1997: 17; Ylimaunu 1999).

\(^{68}\) In addition to the row-organised dwelling sites, however, some of the more long-lasting Sámi dwelling sites, such as the winter village of Juikenttä in Sodankylä have offered Late Iron Age materials (Carpelan 1991; Carpelan 1992).

\(^{69}\) For example, Povl Simonsen, who studied rectangular hearths in Karasjokk and Kautokeino in northern Norway, interpreted these hearth as burial sites (Simonsen 1979; Simonsen 1997).
2000; Hedman 2003; Hansen & Olsen 2004; Hedman & Olsen 2009). These dynamics are yet to be fully understood, but the birth of row-organised dwelling site pattern took place simultaneously with other changes in the archaeological record as well as socio-economic turmoil among the neighbouring societies (Halinen et al. 2013: 152–153).

Of course, connecting Viinivaara E directly with the Sámi communities is problematic. The excavated hearth is morphologically different from large rectangular hearths\(^7\) documented in Sámi dwelling sites and the distance between the fireplaces is abnormally long (Paper III). However, when considering the area as a meeting place and thoroughfare for inland traffic, it seems probable that at least some level of cultural mixture may have affected its formation (for more discussion, see Paper III). Like row-organised dwelling sites, Viinivaara E is distributed in a linear pattern following the lowest contours of the ridge and the hearth has probably been sheltered with a lightweight structure. The dating seems to correlate with the row-organised dwelling sites and these similarities can be attributed to the assemblage of finds as well.

Despite the apparent seasonality, Viinivaara seems to have had a special meaning for the Late Iron Age communities as a burial site was established in the area. Unlike the dwelling site, the burial does not comply with the Sámi worldview as, according to the long-maintained conception, northern hunter-gatherers did not use cremations, but inhumations instead and this practise still existed during the medieval period (e.g. Purhonen 1996). Considering the burial practises of the Viking Age Finland, the cremation at the summit of the ridge seems to be more aligned with the burial traditions of the southern peasant communities and this seems to be the case with the Late Iron Age burial sites in the interior and northern Finland in general. Therefore, it is important to understand also the inland burial sites from a broader perspective.

3.4 Cultural contacts and continuation in the inland burial sites

Cemeteries and graves are usually considered to be among the most prominent archaeological remains of the Iron Age settlement. In Finland and Karelia, the Late Iron Age burials are currently registered in the hundreds and they range from

\(^7\) It should be kept in mind that hearths in the Sámi dwelling sites are somewhat heterogeneous and, in addition to rectangular, also oval, round and even more irregular hearths are documented (e.g. Hedman 2003: 101–140).
complex cremation fields and vast inhumation burial grounds (e.g. Schwindt 1893; Lehtosalo-Hilander 1982a; Lehtosalo-Hilander 1982b; Lehtosalo-Hilander 1982c; Uino 1997: 44–72; Purhonen 1998: 104–146; Wessman 2010: 21–30; Raninen & Wessman 2015: 278–285, 293–295, 338–347) to smaller cemeteries and individual graves (e.g. Paloniemi 1960; Huurre 1973; Huurre 1983: 387–391; Huurre 1986: 130–134; Vilkuna 1999: 69; Jarva et al. 2001; Miettinen 2001). Despite being occasionally practised during the earlier prehistoric periods, during the 5th and 6th centuries the cremation became the most prominent – or at least archaeologically most discernible – way of disposing of the dead. In time, some of these cremation cemeteries grew to significant proportions and many of them were still actively used during the studied period (e.g. Uino 1997: 44–54; Wessman 2010; Raninen & Wessman 2015: 293).

These so-called cremation cemeteries under level-ground (polttokenttäkalmisto) are known to contain the remains of scores of individuals scattered on the rugged hilltops, ridges or islands surrounded by the agrarian landscape. In most cases, no individual burials are identified due to the lack of structure and the poor condition of the skeletal material and grave goods. Likewise, these cemeteries do not usually contain any aboveground structures, but graves are instead covered by a flat layer of stones or soil thus merging them with the landscape. The discreet character has been seen as an attempt to underline the significance of the location rather than the burial itself (Wessman 2010: 19–20).

While the cremation cemeteries under level-ground remained in use throughout the Iron Age, they became largely replaced by inhumation cemeteries during the 9th and 10th centuries coming of the Christian influence (Purhonen 1998; Wessman 2010: 34). These early inhumations first emerged into previously used cremation cemeteries, but soon evolved into separated burial grounds. While inhumations in cairns and stone settings occurred throughout the Iron Age, during the 11th and 12th centuries the tradition changed towards simple underground grave-pits equipped with artefacts and wooden frameworks, caskets, birch-bark covers or

71 The term polttokenttäkalmisto does not translate well into English and, therefore, archaeologists have adopted many different expressions, such as “level-ground cremation cemetery”, “cremation cemetery below ground level” or “flat cremation cemetery” when discussing this heterogeneous group. In this study, the term “cremation cemetery under level-ground is used as it occurs commonly in the modern literature (e.g. Wessman 2010).

72 The grave goods are usually burned or otherwise destroyed which is why in some instances these sites are suggested to be Iron Age refuse heaps or old smithy workshops (Taavitsainen 1990: 44–45; Taavitsainen 1991, 7–11; Salo 2003: 57, 381; Salo 2004: 203–207). However, this line of interpretation is not commonly accepted (e.g. Wessman 2010: 57).
other grave-structures (e.g. Lehtosalo-Hilander 1982a; Lehtosalo-Hilander 1982b; Uino 1997: 54–72; Purhonen 1998: 114–145; Mikkola 2009).

With over a century of research, the Iron Age burial practises in southwestern Finland and Karelia are today fairly well understood and commonly used to explain social structures, religious traditions and worldviews of the Late Iron Age communities (e.g. Lehtosalo-Hilander 1982c; Uino 1997; Purhonen 1998; Wessman 2010). Yet, in the interior and northern Finland, the situation is quite the opposite. Although, cremation cemeteries under level-ground are known to stretch as far north as Southern Ostrobothnia and similar sites are registered elsewhere in the Baltic Sea region, their distribution does not cover the interior or northern parts of Finland (Lehtosalo-Hilander 1984: 281–282; Uino 1997: 44–54; Mägi 2002; Kriiska & Tvauri 2007; Wessman 2010). For the most part, the same can be said for the large inhumation cemeteries as currently only two such sites (Valmarinniemi and Suutarinniemi) are documented in northern Finland and they seem to be largely bound to the Bothnian Bay coast (Taaitsainen et al. 2009; Kuusela et al. 2013). Burial sites of this age are occasionally found in the interior regions as well, but due to the scarcity of known sites, their number has remained relatively low and, therefore, the archaeological interest towards them has been rather small scale (e.g. Kivikoski 1949; Kopisto 1956; Paloniemi 1960; Huurre 1973; Laukkenen 1989: 21–25; Meinander 1950: 158–162; Vilkuna 1999: 69; Jarva et al. 2001; Miettinen 2001; Holmblad 2013: 201–205; Paper III; Paper IV).

Together with the material discussed earlier in the dissertation, approximately 20 Late Iron Age burial sites are registered elsewhere in the interior and northern Finland (Jääskeläinen 2017; Paper IV: Table 1). Currently, their distribution is mostly concentrated on the watershed area of Southern Ostrobothnia, but they are also recorded in other south-central regions as well as in southeastern Finland (Äyräpää 1933; Kivikoski 1949; Kopisto 1956; Paloniemi 1960; Huurre 1972: 48–51; Miettinen 1982: 65–70; Miettinen 1996; Miettinen 2001; Vilkuna 1999: 68) while in Lapland they seem to be missing with the exception of one (Jarva et al. 2001). Although, a degree of variation can be pointed out among the inland burial record, on fundamental level they seem to form a distinct group of small burial sites established on seemingly marginal locations far from the major cemetery areas in southwestern Finland and Karelia. In most cases, these sites tend to be small and contain the remains of only one individual, but occasionally they may form small cemeteries (e.g. Meinander 1950: 158–162; Paloniemi 1960; Jarva et al. 2001; Raninen & Wessman 2016: 324). No visible structures, such as cairns, stone settings or mounds are usually detected, but instead most of the graves are discrete
and well merged into the landscape. This, on the other hand, makes them extremely
difficult to notice during the archaeological survey, which is why graves are usually
found by accident and often with destructive results (Kivikoski 1949; Kopisto 1959;
Huurre 1973; Huurre 1986: 130–134). Partially for this reason, only a portion of
the material has been properly documented, leaving many issues related to these
burials unaddressed.

Although it is difficult to make generalisations with such a small sample of
burials, according to the current situation, most of the sites seem to be cremations.
This is especially so with the Viking Age graves, which seem to be universally
cremations. The practise of cremation is common in the Crusader Period burial sites
as well, but this period saw the emergence of inhumations such as Lautamäki73 in
Teuva and Hiukka74 in Rovaniemi (Paloniemi 1960; Jarva et al. 2001). This, on the
other hand, seem to correlate with the overall evolution of the Iron Age burial
practises in Finland and show that similar development took place among the inland
populations.

Considering the cremations, it seems evident that only a portion of the deceased
has been deposited in these graves. When burned, the human body reduces to
approximately 1200–3000 grams of bone fragments and ashes (e.g. McKinley
1993), but in the burial sites of the interior and northern Finland the number of
human remains usually amounts to only a few hundred grams or even less (e.g.
Huurre 1973; Huurre 1986; Taskinen 1998; Miettinen 2001; Vanhatalo 2005; Paper
III; Paper IV). In some instances, the paucity of human remains could derive from
the poor condition of these burials, but the matter can be the result of other factors;
the missing bones may have been deliberately crushed after the burning, scattered
in the landscape, deposited in a separate burial site or distributed among relatives75
(Rebay-Salisbury 2010). Additionally, the post-cremation recovering techniques
seem have played a role in the scarcity of bones in these graves as most of them
were possibly left at the site of the burning. Whatever the reason for the feature are,
it seems possible that we are dealing with secondary burials, which were used to
house only a part of the deceased.

At the same time, however, the graves tend to be quite lavishly furnished as
shown by the burial sites documented in the research area, but also when observing
the overall burial site record (Kivikoski 1949; Kopisto 1956; Paloniemi 1960;

73 Teuva, Lautamäki (846010005).
74 Rovaniemi, Hiukka (699010411).
75 Distributing human remains amongst relatives might explain why burned human remains are
sometimes documented in dwelling sites, such as the rectangular Sámi hearths (Hedman 2003).
Huurre 1972: 48–51; Miettinen 1982: 65–70; Miettinen 1996; Miettinen 2001; Vilkuna 1999: 68). Usually the artefacts are situated next to the grave, but in some instances, they are found metres apart, a feature sometimes interpreted as a sign of them being later inclusions (Huurre 1973; Paper IV). The artefacts are mostly similar to those found in southwestern Finland, Karelia and other surrounding areas, and, partially for this reason, previous analyses present the burial sites as anomalies resulting from the expansion of South Fennoscandian peasant groups towards these areas (e.g. Vilkuna 1999: 68; Huurre 1986: 130–134), but also different interpretations are suggested (Miettinen 2001; Raninen & Wessman 2016: 324). In the recent decades, the number of these sites has steadily increased, and the current situation indicates that these sites could equally well be linked with the local hunter-gatherer communities and their burial traditions (Hakamäki & Anttonen 2017; Paper III; Paper IV).

In the interior parts of Finland, these traditions can be followed through Lapp cairns (lapinrauniot), a distinct category of prehistoric stone structures, mostly found on islands, promontories and other water-bound locations near inland lakes. The Lapp cairns emerge into the archaeological record at the beginning of the Early Metal Age and while most of them are deemed to belong to this period (e.g. Taavitsainen 2003; Saipio 2011; Lavento 2015: 168–169), some sites seem to deviate from the trend, with either Stone Age or Middle and Late Iron Age dates (Adel 2002; Taavitsainen 2003; Okkonen 2003: 43). Discovered either as individuals or in small groups, the distribution of Lapp cairns is mostly focused on the central and southeastern parts of Finland, but they are found in in the research area as well (e.g. Salo 1984: 180; Taavitsainen 2003: 15; Perttola 2005: 13-18). Although contemporary cairns are found in other Finnish regions as well, Lapp cairns are usually defined as a distinct category of monument built and used primarily in the interior regions (e.g. Taavitsainen 2003).

Only a handful of Lapp Cairns are excavated so far (on excavated cairns see e.g. Pohjakallio 1978a: 21–24; Pohjakallio 1978b; Adel 2002; Taavitsainen 2003; Saipio 2011) which is why their nature and prehistoric usage remains problematic. On a general level, Lapp cairns are regarded as prehistoric burial monuments containing small and sparsely furnished cremations, but sometimes they are proven as heating stoves or other structures of historical origin. Other cairns hold no finds at all making their interpretation extremely difficult and sometimes the osteological material turns out to be animal based showing that, instead of just burials, their function has been rather multifaceted (Taavitsainen 2003: 27). Furthermore, it has been proposed that some artefacts recovered in Lapp cairns are later inclusions,
suggesting that their ritual significance was recognised and maintained after the initial formation (Saipio 2011: 29–31).

In spite of the obvious structural differences and problematics related to the interpretation of Lapp cairns, they seem to be somewhat analogous with the discrete Late Iron Age burials sites of the interior and northern Finland (Paper IV). The similarities can be attributed to the geographical distribution and the placement as well as the treatment of the body – the cremation burial seems to have been the most commonly used practise, but usually only a portion of the burned bones was placed in these graves. Although most of the Late Iron Age inland burials do not include notable structures, some were marked with stone settings and low cairns, thus bearing resemblance to Lapp cairns (e.g. Vilkuna 1999). Moreover, the younger dates offered by some Lapp cairns (Adel 2002) seem to suggest that at least some degree of temporal overlapping existed between the Early Metal Age and the Late Iron Age burial practises and this connection can be further demonstrated by discrete cremation burials built in the interior and northern Finland prior to the Viking Age. For example, the cremation burial of Majakangas in Konnevesi belongs to the Middle Iron Age and is highly similar to the Late Iron Age burials of the interior and northern Finland (Vanhatalo 2005). Even earlier example of flat cremations is the Hangaskangas grave in Oulu, which bears resemblance to Late Iron Age burials in spite of dating to the Early Metal Age (Forss & Tuovinen 1998). With this in mind, the mortuary practises of the interior and northern Finland seem to have continued throughout the Iron Age in spite of the shift from cairns to more discrete graves.

Interestingly, a similar development is documented in the Iron Age burials of the Scandinavian interior. For a long time, this relatively uniform group was discussed with regionally varied terminology (e.g. Schanche 2000: 340; Fossum 2006: 90; Hansen & Olsen 2014: 93–100; Taavitsainen 2003; Sundström 1997; Bergstol 2008; Zachrisson 1988: 121–122). In the central-western regions of Sweden these graves are called Lake graves (insjögravar) and forest graves (skogsgravar) while in the mountainous areas of southeastern Norway the burial sites are referred as Mountain graves (fjellgravar), but nowadays they are usually included under the category of hunting-ground graves (Fångstmarksgravar) (Gollwitzer 1997: 32). The hunting-ground graves emerged into the archaeological

76 Konnevesi, Majakangas pohjoinen (275010015); in addition to the cremation burial, also Stone Age and Viking Age material were recovered during the excavation suggesting a long-term usage (Vanhatalo 2005).
77 Oulu, Hangaskangas (564010051).
record around the 200 BC and they remained in use until the 14th century. With such a long period of use, these graves are usually divided into two temporarily varied phases. The first phase is generally uniform. It took place during the 200 BC–AD 600 and consisted of cremations made in low cairns brought together in small cemeteries in promontories and islands of inland lakes (e.g. Zachrisson 1997: 195–197). The second phase took place during the AD 600–1200 and is more diverse with respect to form and burial practises. These graves consist of isolated cairns, stone settings, mounds, but also discrete graves with both cremations and inhumations (Skjølsvold 1980; Bergstøl 2008).

Lapp cairns are seen as an eastern variant for the Iron Age burial sites of the Scandinavian interior (Hansen & Olsen 2014: 105–107). In principle, this connection seems logical as hunting-ground graves and Lapp cairns tend to be closely associated with each other in relation to their location, form and usage. However, this connection applies only with the earlier phase of hunting-ground graves and the younger group seems to be more difficult to address in these terms. Therefore, including the Late Iron Age burial sites of the interior and northern Finland in the discussion regarding the continuation and connections of the Scandinavian and Finnish inland burial practises might prove fruitful as similar development from cairns to more discrete graves seem to have taken place in both areas (Paper IV). To understand this connection, extensive fieldwork must be obviously conducted in both Lapp cairns and Late Iron Age burials, but currently it seems possible that a link exists between hunting-ground graves, Lapp cairns and the Late Iron Age burials.

3.5 The research area as a transcultural space

The cultural background of the hunting-ground graves has been a debated issue amongst the Scandinavian archaeologists. Some associate them with the Germanic groups expanding from southern Scandinavia (e.g. Baudou 2002), while others stress that they should be rather be linked the local Sámi populations and their burial practises (e.g. Ambrosiani et al. 1984). In Finland, the discussion concerning the ethnicity of Lapp cairns has been largely similar with some regarding them as local hunter-gatherers and others as graves of the southern hunters (Huurre 1983: 146, 153-154; Salo 1984: 180; Lehtosalo-Hilander 1988: 153-154; Muurimäki 1992: 47). At the same time some archaeologists (e.g. Okkonen 2003: 46–48), question whether it is even meaningful to discuss the ethnic background of Lapp
cairns as such interpretations are likely to form a biased conception regarding the prehistoric settlement of the inland regions.

Considering the previous interpretations addressed in chapter 3.1., ethnicity has been amongst the key-aspects also when discussing the Late Iron Age settlement of northern Finland. For example, row-organised dwelling sites described above and sacrificial sites are usually associated with the Sámi, while the stray finds and the occasional burial sites are most commonly connected with the southern peasant communities and their wilderness utilisation system. Even though this line of interpretation seems valid with some aspects of the data, the dichotomy seems problematic for the material documented in the research area, as the archaeological record bears no clear evidence of Sámi or Fenno-Ugric/Germanic peasant identity (Huurre 1983: 324; Kuusela 2013: 18–23, 143–150; Paper V). Obviously, these groups operated in the area, but for one reason or another, they do not appear in the archaeological record similarly to their contemporaries in Lapland and southwestern Finland. Further, archaeologists and historians have for a long time acknowledged the existence of so called Lapps, a heterogeneous group of inland people defined mostly by their mobile hunter-gatherer subsistence strategy rather than ethnicity (e.g. Raninen & Wessman 2015: 320–322). Although most often discussed in medieval contexts, this diverse group probably has roots in prehistory, making it rather significant with respect to the Late Iron Age settlement of the research area.

As argued in Paper III, the Late Iron Age population of the research area should perhaps be discussed in terms of cultural hybridity. This post-colonial term is usually used to describe processes during which pre-existing social and cultural conventions are mixed by re-negotiating and re-adapting them until the point in which new social and cultural conditions are born (e.g. Van Pelt 2013: 1–2). These alternate conditions have effect on the way people engage with the economic practises, traditions, beliefs and materiality, for example, and these dynamics are addressed by many archaeologists as well (e.g. Schanche 1989; Spangen 2004; Naum 2010; Naum 2012; Naum 2013; Stockhammer 2012; Hitchcock & Maier 2013; Silliman 2015). The term does not, however, come without problems (see Paper III) and several substitutes, such as creolization, entanglement, cultural mixture, middle ground, mestizaje and transculturalism are suggested (Van Pelt 2013). In this dissertation, as well as the discussion presented in Paper III, the concept of transculturalism is used as it alleviates some of the burden present in the other terminology.
Transculturalism is often discussed hand-in-hand with contexts that are in-between or liminal in nature and labelled by a certain level of ambiguity in one way or another. These spaces can be discussed in terms of frontiers, borderlands, colonies or “third spaces”, a theoretical concept formulated by Homi Bhabha ([1994] 2004; also e.g. Naum 2010; Naum 2012; Naum 2013). According to Bhabha, spaces such as these are not characterised by primordial cultural unity, but instead different norms, practises and worldviews are constantly reworked by negotiating and reinterpreting them. With this in mind, a number of archaeologists view the interior parts of Scandinavia as a transcultural frontier between different groups, most notable of which were the Sámi and the Germanic peasants both of which operated in the area and probably exchanged materials and conventions (e.g. Price 2002; Hansen & Olsen 2014: 46–57).78 Some of these analyses have brought up the concept of “hybrid population” and interpreted several aspects of the Late Iron Age and medieval record as evidence of cultural mixture. These facets include the multi-room houses in northern Norway, some of the silver deposits as well as certain stray find assemblages (Pareli 1991; Spangen 2004; Spangen 2009; Olsen et al. 2011). The hunting-ground graves discussed above are also sometimes interpreted as “cultural hybrids” deriving from the encounters between peasants and hunter-gatherers (Welinder 2008).

The research area seems to correlate with the notions forwarded by Bhabha and others. During the studied period, the communities inhabiting Northern Ostrbothnia and Kainuu were neighboured by several prominent groups including the Sámi in the north and Fenno-Ugric and Germanic peasants to the south both of which operated in the area and frequently came to contacts with the local population. Yet, there are no siedis or other Sámi sacrificial sites79, nor row-organised dwelling sites documented in the research area. The same can be said for the large cremation cemeteries and other remains typical for southern Scandinavia and northwestern Russia as well. Instead, the archaeological record of the research area seems to paint a mixed picture with elements from both of these cultural areas.

78 Interactions between the Sámi and the Germanic populations are also seen in southern Fennoscandia where, for example, some of the Viking Age ship-burials are known to contain objects, which were obtained via contacts with the northern hunter-gatherers (e.g. Stolpe & Arne 1912; Arwidsson 1942: 106–109; Arwidsson 1954: 107–112; Zachrisson 1997).

79 Old Sámi sacrificial sites are documented in Kuusamo, for example and while some of them might have roots in the Late Iron Age, their dating cannot be currently determined (e.g. Sarvas 1986: 139–141). Silver deposits of the research area are also sometimes understood as Sámi sacrificial sites, but this interpretation is rather hypothetical and they could indicate other activities as well (Huurre 1983: 395–401).
These dynamics are best demonstrated by the island of Ilinsaari (Paper II; Paper V: 188–189). Apart from the artefactual data originating from southwestern Finland, Karelia, Scandinavia and Central Europe, the co-existence of different cultural influences is seen by the dwelling site, which consists mostly of cottages of eastern style and by the cemetery containing both Christian and non-Christian burials. As stated earlier, the transcultural mechanics are present in the social hubs along the Bothnian Bay coast in general as most of these sites contain evidence of mixture of materials and conventions (Paper V: 183–192 with references). Towards the inland, these processes become more difficult to understand, but it seems certain that encounters took place and these interactions are visible in the archaeological record. The strongest case for this can be made with Viinivaara E, which consists of cremation and a dwelling site showing both the Sámi and the southern peasant influence (Paper III). Other inland cremation burials, such as the one excavated on the island of Heinisaari, can be discussed in these terms, although no dwelling sites are documented near these burials and obviously more fieldwork is required to understand the inland burial tradition. Yet, when considering the cremation burials of the interior and northern Finland in general, they seem to represent a local variant of the cremation tradition common in southern Fennoscandia and northwest Russia (Paper IV).

With most of these sites situating along the important routes, such as lakes, rivers, overland passages or natural bottlenecks, it is not difficult to see them as forums in which people with different cultural backgrounds interacted and exchanged ideas. Especially in the coastal area, most of these interfaces evolved into marketplaces and ecclesiastic centres and eventually into town such as Oulu, Ii, Kemi and Tornio (Wallerström 1983: 35–39; Wallerström 1995b: 179–180; Hiltunen 1996: 275, 323; Vahtola 1997: 84; Vahtola 2004: 47, 71; Ylimaunu 2007: 25, 28–29; Kallio-Seppä et al. 2011). In the inland sites, such as Heinisaari and Viinivaara E, no development of such volume took place80, but the transcultural dynamics remained in action until the medieval period and beyond as shown by the historical depictions, such as those accounted by Olaus Magnus, for example (e.g. Lintilä 2002: 80–101).

80 Some Late Iron Age and early medieval stray finds are recorded near the inland towns such as Suomussalmi and Kuusamo (e.g. Appx. 1: 5, 17, 76) suggesting that some modern-day population centres have roots in the studied period. Only a few of these finds have been subjected under an archaeological excavations (e.g. Vanhatalo 2005; Okkonen 2012a), and, therefore, the nature of their Late Iron Age usage is difficult to discuss in detail. Most of the inland stray finds are, however, found far from the modern towns and villages.
The transcultural nature of the inland populations is also evident when considering their network of contact during the early historical period. During this time both the Birkarls and Karelians are known to have interacted with the inland hunter-gatherers (e.g. Keränen 1986: 244–254; Bergman & Edlund 2016) and these connections can be seen in the early border drawing between Sweden and Russia. In the 1323, peace-treaty of Nöteborg the northern Finland is largely defined as a shared area where both parties were allowed to practise their economic endeavours (Gallén & Lind 1991; Korpela 2002; Katajala 2012). The agreement was short lived, however, and it was not until 1595, when, after years of bitter rivalry, the borderline was renegotiated in the peace treaty of Teusina. Yet, also this agreement left parts of the interior and northern Finland as a borderland between west and east (Paper III: Fig. 2). As stated in this dissertation, it seems evident that at least a portion of these dynamics were in action already during the Late Iron Age. The early state-formation for both Novgorod and Sweden have their roots in the period studied, but during this time most of the encounters can be argued to have been based on mutual agreements and peaceful co-existence as indicated by the Late Iron Age material especially in the coastal areas. In fact, it was not until the medieval period, when the goal of the two powers shifted towards land ownership and control over the northern peoples, thus placing the research area and its inhabitants into a marginalised position (Paper V).
4 Conclusions

Understanding the Late Iron Age settlement of Northern Ostrobothnia and Kainuu is not an easy task. As stated in this dissertation, most of the available data comprises of stray finds, while the number of burials and dwelling sites remains strikingly sparse. The composition of archaeological record has likely affected the way older interpretations understood the occupation of the area and represents one of the main reasons why the material still is often linked with non-local instead of local population. The situation is mostly the same in northern Fennoscandia in general and it has been only during the recent decades, when more archaeological interest has been forwarded towards this area. So far, most of the investigations have taken place in northern Sweden, Norway and the Finnish Lapland, where several Late Iron Age remains, such as the Sámi sacrificial and dwelling sites are documented.

In recent years, the amount of data has increased also in the research area and considering the current events the numbers will probably continue climbing in the future. For example, amateur metal detecting does not show signs of diminishing and this is likely to bring up new material in the future. Although the problems with metal detector fids are similar than with stray finds in general, they can be regarded as a valuable source of information about such issues as the distribution of the Late Iron Age population and their pattern of settlement. It should be kept in mind, however, that archaeological investigations are typically needed to fully utilise these finds and if left unexcavated for too long, there is a danger of them falling into obscurity as time passes on.

One of the principal aims of this study was to decelerate this progress by conducting a series of fieldwork in the stray find locations and at the same time observe various nuances regarding the presentation of the archaeological record and the Late Iron age settlement of the research area. These studies revealed dwelling sites and burials discussed in the main body of the dissertation, but also remains that are more difficult to interpret. For instance, in Parsaismaa the archaeological context remains enigmatic despite the site containing a cultural layer, which seems to belong to the early medieval period. The same ambiguity is perhaps even clearer in the site of Illinsaari 1, where no traces of Late Iron Age occupation were detected despite the stray finds documented in the area. Regardless, the research potential of stray finds can be regarded signigicant and especially many larger artefact assemblages seem to originate from similar contexts than those investigated for the purposes of this dissertation. This should come as no surprise.
because Iron Age sites such as the cremation cemeteries under-level ground are typically first revealed by stray finds and confirmed only after further fieldwork. In southern regions, where these sites tend to be larger, the contexts of finds is often easier to establish than in the interior and northern Finland, where features and structures tend to be discrete.

This is especially so in the inland regions of Northern Ostrobothnia and Kainuu, where stray finds do not usually show any aboveground features. However, when subjected under an archaeological excavation, these finds seem to indicate small burial sites and dwellings such as those documented in Heinisaari, Viinivaara E and various other locations throughout the interior and northern Finland. Out of these, the small burial sites provoke the most discussion. Although in the older analyses these burials are usually seen as anomalies, based on the current situation, they seem to form a local category of graves that were merged in the landscape and typically made to house only the remains of one individual. Taking into consideration the prehistoric burial practises of Fennoscandia, these sites seem to be related to southern cremation cemeteries as well as to both the Lapp cairns of the Finnish inland and the hunting-ground graves of the Scandinavian interior.

Especially, the two latter categories remain somewhat poorly understood and archaeologists have only begun to see connection between these traditions in recent decades. Therefore, it is too early to draw conclusive remarks regarding the cultural background of the Finnish inland burial tradition neither, although it seems probable that these sites represent a locally formed phenomenon deriving from contacts and connections instead of an anomaly resulting from a direct foreign occupation or exploitation.

In addition to burials, dwelling sites are recorded in the interior regions of the research area. However, their understanding remains on even more rudimentary level as such sites are sparsely documented and, apart from the copper-alloy sheets, there are no typical settlement finds present in the stray find assemblages of Northern Ostrobothnia and Kainuu. Considering Viinivaara E, the only inland dwelling excavated for the purposes of this dissertation, the nature of the site can be argued to be that of a seasonal camp consisting of small hearths that were sheltered with lightweight structures. The site has been built in a sheltered location along the basin of the ridge and seems to be somewhat linearly organised. The composition, the dating and the find assemblage of the site resembles the Sámi row-organised dwellings documented in the northern parts of Fennoscandia, but linking it directly with this category of sites is problematic as no such dwelling sites are currently documented elsewhere in the research area. Yet in this case, as well, a
certain level of cultural influence may have affected the formation of the site and this is further demonstrated by the nearby cremation burial.

In the coastal area, the Late Iron Age settlement is easier to read from the record and more archaeological interest has been aimed at this material. Based on the current situation, most of the activity was focused on the estuaries of the major rivers such as Oulujoki and Iijoki, which during the studied period represented the most important avenues towards the inland regions and were, therefore, suitable trading and meeting places. This is best demonstrated by the Iijoki river estuary, where several discoveries have been made during the present decade. These sites include a large cemetery, which incorporates both Christian and non-Christian burial practices as well as a dwelling site containing several large heating stoves, cellar pits and other structures. In both cases, the find assemblages point towards an extensive trade-network reaching to southwestern Finland, Karelia, Scandinavia and Central Europe. Similar hubs are documented throughout the Bothnian Bay coast. Including the Iijoki river estuary, many of these sites later developed into historical harbours, marketplaces and religious centres. Based on their composition and find assemblages, however, the role of these sites as part of the North European network of interactions has roots in the prehistory.

The coastal settlement of northern Finland has often been attributed to the peasant colonists arriving from the core areas of the southern Fennoscandia during the Late Iron Age and the medieval period. According to this line of interpretation, this process was coercive and effectively marginalised the hunter-gatherer communities previously occupying the river estuaries. However, based on the material discussed in this dissertation, it seems evident that these communities maintained their position and distinctively local nature until the historical period and that the eventual colonisation likely took place via peaceful co-existence and mutual agreements. This, on the other hand, profoundly shaped the cultural norms and conventions of the Iron Age communities and similar process can be seen among the inland communities as well although the research situation remains imperfect in many aspects.
List of references

Electronic sources

Reports and documents

Research literature

106

Hårdh, B. (2007). Oriental-Scandinavian Contacts on the Volga, as Manifested by Silver Rings and Weight Systems. In J. Graham-Campbell and G. Williams (Eds.), *Silver economy in the Viking Age* (pp. 135–148). Walnut Creek, Left Coast Press, Inc.

Moilanen, M. (2016). Marks of fire, value and faith: swords with ferrous inlays in Finland during the Late Iron Age (ca. 700-1200 AD). Archaeologia Medii Aevi Finlandiae XXI. Turku, Suomen keskiajan arkeologian seura.

Mägi, M. (2002). *At the crossroads of space and time. Graves, changing society and ideology on Saarenmaa (Ösel), 9th-13th centuries AD.* Gotland, University of Gotland.

122

Appendix

A brief description of the Late Iron Age stray finds of Northern Ostrobothnia and Kainuu up to the year 2016 is offered in this Appendix. The presentation is organised alphabetically by municipality and sorted from smallest catalogue number (NM) to largest. Artefacts that are collected in local museums or private collections are presented after those catalogued in the archive of the Finnish National Museum. The information is sequenced as follows: the municipality of discovery, the name of the site, the region in which the site is located, the catalogue number of relevant finds (if any), the register number of the site (if any), geographical coordinates in ETRS-TM35FIN form, a brief description of the discovery and a list of fieldwork. The geographical distribution of stray finds is presented in Figure 3.

1. Haapavesi, Sonnila

Region: Northern Ostrobothnia
Finds: NM 3518: 14; NM 5218: 38
Register number: 71010014
Coordinates: x=7122886, y=423602, z=122.5
Description: Two axe-blades discovered on the eastern side of Lake Ainalijärvi approximately ten kilometres north of the Haapavesi town centre in 1889 and 1909. Both artefacts were recovered near the Sonni estate during the ditch-digging, but no exact information regarding the specifics and condition of the initial discovery has survived. The site was surveyed in 1990, and while the Iron Age context of the artefact could not be determined, several Stone Age finds were documented showing that the Sonnila area has been used for a significant span of time. NM 3518: 14 belongs to the group of socketed axe-blades. The age of these artefacts is difficult to establish, but according to Närhi (1978: 20) and Huurre (1983: 334–335) its dating falls between the Roman Iron Age and the early Viking Age. NM 5218: 38 is of younger type with Late Iron Age or medieval dating. In her thesis on the Finnish Iron Age axe-blades, Helena Wuolijoki (1972: 34) places this artefact amongst the miscellaneous axe-blades with an unspecified date and point of origin.

Field research: 1990, Survey, Petri Halinen
2. **Hyrynsalmi, Mikitänpää**

Region: Kainuu
Finds: NM 19904: 1
Register number: –
Coordinates: x=7157471, y=605083, z=187
Description: A knife found on the southern shore of Lake Mikitänjärvi some 40 kilometres southeast of the Hyrynsalmi town centre in 1979. No information concerning the location of the find exists and, therefore, the site can only be placed roughly at the Mikitänpää village. In addition to the knife, other archaeological remains such as old smelters and grave-pits are documented in the area, but their relation to the knife is currently unclear. The knife is in a relatively good condition although the blade is severely corroded and only the tang remains. The ornate handle is made out of bronze and Huurre (1986: 142) concludes that it is of Karelian style. Based on the ornament patterns on the handle, the knife can be approximated at the Crusader Period or the early medieval times.
Field research: 1988, Inspection, Esa Suominen

3. **Il, Illinsaari 1**

Region: Northern Ostrobothnia
Finds: NM 38830:1–2
Register number: 1000019724
Coordinates: x=7246008, y=425052, z=10
Description: A comb-shaped bronze pendant and a metal artefact fragment discovered by a local metal detectorist on the western side of the Island of Illinsaari in 2011. The site of the discovery is located just 350 metres south of the Suutarinniemi cemetery and 700 metres southwest of the Pirttitörmä dwelling site (Paper II; Paper V). The site was surveyed by the Museum of Northern Ostrobothnia soon after the initial discovery, but apart from the nearby historical remains including a tar-burning pit, old fields and remains of an old house, no archaeological features were detected. The site was excavated in 2015. These investigations comprised a trial-excavation and a metal detector prospecting. During the fieldwork, an excavation ditch as well as several test-pits were established in the area, but no structures or additional Late Iron Age finds were documented. Instead, the site seems to be largely overridden by a more recent human occupation, which is best shown by the tar-burning pit and the cabin-remain,
but also by the historical finds recovered during the excavation. The area of the discovery is topographically equal to nearby cemetery and dwelling site and, therefore, it seems probable that Illinsaari 1 has harboured similar activities. However, with most of the site being destroyed by historical usage, the matter cannot be determined conclusively. Although, the metal artefact fragment is unidentifiable, the pendant can be associated with the Karelian Crusader Period culture. At least three parallels are currently catalogued in the archives of the Finnish Heritage Agency. Two of these were found in the ceded Karelia (NM 2298:166; NM 1674:7) while the third was discovered in Oulu in 2015 (Appx. 1: 41). Two additional counterparts are archived in the Museum of Tver in Russia (Uino 1997: 375).

Field research: 2011, Inspection, Mika Sarkkinen; 2013, Survey, Ville Hakamäki; 2015, Excavation, Ville Hakamäki

4. Ii, Kauppilankangas

Region: Northern Ostrobothnia
Finds: arrowhead (not catalogued)
Register number: –
Coordinates: x=7244581, y=425427, z=9 (approximated coordinates)
Description: An arrowhead (Fig. 20) found on the northern shore of the river Iijoki just on the opposite side of the Island of Illinsaari by a metal detectorist in 2017. The site of the discovery is located near the edge of a steeply sloping ancient shore embankment largely similar to those in the nearby cemetery of Suutarinniemi and the Pirttitörmä dwelling site as well as the stray find of Illinsaari (Paper II; Paper V; Appx. 1: 3). The artefact was detected immediately under the turf with another unidentified iron object located about 20 metres to the west. Although, a few pit-features and depressions were documented in the area during the survey, the site is difficult to discuss as no archaeological excavations are conducted. The arrowhead is similar to the Viking Age or Crusader Period specimens discussed in the typology of Finnish Iron Age arrowheads by Markus Hiekkanen (1979: 42–48). However, similar arrowheads are documented in younger contexts as well. Geographically, these arrowheads are most commonly registered in southwestern Finland.

Field research: 2017, Inspection, Mika Sarkkinen
Fig. 20. The arrowhead of Kauppilankangas.

5. *Kajaani, Petäisenniska*

Region: Kainuu
Finds: NM 2333: 1–2
Register number: –
Coordinates: x=7122475, y=538036, z=140 (unspecified coordinates)
Description: An oval tortoise brooch (Fig. 21) and a bronze armring discovered near the town of Kajaani in 1883. No accounts regarding the conditions of the find have survived apart from the mention that both artefacts were unearthed approximately 30 centimetres deep in the Petäisenniska area by the River Kajaaninjoki. The exact location of the find remains unknown. The brooch is of Scandinavian style and has been discussed in a number of studies (Erä-Esko 1978: 37; Närhi 1978: 8; Huurre 1983: 356–357; Huurre 1986: 135) Brooches such as these are usually interpreted as a degenerated form of the 9th century Scandinavian brooches, therefore, more likely belonging to the 10th century. Although, these brooches are relatively frequent in Sweden and Norway, in Finland they are uncommon with most of the documented examples deriving from southwest regions.

The armring found at the site is relatively small and broken into two parts. The band is unclosed and the hoop extends in thickness towards the opening. The groove patterns decorate only the thickest parts of the artefact. No similar specimen can be found in the Finnish material although rough parallels are documented in southwestern Finland. Typologically, these artefacts can be associated with the the Baltic regions and their dating revolves around the 9th and 10th centuries. This is most likely the dating for the Petäisenniska ring as well (Närhi 1978: 12–13).

Field research: –
Fig. 21. The oval brooch of Petäisenniska after Närhi (1978: Appx. 2, Fig. 4, published by permission of the author).

6. Kajaani, Jataharju

Region: Kainuu
Finds: NM 28075
Register number: –
Coordinates: x=7127596, y=501372, z=132, 5
Description: An axe-blade (Fig. 22) found during the ditch-digging in the Käkisaari area on the southwest side of Lake Oulujärvi in 1993. Locating approximately 34 kilometres west of the Kajaani town centre, the site of the discovery is based on the northern side of the Jataharju ridge some 100 metres of the waterline. The artefact was unearthed about 40 centimetres deep buried under the gravel. The site was inspected in 1993, but no observations regarding the archaeological context of the artefact were made. The axe-blade is two-lugged with a gently curving back, a beardless blade and two vertical grooves carved across the neck. Wuolijoki (1972: 23–25) places similar artefacts under the category of curve-backed Finnish axes. With most parallels in the region of Savo and northwestern Russia and significantly fewer examples in southwestern Finland, these blades are usually regarded as Karelian (Wuolijoki 1972: 72; Huurre 1983: 377). However, they are also relatively common in the interior and northern Finland with the
research area containing at least five parallels (Appx. 1: 31, 82, 91, 103, 109). The dating of these axe-blades falls into the Crusade period, but some may be slightly younger (Wuolijoki 1972: 23–25).

Field research: 1993, Inspection, Esa Suominen

Fig. 22. The axe-blade of Jataharju.

7. **Kajaani, Varpaniemi**

Region: Kainuu

Finds: NM 29296

Register number: –

Coordinates: x=7118854, y=511715, z=140 (approximated coordinates)

Description: A fragment of an axe-blade (Fig. 23) found in the Varpaniemi area on the southern side of Lake Oulujärvi approximately 23 kilometres west of the Kajaani town centre in 1996. The site has not been archaeologically surveyed and cannot be discussed in detail. The artefact is in a relatively poor condition with only the cheek and the blade remaining. Therefore, it is impossible to place it conclusively in any Iron Age axe-blade categories although – with a steeply arching back and broad blade – it seems to be of a Late Iron Age style. A number of vertical grooves are carved on the neck, which is also a common feature among the Viking Age and Crusade period axe-blades especially in northern Finland (e.g. Huurre 1983: 382).

Field research: –

134
8. *Kalajoki, Tiius/Kotipalsta*

Region: Northern Ostrobothnia
Finds: NM 20203
Register number: 1000007345
Coordinates: x=7107674, y=336007, z=12, 5

Description: A round tortoise brooch (Fig. 24) discovered near the Akola estate in the village of Himanka approximately 26 kilometres south of the Kalajoki town centre in 1974. The site was surveyed in 1984, but no further archaeological observations were made. The area is largely cultivated and it seems likely that the context of the brooch is largely destroyed (Taskinen 1984: 20–21). Round tortoise brooches are discussed by a number or researchers (e.g. Appelgren 1897; Kivikoski 1939: 133; Salmo 1952: 315; Lehtosalo-Hilander 1982b: 93–100) and based on the parallels offered by these studies, the Kalajoki brooch can be placed at the D-group of the Finnish round brooches. The brooches of this style are characterised by S-shaped animal motifs, small piercings and pegs, which are organised in the form of a cross. They are frequently documented in the Late Iron Age cemeteries of southwestern Finland and usually regarded as products of this area. The dating of these brooches falls between the 10th and 11th centuries.

Field research: 1984, Survey, Helena Taskinen
Fig. 24. The round brooch of Tilus/Kotipalsta

9. Kalajoki, Pihlajamäki

Region: Northern Ostrobothnia
Finds: NM 28875
Register number: 1000015251
Coordinates: x=7107797, y=339536, z=20
Description: An arrowhead (Fig. 25) found on a wooded hillock in the Palokangas area approximately 24 kilometres south of the Kalajoki town centre in 1995. During the discovery, the artefact was situated immediately under the turf suggesting that it has been initially deposited on top of the ground or just under the moss. The arrowhead is tanged and equipped with a lean and strongly tapering blade. While the exact dating for the artefact is difficult to establish, similar arrowheads are found in Viking Age contexts in southwestern Finland, in Sweden and in the Baltics (Hiekkonen 1979: 118–120). With this in mind, also the Pihlajamäki arrowhead can be regarded as Late Iron Age.
Field research: –
10. **Kempele, Kuusela**

Region: Northern Ostrobothnia
Finds: NM 15500: 1–3
Register number: 244040001
Coordinates: x=7199910, y=429758, z=10
Description: An oval tortoise brooch, a chain-divider and several copper-alloy sheets found during the expansion works of a henhouse near the Kempele railway station in 1962. The brooch and the chain-divider were unearthed during the digging of a low mound and the copper sheets sometime later when the spot was being levelled. The site was inspected soon after the initial discovery and a test-pit of one square metre in size was opened during the fieldwork. The pit showed no signs of cultural layer and no further excavations were made at the time. The site was inspected again in 2006 with no further observations. The site is regarded as a burial site (Huurre 1983: 392; 1991: 53), but archaeological excavations are required to confirm this interpretation. The shell of the brooch is decorated by the patterns imitating the form of a grayfish, which is common characteristic among the Crusader Period brooches of Karelia and southeastern Finland (Ailio 1922: 42–57). The dating of these ornaments ranges from the 11th to the 12th centuries and this can be regarded as the most probable dating for the Kempele brooch as well (Huurre 1991: 53). Based on the documented parallels, the chain-divider can be connected to the Karelian Crusader Period culture as well (Kivikoski 1973: Abb. 1110–1111).
Field research: 1962, Inspection, Aarni Erä-Esko; 2005, Survey, Antti Krapu

11. **Kuhmo, Hiekkaniemi**

Region: Kainuu
Finds: NM 4838: 2; NM 20068
Register number: 290010034
Coordinates: x=7128755, y=598054, z=161
Description: An oval tortoise brooch (Fig. 26) found on the Hiekkaniemi peninsula on the western shore of Lake Kellojärvi by a local farmer in 1904. The exact location of the find is unknown, but, according to the record, it was unearthed near the Huuhilo estate while digging a tar-burning pit next to the lake. Two stone artefacts were recovered together with the brooch, but these were lost soon after. The Hietaniemi area is well known for its prehistoric finds such as charred bones, quartz flakes and various stone artefacts discovered along the shores of the peninsula. Based on these, a large portion of the Hietaniemi area can be interpreted as a prehistoric site. The brooch can be identified as that of Scandinavian style. The shell is thoroughly decorated with knobs and rhomboid-shaped panels bordered by upraised rims and geometric ornament patterns. Towards the edges of the shell, however, the ornamentation is somewhat fragmented. According to Närhi (1978: 7), the brooch represents the oldest tortoise brooches in the North Finnish context belonging to the beginning of the 9th century.

Interestingly, in 1977 an axe-blade of Late Iron Age style was discovered somewhere in the Hiekkaniemi area. The axe-blade is four-lugged and beardless, and, therefore, among the most frequent Iron Age axe types in the research area (Appx. 1: 19, 21, 25, 50, 52, 71, 84, 101, 104, 108) as well as in northern Finland in general (Huurre 1986: 143–144). These axes are commonly found in southwestern Finland, but there are also several examples in the interior and northern Finland where they seem to be focused mostly in Kainuu and Kuusamo area (Wuolijoki 1972: Map 4). Similar axe-blades are found in Russia (Huurre 1983: 380; 1987: 73, 84) and northern Sweden, where they are considered being a Finnish origin (Serning 1960: 55–56). The dating of these axe-blades falls between the 10th and 14th centuries (Wuolijoki 1972: 21), but it should be kept in mind that due to their heterogeneity specific estimates are often challenging to offer.

12. Kuhmo, Sylväjänniemi 1

Region: Kainuu
Finds: NM 12755
Register number: 290010029
Coordinates: x=7114661, y=622481, z=165
Description: A bronze chain-divider found on the forested peninsula of Sylväjänniemi on the northern side of the Kuhmo town centre in 1935. The exact location of the discovery has since been forgotten, but according to the record, it was found on the sand next to a large boulder. Apart from the chain-divider, the site is known for its Stone Age and Early Metal Age material, most of which were recovered during the fieldwork during the 1979 and 1980. The assemblage of finds produced by these investigations includes a number of quartz flakes, charred bones and ceramics most of which originate from the Stone Age or Early Metal Age fireplaces. In addition to these, an arrowhead and two copper-alloy sheets were recovered, suggesting early medieval occupation. Other than these, no further observations regarding the early usage of the site are documented. The chain-divider is an animal shaped and depicts two mammals, likely horses, looking at the
opposite directions. According to Huurre (1986: 136–137), the artefact is of Permian origin and finds most parallels in the regions of Volga–Oka as well as areas around Kama and Dvina. In Finland, exact parallels are difficult to find due to the variations in the shape and form of these objects. Therefore, also their dating is problematic; in Russia they are associated with the 12th and 13th centuries (Golubeva 1979: 45; Rjabinin 1980a: 214; 1980b: 21–22), while in Finland they are placed in the 11th century (Paloniemi 1960). In the research area, there is a somewhat similar artefact documented in Kuusamo (Appx. 1: 26).

Field research: 1979, Inspection, Aarni Erä-Esko; 1980, Excavation, Mikko Perkko; 1982, Inspection, Matti Huurre

13. **Kuhmo, Saunaniemi**

Region: Kainuu
Finds: NM 13094
Register number: 290010023
Coordinates: x=7135608, y=652230, z=193
Description: A penannular bronze brooch found on the Saunaniemi peninsula some 36 kilometres northeast of the Kuhmo town centre in 1952. According to the record, the artefact was located at the tip of the peninsula some 20 metres higher than the water-level of Lake Veräinen. Exposed by the natural shoreline erosion, the brooch was situated at the sandbank together with burned bones and quartz flakes. The site has been surveyed on two occasions, but the investigations have brought no further information regarding the archaeological context of the brooch. There are, however, strong indications of a long-term prehistoric occupation as shown by the Stone Age and/or Early Metal Age finds as well as the trapping-pits documented in the area. The brooch is typologically similar to those found in the cremation burial of Kivisaari in Suomussalmi although slightly smaller. With the flat knobs and pentagonal cross-section of the rim, the brooch can be linked to finds in southwestern Finland, where they were commonly used throughout the 11th and 12th centuries (Huurre 1986: 134).

Field research: 1971, Survey, Anja Sarvas; 1995, Survey, Esa Suominen

14. **Kuhmo, Näsälänsalmi**

Region: Kainuu
Finds: NM 23257
Register number: 290010059
Coordinates: x= 7113712, y= 612747, z=160

Description: A spearhead found in the late 1960s or the early 1970s at the Näsälänsalmi peninsula on the eastern side of Lake Ontamojärvi approximately 10 kilometres west of the town centre of Kuhmo. Little information has survived regarding the specifics and conditions of the find, but apparently, the artefact was found in the eroded shore embankment near the eastern tip of the Hiekkaniemi peninsula some 350 metres northeast of the Salmi estate. Apparently an arrowhead of roughly ten centimetres in length was unearthed near the location of the spearhead as well, but it was lost soon after discovery. In addition to the Iron Age artefacts, several older finds such, as flint flakes as well as historic tar-burning pits are documented in the area, suggesting a long-term occupation. Further, a penannular bronze brooch is recorded near the Salmi estate approximately 300 metres southwest (cf. Appx. 1: 15).

The spearhead is socketed and relatively lean with no clear notch between the shaft and the blade. Typologically, the artefact is closest to that of Petersen’s E-type (cf. Petersen 1912: 26–28) which is among the most common spearhead types known in Scandinavia, northwestern Russia and the Baltics. Accordingly, they are highly frequent in the Finnish archaeological record comprising approximately 60% of all of the Viking Age spearhead finds (Lehtosalo-Hilander 1985). In the research area as well as in the interior and northern Finland in general, however, only a few examples are so far recorded (cf. Appx. 1: 74, 78, 98). The dating of the E type spearheads ranges from the late Merovingian period to the 9th and 10th centuries (Lehtosalo-Hilander 1985). In Russia, they remained in use up until the 11th century (Uino 1997: 379–380).

15. Kuhmo, Salmi

Region: Kainuu
Finds: NM 23258
Register number: 290040006
Coordinates: x=7113436, y=612626, z=160

Description: A penannular bronze brooch found approximately 9–10 kilometres west of the Kuhmo town centre during the early 1970s. Unearthed during the farm work near the Salmi estate, the find’s location can be placed in a field on the opposite shore of nearby Näsälänsälmi (Appx. 1: 14). The brooch is
funnel-ended and typologically somewhat similar to the ones found in Puolanka and Sievi (Appx. 1: 54, 59) although the pin is missing. These brooches are relatively common in the southwest Finnish record, where about 70 are known mainly as grave goods in major cemeteries such as Luistari in Eura (Lehtosalo-Hilander 1982b:104). In northern Finland, and in Scandinavia in general, they are more uncommon. While Salmo (1956: 52) places the origin of these brooches in the Baltics, Lehtosalo-Hilander (1982b:105) is prone to understand them as a product of the Southwest Finnish communities, perhaps with prototypes in the Baltics or Gotland. The usage of these brooches seems to fall between the 10th and 11th centuries (Salmo 1956: 54; Lehtosalo-Hilander 1982b: 104–105). The dating of the Salmi brooch is placed at the 10th century (Wilmi 2003: 30).

Field research: 1986, Inspection, Esa Suominen

16. **Kuhmo, Ylä-Honkinen**

Region: Kainuu
Finds: NM 40011
Register number: 1000023779
Coordinates: x=7112110, y=609625, z=159
Description: An arrowhead found on the northern side of the island of Ylä-Honkinen approximately 12 kilometres west of the Kuhmo town centre by a local metal detectorist in 2013. Surrounded by Lake Ontojärvi, several archaeological sites such as Stone Age dwelling sites and historic tar-burning pits are documented on the island during the investigations conducted since the 1980s, but currently the arrowhead is the only documented Late Iron Age find in the area. The artefact can be dated to the 12th century.

Field research: –

17. **Kuusamo, Vänrikinniemi**

Region: Northern Ostrobothnia
Finds: NM 2899: 8; NM 5409: 2
Register number: 305010007
Coordinates: x=7318332, y=599731, z=255

81 The arrowhead has not been seen by the author and the information provided here is based on the Registry of Sites and Antiquities (accessed on July 13th 2017).
Description: A fragmented bronze chain and an axe-blade found in the Vänrikinniemi field on the eastern side of the Kuusamo town centre in 1893 and 1909. The site is located just 600 metres southeast of Somostenperä (Appx. 1: 25). According to the local folktales, the area is an old Lapp dwelling site, but the matter cannot be confirmed, as today it is heavily built-up and largely destroyed. However, taking into consideration the nearby Somostenperä site, it seems evident that the area has had a central role during the Late Iron Age. The axe-blade is classified as Petersen’s (cf. 1919: 39) C-type, which originates from Scandinavia. These blades are commonly found in Sweden, Denmark, Norway and Russia, but in Finland, the finds are mostly limited to northern regions where they have likely arrived through Norway. The axe-blade of Vänrikinniemi has been dated to the 8th and 9th centuries (Wuolijoki 1972: 5–6). The four fragments of bronze chain, on the other hand, are probably slightly younger and most likely belong to the 10th century (Sarvas 1986: 121–122).

Field research: 1956, Survey, Aarni Erä-Esko; 1975, Survey, Aarni Erä-Esko; 1993, Excavation, Simo Vanhatalo; 1999, Survey, Mika Sarkkinen

18. **Kuusamo, Pyhälahti (Ristikangas)**

Region: Northern Ostrobothnia

Finds: NM 3307

Register number: 305040029

Coordinates: x=7316320, y=605950, z=257

Description: A silver deposit containing at least 413 silver coins and several coin fragments found by a local farmed under a mossy tussock in 1896. The site is located on a small and largely overgrown meadow near the shore of the Pyhälahti bay on the eastern side of Lake Kuusamojärvi. Originating from the Middle East, Germany, England and Scandinavia, the issue-date of these coins ranges from the late 10th century to the year 1065 (Talvio 2002: 164). No artefacts other than coins were detected during the initial discovery, which is why the archaeological context of these coins was left unclear. The site has been investigated on many occasions, but no further finds or other clear indicators of the Late Iron Age usage were detected. However, during these surveys and excavations several archaeological remains, such as cooking-pits and dwellings as well as other indicators of prehistoric occupation were documented immediately around the site showing that the area has been used for a long span of time (e.g. Okkonen 2002; Okkonen 2013; Koponen 2014).

19. Kuusamo (ceded), Paanajärvi

Region: Northern Ostrobothnia
Finds: NM 5409: 3
Register number: –
Coordinates: –
Description: An axe-blade found in the village of Paanajärvi during the early 20th century and catalogued in 1909. No exact location of the find is documented but the most probable place of origin is the Mannila area where, according to the local lore, a “Lapp cemetery” with burned human bones is situated. According to the available information, the axe-blade was discovered during the ditch-digging and was accompanied by a pile of ash and charcoal (Sarvas 1986: 114–116, 209, 211). The blade is four-lugged and, therefore, of the same heterogeneous 11th century beardless type than the several other axe-blades in the research area (Appx. 1: 11, 21, 25, 50, 52, 71, 84, 101, 104, 108). However, in this case, the blade is of miniature stature (Wuolijoki 1972: 21, 51). The village of Paanajärvi was ceded to the Soviet Union after the Second World War and today the area is part of the Republic of Karelia in Russia.

Field research: –

20. Kuusamo, Salmenkorva

Region: Northern Ostrobothnia
Finds: NM 8728: 2–4
Register number: –
Coordinates: x=7297098, y=619231, z=260
Description: Two axe-blades and a spearhead discovered near the Salmenkorva estate at the entrance of the River Penikkajoki in 1926. Some of the artefacts were found at the slope of the nearby Piippuharju while others emerged closer to the Salmenkorva estate. No exact location for any of these artefacts is known. The site was surveyed in 1999, but no further discoveries were made. NM 8728: 2 is an eastern spearhead with most parallels in the 14th century contexts in Novgorod and its surroundings (Medvedjev 1959: 130; Sarvas 1986: 119). NM
8728: 3 falls under the Estonian axe-blades in the classification system of Wuolijoki (1972: 7–11), but in more recent studies similar artefacts are termed as Finnish-Russian axe-blades due to their geographical distribution covering the Baltic states, Russia and southwestern Finland (Taaivitsainen 1991: 193). In the research area only three additional Finnish-Russian axe-blade are documented as stray finds (Appx. 1: 52, 89, 91), but blades of this style are featured in both the Heinisaari burial and Viinivaara E (Papers III–IV). The dating of these axes ranges from the early 9th century to the 14th century. NM 8728: 4 is a Baltic style hammer-butted axe-blade and dates to the 12–13th centuries (Sarvas 1986: 112–116; Wuolijoki 1972: 17). Within the research area, a parallel can be pointed out in Suomussalmi (Appx. 1: 68).

Field research: 1975, Survey, Aarni Erä-Esko; 1999, Survey, Mika Sarkkinen

21. Kuusamo, Riihelä

Region: Northern Ostrobothnia
Finds: NM 9803
Register number: –
Coordinates: x=7314917, y=625038, z=265

An axe-blade found in the vicinity of the Riihelä estate near the tip of the Riihiniemi peninsula, approximately 25 kilometres east of the Kuusamo town centre most likely during the late 19th or the early 20th century. Very little information regarding the conditions of the discovery has survived and no estimates regarding the nature of the site can be formulated. The site was surveyed in 1999, but with little results. The axe-blade belongs to the groups of heterogeneous four-lugged and beardless type of Scandinavian origin (Wuolijoki 1972: 21, 51; Appx. 1: 11, 25, 50, 52, 71, 84, 101, 104, 108).

Field research: 1975, Survey, Aarni Erä-Esko; 1999, Survey, Mika Sarkkinen

22. Kuusamo (ceded), Ukonlahti (Tavajärvi)

Region: Northern Ostrobothnia
Finds: NM 10411: 1–28; NM 10593: 1–5
Register number: –
Coordinates: –
Description: A silver deposit found at the base of Ukontunturi approximately 2.5 kilometres southeast of the shore of the Ukonlahti bay area in 1936. The find
was made by a group of local children, who later accounted that the artefacts were piled together on a “stone table” and covered only by a thin layer of moss and overgrowth. The site was briefly investigated by the archaeologist Jorma Leppäaho soon after the initial discovery, and during the fieldwork the site and its surroundings were thoroughly explored. Apart from some silver fragments scattered about by the children, no clear indicators about the purpose of the deposit were detected. According to Leppäaho, the deposit could represent a sacrifice as indicated by the onomastics of the site as well as the placement of the artefacts (Sarvas 1986: 125–126; Okkonen 2002). Since the end of the Second World War, the site has been part of the Russian Federation and no further investigations have taken place.

In total, the deposit contains seven penannular brooches, a round tortoise brooch, six neck-rings, two pendants, four armrings and several fragments of various silver artefacts. With flat end knobs and a midribbed ring, the penannular brooches of the Ukonlahti deposit find most parallels in southwestern Finland and, in lesser numbers, in Karelia (Salmo 1956: 75–78; Kivikoski 1973: Abb. 1035; Lehtosalo 1973). In the research area, similar brooches are documented only in the silver deposit of Lämsä Kuurna (Appx. 1: 23). The dating of these brooches falls between the 9th and 10th centuries, and this is most likely the case with Ukonlahti brooches as well (Sarvas 1986: 127–128). The round brooch is shield-boss shaped and has a small number of typological counterparts in southwestern Finland and Karelia, but also in northern Finland where the Silver deposit of Aatservainen found in the ceded part of the municipality of Salla contain two shield-boss shaped brooches (NM 37). The dating of the round brooch falls between the 10th and 11th centuries (Sarvas 1986: 129).

The neck-ornaments of the Ukonlahti deposit can be divided into two groups: the large neck-rings, which are braided out of two or more silver wires and axe-shaped pendants manufactured out of a silver sheet. Although, the neck-ornaments of this style are relatively common in the silver deposits of northern Europe (Tallgren 1931b, 109–117; Björkman 1957; Nosov et al. 1992; Ojanlatva 2003; Spangen 2004; Kriiska & Tvaauri 2007, 218–219; Graham-Campbell 2011, 89–91), they are usually linked to Sámi due to most of them being documented in North Fennoscandian deposits. The dating of the neck-rings as well as the axe-shaped pendants of the Ukonlahti deposit are placed between AD 1050 and 1200 (Sarvas 1986: 129–134). The armrings of the Ukonlahti deposit range from the open-ended and simple rings to more elaborately decorated objects. They are more difficult to
discuss due to the paucity of counterparts. However, most are dated to the 9th and 10th centuries (Sarvas 1986: 134–135).

Field research: 1936, Inspection, Jorma Leppäaho

23. Kuusamo, Lämsä Kuurna

Region: Northern Ostrobothnia
Finds: NM 13350
Register number: 305040032
Coordinates: x=7306956, y=638970, z=260
Description: A silver deposit found in the village of Kuurna approximately 40 kilometres southeast of the Kuusamo town centre in 1953. Located on the forested neck of land between Lake Joukamojärvi and Lake Kuurnajärvi, the deposit was detected during the roadwork buried under the fine sand about 40 centimetres deep. There are no notable topographic or scenic features connected to the site, but in the nearby areas, several archaeological features including historical “Lapp dwelling site” and several trapping pits have been detected since 1954 (Sarvas 1986: 124–125; Okkonen 2002). However, currently their relation to the silver deposit remains unclear. The deposit contains four braided neck-rings, three penannular brooches, two armrings and an axe-shaped pendant (Björkman 1957). These artefacts are similar to those recovered in the Ukonlahti deposit some 17 years earlier and in Puolanka in 2010 (Appx. 1: 22, 55). The dating of the deposit can be placed at AD 1050–1150 (Björkman 1957).

24. Kuusamo, Teeiniemen kärki

Region: Northern Ostrobothnia
Finds: NM 14847: 1
Register number: 1000011966
Coordinates: x=7267436, y=617472, z=220
Description: An axe-blade (Fig. 27) found on the Teeiniemi peninsula approximately 53 kilometres southeast of the Kuusamo town centre during the survey of the nearby Stone Age dwelling sites by Matti Huurre in 1959. The headland protrudes to Lake Iijärvi on the northern side of Lake and is mostly uninhabited with only a few summer cottages and fields. The area is
archaeologically interesting as, in addition to the above-mentioned Stone Age dwelling sites, it also contains a historical burial ground, unclassified pit-features and remains of prehistoric hearths.

Fig. 27. The axe-blade of Teeriniemi

The blade can be classified as Petersen’s (cf. 1919: 49) M-type, which is considered to have been used as a battle-axe during the transitional period from the Viking Age to the medieval period. It is regarded as one of the most widely spread Viking Age axe types with samples registered in Scandinavia, central Europe, England, Russia and the Baltic regions (Paulsen 1956:19). In Finland, they are most commonly found in southwest regions, but examples have emerged in northern Finland as well (Wuolijoki 1972: Map 6). In the research area, these axe-blades are documented in Puolanka, Sotkamo and Utajärvi (Appx. 1: 27, 52, 102). In Kuusamo, a possible M-type axe-blade is also recorded in Heikkilänkylä (Appx. 1: 27). The axe-blade of Teeriniemi belongs to the 12th century (Sarvas 1986: 117).

Field research: 1959, Inspection, Matti Huurre; 1975, Survey, Aarni Erä-Esko; 1999, Survey, Mika Sarkkinen; 2006, Inspection, Mika Sarkkinen

25. **Kuusamo, Somostenperä**

Region: Northern Ostrobothnia
Finds: NM 16734: 17
Register number: 305010025
Coordinates: x=7318896, y=599384, z=258
Description: An axe-blade found on the northern shore of the Perälampi pond during sewer-dig near the Kuusamo town centre in 1965. When discovered, the artefact was buried about 30 centimetres deep under the gravel. The site has been occupied for several millennia with the oldest evidence of settlement stretching to the Stone Age. These early finds include several stone scrapers, chisels, quartz flakes and ceramics, the earliest of which were found during the late 19th century. The site has been excavated on two occasions, but the Iron Age context remains unknown, which is unfortunate as today the dwelling site has been destroyed by the construction of modern housing. The axe-blade found at the site is four-lugged and of a type which Wuolijoki (1972: 20–22) places under the group of heterogeneous Scandinavian straight-sided axes. Several such axe-blades are documented in the research area (Appx. 1: 11, 21, 50, 52, 71, 84, 101, 104, 108). The dating of the artefact revolves around the 11th century.

26. Kuusamo, Törinlampi

Region: Northern Ostrobothnia
Finds: NM 37340
Register number: 1000011758
Coordinates: x=7350316, y=601797, z=247
Description: A bronze chain-divider (Fig. 28) found on a narrow neck between Lake Ajakka and Törinlampi Pond, approximately 32 kilometres north of the Kuusamo town centre. Discovered sometime during the 1990s, it was not until 2008 that the artefact was catalogued and, therefore, not all of the details surrounding the initial discovery have survived. According to the finder, however, the item was recovered in a naturally-formed depression at the edge of nearly two metres drop towards Lake Ajakkajärvi where it was met under the turf. The site was surveyed in 2008 and, while no further evidence of the Late Iron Age usage were detected, two prehistoric cooking pits along with some quartz flakes documented during fieldwork show that the site has been occupied for a long span of time. The chain-divider represents two animals looking at the opposite directions. It bears
resemblance to eastern chain-dividers documented in Finland (cf. Kivikoski 1973: Abb. 771, 1134) and is akin to a similar one registered in Kuhmo as well (Appx. 1: 12). The dating of the artefact can be placed somewhere between the 11th and 13th centuries.

Field research: 2008, Inspection, Mika Sarkkinen

Fig. 28. The chain-divider of Törinlampi.

27. Kuusamo, Uusi hautausmaa

Region: Northern Ostrobothnia
Finds: PPM 212
Register number: –
Coordinates: x=7318722, y=598831, z=260
Description: A spearhead found by a local gravedigger in 1897 in the Kuusamo cemetery. According to Sakkinen, the artefact was recovered from a depth of approximately 90 centimetres, but no further information regarding the conditions of the find’s site is available. The spearhead is tanged and no clear angle between the blade and the tang is seen. The artefact does not belong to any known typological sequences, but in general, tanged spears were most commonly used between the 5th and 11th centuries (Sarvas 1986: 119).

Field research: 1975, Survey, Aarni Erä-Esko; 1999, Survey, Mika Sarkkinen
28. Kuusamo, Heikkilänkylä

Region: Northern Ostrobothnia
Finds: PPM 282
Register number: –
Coordinates: –
Description: An axe-blade found in a “cairn” in the Heikkilänkylä area during the late 19th century. Apparently, two other axe-blades were recovered in the same area, but these were lost soon after the discovery. The remaining blade was delivered to the Northern Ostrobothnian museum by local teacher J. H. Karvonen in 1900 (Karvonen 1900: B9), but unfortunately it is among the artefacts destroyed in the 1929 fire of the museum. No documentation, other than it being likely that of Petersen’s M-type (Appx. 1: 24, 52, 102), remains. The exact location of the discovery is today largely forgotten.

Field research: 1975, Survey, Aarni Erä-Esko; 1999, Survey, Mika Sarkkinen

29. Kuusamo, Iijärven ranta

Region: Northern Ostrobothnia
Finds: –
Register number: –
Coordinates: z=7304812, y=606413, z=255–257 (coordinates approximated)
Description: A penannular brooch found on the shore of Lake Iijärvi most likely during the late 19th century or the early 20th. The exact location is forgotten, but Erä-Esko places the artefact at the entrance of the Puukkolahiti bay. The brooch was archived in the private collection of the county bailiff A.H. Sandström for a long time, but its current whereabouts are unknown. Presumably, the artefact has been lost. However, a picture of the brooch remains in the archive of the Finnish Heritage Agency, and based on this the artefact belongs to the group of peg-ornamented penannular brooches which are very common in southwestern Finland but are found in neighbouring areas of Sweden, Norway and Russia (Lehtosalo-Hilander 1982b:102–103). In the research area, a similar brooch has been registered in Oulainen (Appx. 1: 38). Brooches of this type are considered to be of Finnish origin and their dating revolves around the 10th century (Salmo 1956: 41). This is the most likely dating for the Iijärvi brooch as well.

Field research: 1975, Survey, Aarni Erä-Esko
30. Kuusamo, Salmiaho

Region: Northern Ostrobothnia
Finds: –
Register number: –
Coordinates: x=7318783, y=617419, z=260
Description: According to J. H. Karvonen (1900: B6), an axe-blade of about 20 cm in width and the handle of a copper vessel (or possibly a fragmented penannular brooch) were found in the Kajava village during the late 19th century. Both artefacts were lost before Karvonen’s studies in Kuusamo and were never documented properly. Yet, according to Karvon en, several stone structures were present at the site and based on the notion Erä-Esko suggests that the site could be an old “Lapp dwelling site”. During the survey of 1999, a few stone structures were indeed documented in the area, but as they appeared to be of relatively young age, it is unclear whether they are related to the ruins mentioned by Karvonen.

Field research: 1975, Survey, Aarni Erä-Esko; 1999, Survey, Mika Sarkkinen

31. Kärsämäki, Kyllölä

Region: Northern Ostrobothnia
Finds: NM 2477:106
Register number: –
Coordinates: x=7092295, y=458903, z=125
Description: An axe-blade found in the village of Sydänmaa and collected by J. W. Castrén during the 1886 survey of the Haapajärvi parish. The blade has been found near the Kyllölä estate, which no longer exists in its 19th century form. Therefore, it is impossible to identify the exact location of the discovery. However, Sarkkinen (1995: 58) places it, with reservation, around the modern-day Juhola and Kangas estates. As the axe-blade has been damaged since the initial discovery, it is not possible to make conclusive statements of its style or age. Huurre (1983: 377) estimates that the artefact is of curve-backed Finnish style and, therefore, belongs to the 11th century while Wuolijoki places the object at the turn of the medieval period (Wuolijoki 1972: 35).

Field research: 1995, Survey, Mika Sarkkinen
32. Kärsämäki, Riihipelto Sar painen

Region: Northern Ostrobothnia
Finds: NM 16642
Register number: 100013799
Coordinates: x=7099027, y=443351, z=112, 5

Description: Fragment of a hand bow found at the Sarpainen bog on the south side of the village of Porkkala, approximately 5.5 kilometres northeast of the Kärsämäki town centre during the ditch-digging. During the time of the discovery, the bow-fragment was submerged some 110–120 centimetres into the mud and no other finds were detected. Further surveys of the area have failed to bring up any new information regarding the archaeological context of the bow. The C-14 analysis\(^\text{82}\) from the artefact places the bow-fragment at the Viking Age (Edgren 1981: 80–82).

Field research: 1995, Survey, Mika Sarkkinen

33. Kärsämäki, Nurmesperän koulu

Region: Northern Ostrobothnia
Finds: NM 38637
Register number: –
Coordinates: x=7075960, y=437176, z=149 (coordinates approximated at Nurmesperä area)

Description: A round brooch (Fig. 29) found at the village of Nurmesperä approximately 19 kilometres northeast of the Kärsämäki town centre in 2010. The location as well as the date of the initial discovery is unknown, but the brooch is presumed to have been found somewhere in the Kärsämäki municipal area and later stored in the school building. The artefact can be identified as a cart-wheel-shaped brooch. In Finland, these ornaments were mainly used from the Merovingian period (Lehtosalo-Hilander 1982b: 92), but the Kärsämäki brooch represents a somewhat younger variant. As parallels to the brooch can only be pointed out in a few southeast Finnish stray finds (Hackman 1918: 48; Nordman 1924: Fig. 107), the dating of this variant is difficult to establish. In Karelia, however, they are placed in the 10th century (Lehtosalo-Hilander 1982b: 91–92) and this is also the most

\(^{82}\) Hel-1463: 1110±90 BP, 840±90 CalAD

153
probable dating for the Kärmämäki brooch. Typologically, these brooches are considered to be of Finnish origin (Lehtosalo-Hilander 1982b: 92).

Field research: –

![Fig. 29. The round brooch of Nurmesperä.](image)

34. Liminka, Rantakylä

Region: Northern Ostrobothnia

Finds: –

Register number: –

Coordinates: x=7188652, y=421324, z=5

Description: A round tortoise brooch found in a field near the school of Rantakylä approximately three kilometres west of the Liminka town centre by a local metal detectorist in 2017. The location of the find is situated just five metres above the current sea level, suggesting that the artefact was found in a secondary context or was initially deposited in the sea. The artefact is highly weathered, making it difficult to place in a specific category of round tortoise brooches. However, it bears a somewhat close resemblance to the brooches with two-animal motifs. These brooches are discussed by a number of archaeologists (e.g. Appelgren 1897: 12; Kivikoski 1939: 134; Salmo 1952: 315; Lehtosalo-Hilander 83 During the writing of this thesis, the brooch was only seen on the photo and, therefore, the interpretation presented should be approached with care.

83
While their provenience is agreed to be in southwestern Finland, several different arguments concerning the dating of these brooches have been presented. Appelgren (1897: 12) links the brooches of this style with the four-animal brooches of types A and B while Kivikoski (1939: 134) is prone to place them in connection with the C and D type round brooches. Salmo (1952: 315), on the other hand, dates these artefacts to the first half of the 11th century unlike Cleve (1978: 91–92), who places them between the years 800–1000. Lehtosalo-Hilander (1982b: 98–100) considers the brooches with two-animal motifs to belong to between the years 800–950. In any case, the brooch of Rantakylä dates to the Late Iron Age, making it the first artefact of this age in the municipal area of Liminka.

Field research: –

35. Merijärvi, Laitala

Region: Northern Ostrobothnia
Finds: PPM 945
Register number: –
Coordinates: –
Description: A wooden ski found during the ditching of the Korvenpääneva swamp near the Laitila estate in 1928. At the time of the discovery, the artefact was submerged approximately 75 centimetres into the bog and no clear indicators regarding the nature of the ski’s archaeological context were detected. The artefact belongs to the group of Bothnic skis and both Huurre (1969: 55) and Kovalainen (1991: 27) place the artefact roughly within the Late Iron Age. The dating of the artefact should be approached with care as the usage of the Bothnic skis runs from the Bronze Age to the medieval period.

Field research: –

36. Muhos, Lohela

Region: Northern Ostrobothnia
Finds: NM 2508
Register number: 1000007495
Coordinates: x=7192669, y=457286, z=65
Description: An axe-blade found near the Lohela estate, approximately 7 kilometres northeast of the Muhos town centre during the late 19th century. In the
description offered by the Registry of Sites and Antiquities, the axe-blade is said to have been found in a field, but according to A. H. Snellman (1886: 42), who first documented the discovery, the artefact was recovered in the passing-by river Oulujoki. The axe-blade is of long-butted style and no clear distinction between the lugs and the butt can be made. This is a characteristic feature in the Karelian axes. According to Wuolijoki (1972: 32), these axes belong to the Crusade Period with some counterparts dating as late as to the 14th century. Outside Karelia, these axe-blades are met in northern Sweden, Russia and Finland, where their distribution is clearly focused on the interior and northern regions (e.g. Kolčin 1953: 67; Kirpičnikov 1966: Table XX: 3; Zachrisson 1976: 28; Huurre 1983: 380; Taavitsainen 1991: 193).

Field research: 1986, Survey, Helena Taskinen; 2005, Survey, Mika Sarkkinen

37. Nivala, Nivalan museo

Region: Northern Ostrobothnia

Finds: NM 22385

Register number: –

Coordinates: –

Description: An oval tortoise brooch (Fig. 30) collected by the National Museum from the local museum of Nivala in 1984. The artefact has been found somewhere in the Nivala area, but no further information related to the find is documented. Therefore, nothing can be said about the archaeological context of the artefact. The brooch is well preserved and identifiable as a Karelian brooch with similar grayfish-shaped ornaments as the brooch found in Kempele (Appx. 1: 10). Based on this, the dating of the brooch can be placed at the 11th or 12th century.

Field research: –
Fig. 30. The oval brooch of Nivalan museo.

38. Oulainen, Männistö

Region: Northern Ostrobothnia
Finds: NM 11953
Register number: 1000014207
Coordinates: x=7118996, y=405363, z=80
Description: A penannular bronze brooch found during the ditch-digging near the Männistö estate in the village of Matkaniva in 1948. According to the finder, the artefact was submerged deep in the mud at the bottom of the ditch. The site was surveyed in 1995 and according to the survey report, the exact location of the discovery could not be determined. Sarkkinen, however, notes that a “rock-formation” had been present at the site prior to the discovery and that it has been cleared off with the explosives in 1948. Therefore, the brooch might have originally belonged to a cairn or a stone setting. The artefact is of large size and belongs to
the group of peg-ornamented penannular brooches. Therefore, it finds the most counterparts in southwestern Finland (Lehtosalo-Hilander 1982b: 102–103). Unlike other peg-ornamented brooches in the interior and northern Finland (Appx. 1: 29), the Männistö brooch is partially silver-plated. The artefact can be dated to the 10th century.

Field research: 1995, Survey, Mika Sarkkinen

39. **Oulu, Siuruansaari**

Region: Northern Ostrobothnia
Finds: NM 39293
Register number: –
Coordinates: x=7250030, y=446450, z=43
Description: A strike-a-light iron (Fig. 31) found by a local metal detectorist on the island of Siuruansaari at the outskirts of the village of Yli-Ii, approximately 44 kilometres northeast of the town centre of Oulu. Discovered in 2012, the site is located in a central position at the confluence of the rivers Iijoki and Siruanjoki. The strike-a-light iron found in Siuruansaari consists of an ornate bronze handle depicting two diametrically posited animal heads and an iron striker, which has been attached to the bottom of the handle. The strike-a-light irons with a similar bronze handle are considered to be of eastern origin and especially common in the Permian Iron Age culture (Cleve 1929: 51–52). The dating of the artefact can be placed in the Viking Age.

Field research: –

Fig. 31. The strike-a-light iron of Siuruansaari.
40. Oulu, Haukiputaan uusi hautausmaa

Region: Northern Ostrobothnia
Finds: NM 41102
Register number: 1000029430
Coordinates: x=7228767, y=423450, z=13
Description: A bottom-plate of a Viking Age box brooch found by a metal detectorist in the village of Haukipudas, approximately 50 metres southwest of the modern-day Haukipudas cemetery in the spring of 2016. The site is located on the low and lightly wooded terrace with a few pathways crossing the terrain. As no structures or other aboveground features can be detected, excavations are required to determine the nature of the find. The box brooches (also *dosenfibeln* and *Gotlandfibeln*) are of Scandinavian origin and are most commonly found in the Island of Gotland (Carlsson 2004). In Finland, only a few examples are known and they are heavily focused in the southwest areas and on the Island of Åland (Kivikoski 1980: 22; Thedéen 2012). These brooches comprise a round and bowl-shaped top part, which is normally thoroughly decorated with various animal motifs, and the flat bottom plate where the needle is attached. The bottom plate is often decorated, as is the case with the object found in Haukipudas, which is covered with *urnes* style motifs. The box brooches are dated between the 8th and 10th centuries (Thedéen 2012).
Field research: 2016, Inspection, Mika Sarkkinen

41. Oulu, Satalahti Vainio

Region: Northern Ostrobothnia
Finds: NM 41183
Register number: 1000030289
Coordinates: x=7225500, y=421780, z=6
Description: Various Late Iron Age and historical finds recovered on the field near the village of Kello, approximately 16 kilometres north of the Oulu town centre by local metal detectorists in 2016. The site is located just 450 metres northwest from the Late Iron Age or early historic dwelling site of Kello Satalahti (see Chapter 2.4.4.). While the assemblage of finds recovered in the area contain mostly historical finds, a fragment of an Iron Age or medieval comb-shaped pendant similar to that recovered in Illinsaari (Appx. 1: 3) has been detected in Satalahti Vainio site. Taking into consideration the local legends about a medieval
chapel locating in the area, these finds must be deemed as highly interesting. However, archaeological investigations are needed in order to understand the context of these finds.

Field research: –

42. Oulu, Kourinkangas

Region: Northern Ostrobothnia
Finds: –
Register number: –
Coordinates: x=7201592, y=438780, z=30–37.
Description: A round tortoise brooch and an arrowhead found by a local metal detectorist in 2017 on a forested hillock of Kourinkangas, approximately 14 kilometres southeast of the Oulu town centre. Both artefacts were detected under the turf some 15 centimetres deep and were situated next to each other. Other metal signals were also detected, but these were left untouched. Located along the river Oulujoki, the site can be expected to contain a burial site or a dwelling and due to the isolated location, the context might be in a good condition. Archaeological excavations are obviously needed to discuss the site further. The brooch is similar to the one documented in Kalajoki (Appx. 1: 8), which is why also the Kourinkangas brooch can be identified as that of D-type. The dating of the artefact revolves around the 10th and 11th centuries. The tanged arrowhead, on the other hand, belongs to a group of which was used for a longer span of time from the Roman Iron Age to the Viking Age (Hiekkanen 1979: 45). Based on the two artefacts, the site can be preliminarily placed at the Viking Age.

Field research: –

43. Paltamo, Koitto

Region: Kainuu
Finds: NM 20825; NM 21562
Register number: 578010020
Coordinates: x=7141070, y=526938, z=137
Description: A knife and an axe-blade found near the Koitto estate at the bottom of the Varislahti bay during the 1970s. Both of the artefacts were unearthed some 50–70 metres north of the estate’s cowshed and are likely part of the same assemblage. Supposedly, a spearhead was also discovered in the area some time
earlier, but the artefact has been lost. Currently, the site is registered as a possible burial site, but as long as no excavations are conducted, the interpretation should be taken with care (Huurre 1986: 142). Both of these artefacts can be placed at the Late Iron Age. The knife is over 30 centimetres long and typologically close to Viking Age seaxes, although the dating is difficult to establish conclusively as somewhat similar artefacts are known in Merovingian contexts (Huurre 1986: 140). The axe-blade is four-lugged and relatively close to the one found in Puolanka (Appx. 1: 47). According to Huurre (1983: 377–378; Huurre 1986: 143) the artefact is, however, an 11th century variation of this form with most parallels in Russia and the Baltics. The find combination of Koitto can be approximated to belong in the 11th century.

Field research: 1980: Inspection, Matti Huurre

44. Pudasjärvi, Parsiaismaa

Region: Northern Ostrobothnia
Finds: NM 2432:1–4 (NM 40951:1–63 for excavations finds)
Register number: 615010025
Coordinates: x=7258013, y=462033, z=96
Description: An assemblage of Late Iron Age artefacts found by a local farmer on the northern side of Lake Säynäjäjärvi, some 33 kilometres west of the Pudasjärvi town centre in 1885. Topographically, the area is characterised by a wooden and somewhat rugged slope, which descends steeply towards the lake. The site was inspected by Erä-Esko in the 1970s, but by this time, the exact location of the discovery was forgotten. However, Erä-Esko notes several pit-features and low depressions scattered along the slope and the plateau of the presumed find location. He interprets these features as possible grave-pits and then proceeds to classify the site as a likely Lapp cemetery (lappalaiskalmisto) with a possible adjoining dwelling site. Sarkkinen, who visited the site some 20 years later, maintains the interpretation and concludes the total number of pits and depressions to be around half a dozen. In 2016, the site was subjected under an archaeological excavation. During the fieldwork, one of these depressions was excavated and it appeared to be surrounded by a cultural layer (Fig. 32). Based on the C-14 analysis made of burned bone84, the layer belongs to the Crusader Period or the medieval period. The results of the excavation are difficult to interpret, but it seems likely that the pit-feature is

84 Ua-54846: 545±23 BP, 1390–1430 CalAD.
a recent intrusion penetrating the pre-existing cultural layer of which only a fraction was revealed during the study.

Fig. 32. The pit-feature excavated in Parsiaismaa during the fieldwork of 2016.

The assemblage of artefacts includes an axe-blade, a spearhead, a large seax-style knife, an arrowhead and a fitting from a belt or a strap. All artefacts belong to the 11th or 12th century and are mostly of Karelian origin (for more discussion see Huurre 1983: 367, 370, 374, 393). The excavated finds consist of burned bones, flint flakes of strike-a-light stones and nails. With only a small number of mostly fragmented artefacts, only the nails offer a basis for more discussion. They seem to be exclusively clenched or double-clenched at the tip; a treatment documented in hundreds of Iron Age and Medieval harbors, dwelling sites and burials throughout northern Europe and usually associated with boat or shipbuilding techniques (e.g. Bill 1994; Edberg 2013). As no further evidence of a boat was detected, the presence of the nails remains problematic. In some instances, broken boats may have been used as a fuel in fireplaces and furnaces, but in this case, one would expect a fire-related patina on the nails. Further, clenched nails were used in other
vessels such as sleighs and sledges as well as in wooden furniture and other objects. As no indications of a burial site were detected, perhaps, the site should be understood as a dwelling site or a camp rather than a cemetery as suggested by Erä-Esko. Of course, this interpretation should be approached with a certain level of caution as only a fraction of the site has been thoroughly investigated so far.

Field research: 1971, Inspection, Aarni Erä-Esko; 1998, Survey, Mika Sarkkinen; 2016, Excavation, Ville Hakamäki

45. Pudasjärvi, Kurjenkoski

Region: Northern Ostrobothnia
Finds: NM 2508: 124
Register number: –
Coordinates: –
Description: A sword found in the municipal area of Pudasjärvi. Although the most plausible location for the discovery is the Kurenkoski Rapids some 30 kilometres east of the town centre of Pudasjärvi, there are more unspecified stories about a sword found at a lake somewhere in Pudasjärvi. Snellman (1887: 42) concludes that these two accounts are likely to refer to the same artefact. Due to the conflicting information and the old age of the discovery, the exact location of the find cannot be determined with certainty, but it seems very likely that the artefact was recovered in a wetland context. The sword is highly fragmented, but the text INGELRE along with several geometric patterns can be discerned from the blade. The text refers to the manufacturer of the sword and similar examples are found in Norway and Russia where the text is sometimes followed by the phrase MEFECIT (made me). The beginning of the manufacture of the Ingelri and Ingelre swords has been placed around AD 925 and this dating is supported by the hilt of the Kurjenkoski sword, which is of Petersen’s Y-type (cf. 1919: 167–175). Therefore, the sword belongs to the 10th and 11th centuries (Moilanen 2016: 359).

Field research: 1982, Survey, Markku Torvinen; 1998, Survey, Mika Sarkkinen

46. Pudasjärvi, Törrö (Navettapelto)

Region: Northern Ostrobothnia
Finds: NM 3296: 7
Register number: 1000009487
Coordinates: x=7251725, y=499807, z=115

Description: An axe-blade found on the Törrö estate along the river Törröjoki during the late 19th century. Today, the area is heavily built and according to the archaeological survey, nothing is likely to remain of the site. Therefore, the exact location of these discoveries cannot be determined. The axe-blade is of the arc-backed Merovingian style and bears close resemblance to *fransisca* type axe-blades used by Central European Germanic populations (Huurre 1983: 335). The artefact is dated between the 7th and 9th centuries (Wuolijoki 1972: 3–4). A socketed spearhead of Iron Age style has been documented in the site as well.§

47. Pudasjärv, Haaponiemi

Region: Northern Ostrobothnia

Finds: NM 3487: 9, 12; NM 3638: 5

Register number: 615040028

Coordinates: x=7235032, y=488773, z=107, 5

Description: An assemblage of artefacts found in the Hetejärvi village area approximately 20 kilometres southwest of the Pudasjärv town centre during the late 19th century. The assemblage includes an ornate lid of a wooden container, a casting-mould, a wooden sledge-runner and a ski. The location of the discovery is situated at the wetlands approximately 350 metres northeast of the now-abandoned Haaponiemi estate and all of the artefacts were detected during the ditching of the swamp. The site has been surveyed by Appelgen and Sarkkinen, but despite the efforts, no further evidence of the Iron Age usage has surfaced. Based on the wooden lid, which is covered by similar ornamentation to that of some of the Karelian Crusader Period brooches, the bundle of artefacts is dated roughly to the Late Iron Age or the early medieval period (Huurre 1983: 25).

Field research: 1898, Inspection, Hjalmar Appelgren; 1998, Survey, Mika Sarkkinen

§ PPM 59; the artefact has not been analysed by the author but according to Sarkkinen (1998: 71–72) it is of Iron Age style.
48. Pudasjärvi, Piiraa

Region: Northern Ostrobothnia
Finds: NM 23803
Register number: –
Coordinates: x=7242461, y=512121, z=122, 5

Description: A penannular bronze brooch (Fig. 33) found during the construction of the Piirala estate in the village of Jonku, approximately 14 kilometres southeast of the Pudasjärvi town centre in 1987. The site was surveyed in 1987 and 1998, but no further finds or other observations regarding the Late Iron Age context were made. However, during the survey of 1998, several quartz flakes were detected at a nearby field, suggesting that the area has been occupied during the Stone Age or the Early Metal Age. The artefact is in a relatively good condition and can be identified as a penannular brooch with poppy-shaped end-knobs (cf. Kivikoski 1973: Fig. 700). These brooches occur throughout the Baltic Sea region and are somewhat frequent in the Finnish archaeological record as well (Lehtosalo-Hilander 1982b: 105). Kivikoski (1951: 53) places the typological home of these brooches on the island of Gotland while Salmo (1956: 56) regards them as of a Baltic style. The dating of the penannular brooches with poppy-shaped ends revolves around the 11th century.

Field research: 1987, Inspection, Markku Torvinen; 1998, Survey, Mika Sarkkinen

Fig. 33. The penannular brooch of Piiraa.
49. Pudasjärvi, Pitääminmaa

Region: Northern Ostrobothnia
Finds: NM 39817: 1–41
Register number: 1000023379
Coordinates: x=7220385, y=500310, z=125–300
Description: Several Iron Age and early historical artefact found by metal detectorists on the northern side of Lake Iso Olvasjärvi in 2014. Objects were unearthed within an area of approximately 250x300 metres in size and most of them emerged immediately under the turf. Standing on the southbound slope dominated by coniferous vegetation, the site is located only about 2.6 kilometres north of Viinivaara E (Paper III) and 2.2 kilometres northwest of the stray finds of Kokkomaa (Appx. 1: 106). Furthermore, several Stone Age remains, such as quartz flakes and dwelling-depressions as well as historical finds are documented in the area.

The assemblage of finds includes one socketed axe-blade, five knife-blades, bronze fittings, nails and several copper-alloy sheets. Most of the metal artefacts are highly fragmented and their identification in challenging. Yet, it seems that a degree of variation exists with the provenience and the age of the artefacts. For example, the socketed axe-blades are usually considered to have originated from the Baltics and remained in use until the 8th century (Kivikoski 1973: 26), while the so called “fish-shaped bronze fitting” discovered in the site has parallels mainly in the Late Iron Age cemeteries of southwestern Finland and Karelia (e.g. Kivikoski 1973: Fig. 924). As excavations are yet to be conducted on the site, its true nature cannot be currently determined. However, based on the investigations in Viinivaara E, Pitääminmaa finds could indicate a combination of a dwelling site and burials.

Field research: 2014, Inspection, Mika Sarkkinen

50. Pudasjärvi, Pintamo

Region: Northern Ostrobothnia
Finds: PPM 251
Register number: –
Coordinates: x=7259251, y=530706, z=167 (approximated coordinates)
Description: An axe-blade found in Pudasjärvi in 1897. The information related to the artefact is sparse and the location of the discovery can only be placed, with a high level of reservation, on the shore of Lake Pintamojärvi. The artefact is,
however, identifiable as a four-lugged beardless type relatively similar to those found in several locations throughout the research area (Appx. 1: 11, 19, 21, 25, 52, 71, 84, 101, 104, 108). As mentioned in the previous entries, the dating of these axe-blades revolves around the 11th centuries (Wuolijoki 1972: 21).

Field research: 1998, Survey, Mika Sarkkinen

51. *Pudasjärvi, Sotkajärvi*

Region: Northern Ostrobothnia
Finds: –
Register number: –
Coordinates: x=7246421, y=513278, z=126
Description: An axe-blade and a piece of copper-alloy sheet found by a metal detectorist on the western shore of Lake Sotkajärvi, approximately 18 kilometres southeast of the Pudasjärvi town centre in 2017. The artefacts were dispersed in an area of almost a hundred metres in size, but most of them were recovered in the field between the estates of Parkkila and Suorsa, suggesting that the context of these finds is damaged. The axe-blade, on the other hand, was detected in the woodedlands close to the lake, and this could indicate an undamaged context. As of now, the nature of the Sotkajärvi finds cannot be determined and archaeological excavations are likely required to understand the function, dating, scope and condition of the site. A Stone Age dwelling is documented about 250 metres to the south, further increasing the archaeological interest of the area. The axe-blade can be placed in the category of unclassified straight-sided Scandinavian axes. The blade is beardless and towards the butt, discrete lugs can be seen on both the front and backside. Based on a few datable parallels (Schwindt 1893: 73–74; Kivikoski 1951: 31, 986; Wuolijoki 1972: 21), the axe-blade can be placed at the 13th or 14th centuries. The copper container fragment, on the other hand, is more difficult to date due to the highly fragmented nature. However, it is attached with a handle which is similar to the Late Iron Age parallels documented in Suomussalmi (Appx. 1: 94, 99).

Field research: –

52. *Puolanka, Haapaniemi*

Region: Kainuu
Finds: NM 2378: 9–17
Register number: –
Coordinates: x=7156525, y=528047, z=168 (approximated coordinates)
Description: Several Late Iron Age artefacts found on the southern shore of Lake Osmankajärvi, just 1.7 kilometres north of the municipal border of Puolanka. Discovered in 1885 and first catalogued by Mustonen (1892: 750–751), the assemblage of finds consists of a knife, three arrowheads, two bars of a trident and three axe-blades. According to Mustonen, the objects were recovered during the land clearance at the site of an old blacksmith’s workshop. While it seems possible that these artefacts were collected as raw material for the workshop, it is equally likely that they indicate a misinterpreted Late Iron Age context (Huurre 1983: 392). The exact location of the discovery is forgotten and archaeological surveys of the area have shed no light on the nature of these finds.

Only the axe-blades offer information regarding the age and the provenience of the find assemblage. NM 2378: 15 is of a straight-backed Finnish-Russian type somewhat akin to those found in Kuusamo and Suomussalmi (Appx. 1: 20, 89, 91) and, therefore, belongs to the Viking Age with parallels in southwestern Finland and Karelia (Huurre 1983: 392). NM 2378: 16 is of a four-lugged beardless type, and Wuolijoki (1972: 21) places it under the category of heterogeneous straight-sided Scandinavian axe-blades of the 11th century (Appx. 1: 11, 19, 21, 25, 50, 71, 84, 101, 104, 108). NM 2378: 17 is also Scandinavian, but in this case the artefact can be specified as Petersen’s M-type similar to those documented in Kuusamo and Utajärvi (Appx. 1: 24, 28, 102). The dating of the artefact revolves around the 11th century (Wuolijoki 1972: 29). Based on the axe-blades, the assemblage can be placed at the Late Viking Age or the Early Crusader Period.

Field research: 1892, Survey, O. A. F. Mustonen

53. Puolanka, Luuranniemi

Region: Kainuu
Finds: NM 27140: 1–2
Register number: 620040003
Coordinates: x=7191330, y=530296, z=152
Description: A pair of axe-blades found in the peninsula of Luuranniemi on the western shore of Lake Ristijärvi, approximately three kilometres southwest of the Puolanka town centre. The first axe-blade was found during the removal of an old barn near the Luura estate while the other emerged with a metal detector sometime later. The site was surveyed in 1991, but apart from a walled pit-feature
with ambiguous dating, no prehistoric remains were detected. According to the local folk-tales, a church or a chapel once stood at the tip of the peninsula. These stories may be related to the historical burial ground located on the island of Kirkkosaari just 260 metres to the east.

Fig. 34. The axe-blade of Luuranniemi

Both of the axes are damaged and only NM 27140: 1 can be identified (Fig. 34). The object seems to lack the typical lugs, but instead long extensions are protruding from the back of the butt. A small nodule has been fashioned at the corner of the beard. These features are typical for the axes of Baltic style (cf. Wuolijoki 1972: 16). Although uncommon in the Finnish record, several parallels are documented in the Baltic regions and in Sweden (Selirand 1974: 90–91; Tõnisson 1974: 110; Lehtosalo-Hilander 1982b: 53). These axe-blades are regarded as Russian, and their dating ranges from the 10th century to the medieval period (Wuolijoki 1972: 16; Lehtosalo-Hilander 1982b: 53). The other axe cannot be identified due to its fragmented state, but based on the remaining portion of the blade, it seems to be somewhat similar to the first.

Field research: 1991, Inspection, Esa Suominen

54. Puolanka, Sakari

Region: Kainuu
Finds: NM 28072
Register number: 620010042
Coordinates: x=7207323, y=526518, z=138
Description: A penannular bronze brooch (Fig. 35) found on an eroded shore embankment on the northern shore of Lake Auhojärvi, approximately 14 kilometres northwest of the Puolanka town centre in 1993. Apart from the brooch, quartz flakes and other older materials are documented in the area. The site was surveyed in 1993 and a number of pit-features were detected. However, currently it is not possible to determine whether these remains are connected to the Late Iron Age finds and excavations are needed to understand the site. The artefact belongs to the category of penannular brooches with funnel ends and is, therefore, of the same Southwest Finnish style as the brooches of Kuhmo and Sievi (Appx. 1: 15, 59). The dating of the object revolves around the 10th century.

Field research: 1993, Inspection, Esa Suominen

Fig. 35. The pennannular brooch of Sakari

55. Puolanka, Kouerkangas

Region: Kainuu
Finds: NM 38619: 1–2
Register number: 1000017629
Coordinates: x=7202207, y=536908, z=195
Description: A silver deposit containing a pair of braided silver neck-rings found on the northern shore of Lake Kouerjärvi in 2010. The site of the discovery is located some 9.5 kilometres northeast of the Puolanka town centre and the artefacts were unearthed during mechanical soil extraction at the small sand-pit.
The site was surveyed soon after the initial discovery, but no observations regarding the Late Iron Age context of the neck-rings were made. Both neck-rings are braided out of a thin silver wire and brought together with attachment-hoops. The artefacts are relatively similar to those recovered in most of the North Fennoscandian silver hoards (e.g. Björkman 1957; Ojanlatva 2003; Spangen 2009; Appx. 1: 22, 23) and based on these, the Kouerkangas can be placed between the AD 1050 and 1200 as well.

Field research: 2011, Inspection, Esa Suominen

56. *Pyhäntä, Hirsilampi Mustahaka*

Region: Northern Ostrobothnia
Finds: In the collections of the Pyhäjoki museum
Register number: 625040024
Coordinates: x=7141645, y=355920, z=5
Description: A wooden keel of a sledge or sleigh found during the mechanical ditch-digging in 1997. The object was discovered in the woodlands located 400 metres north of the borderline between the municipalities of Pyhäjoki and Kalajoki. It was situated only five metres above the current sea level and thus emerged under the sea just some 600 years ago. Therefore, it seems probable that the artefact was initially deposited in water or is in a secondary position. The site was inspected by Sarkkinen soon after the initial discovery, but no further observations were made. A scythe-blade (NM 2283: 1) has been registered in the nearby area as well, but the dating of this object is highly debatable. The keel is about two metres long and 15 centimetres wide and bears resemblance to a ski. No engravings or other curiosities are seen apart from a number of holes used to attach the object with the rest of the vessel. The C-14 dating from the artefact points towards the 13th century (Forss 1997: 54–55).

Field research: 1997, Inspection, Mika Sarkkinen

57. *Pyhäntä, Sammallahti*

Region: Northern Ostrobothnia
Finds: NM 3564: 29
Register number: –
Coordinates: x=7056948, y=448484, z=140
Description: An axe-blade found during the ploughing of a field near the Sammallahti estate in the village of Emoniemi sometime during the late 19th century. According to the record, other iron and stone artefacts were found prior to the discovery of the axe-blade, but they had been lost soon after. Further, the local legends talk about “subterranean giant’s cairns and graves”, but no proper documentation of these exists. The site has been archaeologically surveyed in 1995, but further observations concerning the Late Iron Age utilisation of the area were not made. Today, Sammallahti is heavily built and it seems that the alleged archaeological context is destroyed. The axe-blade recovered in the site is bearded and the butt of the blade is partially merged with the lugs. Wuolijoki places the artefact under the category of the Scandinavian bearded axes and dates it loosely to the 11th century (Wuolijoki 1972: 13). However, Huurre (1983: 380) notes that the artefact is more likely of eastern origin and finds its closest parallels in the Crusader Period sites of Karelia and southeastern Finland with examples in Novgorod and northern Sweden as well.

Field research: 1995, Survey, Mika Sarkkinen

58. Pyhäntä, Leiviskä

Region: Northern Ostrobothnia
Finds: NM 3671: 50
Register number: 630040011
Coordinates: x=7109992, y=465972, z=128 (approximated coordinates)

Description: A penannular bronze brooch (Fig. 36) found near the Leiviskä estate during the harvesting of crops in 1899. The site is located on a headland on the western shores of Lake Pyhäntäjärvi in an area, which has been an important thoroughfare of traffic since the 17th century (Hiltunen 1996). Today the lands around Leiviskä are largely cultivated and it seems probable that most of the Late Iron Age cultural layers have been destroyed. Yet, as the record tells that the artefact has been recovered from the “heartlands” of the estate, the point of discovery could be situated in the woodlands north of the cultivated areas. However, this cannot be confirmed until more archaeological material emerges. The brooch is rather light and the ring is decorated with a faint zigzag pattern. The knobs are hammered flat and rolled upwards. With a few examples in Russia, Scandinavia and the Baltics, the brooches of this style are most commonly found in southwestern Finland, which is considered as their point of origin (e.g. Salmo 1956: 54–57). In northern Finland, these brooches are uncommon and only registered in a few sites (Huurre 1983: 380).
This seems to be the case with northern Fennoscandia in general (Serning 1956: 24; Sjøvold 1974: 216). Penannular brooches with rolled knobs are usually dated between the 10th and 12th centuries.

Field research: 1996, Survey, Mika Sarkkinen; 2017, Survey, Jaana Itäpalo

Fig. 36. The penannular brooch of Leiviskä.

59. Sievi, Jyrinki

Region: Northern Ostrobothnia
Finds: NM 5805: 3
Register number: –
Coordinates: x=7091920, y=373253, z=76, 4 (approximated coordinates)
Description: A penannular bronze brooch found in 1911 at the woodlands approximately one kilometre north of the Jyrinki estate and some 5 kilometres west of the Sievi town centre. The location of the site is difficult to identify as the recorded information only mention it being found 60 centimetres deep and about 55 metres east of an unspecified lake. Although the name of the lake is not mentioned, it seems probable that the find has been recovered near Jyrinkijärvi. However, no closer estimates about the location and the context can be made. However, the great depth of the find could be read as a sign of an inhumation burial (Okkonen 1993: 35). The brooch is of funnel-ended type and compares fairly well with the Southwest Finnish brooches of Kuhmo and Puolanka (Appx. 1: 15, 54). The dating of the artefact is most likely the 10th or 11th century.

Field research: –
60. Sievi, Korteneva

Region: Northern Ostrobothnia
Finds: Suomen urheilumuseo 175:30
Register number: –
Coordinates: x=7097655, y=363670, z=78 (the Korteneva area)
Description: A wooden ski found in the village of Kukonkylä, approximately 16 kilometres northwest of the Sievi town centre during the land clearing in 1931. The ski, about 220 centimetres in length and 10–11.5 centimetres in width, was discovered approximately 30 centimetres deep in a bog and can be classified as a type which was used in southern regions since the 12th century. While in northern Finland, these skis tend to be dated to the 16th century, the artefact is question has been pollen-dated to the 13th century (Sauramo 1945: 276). The artefact might have been initially deposited in the bog during a religious ritual or perhaps stored for later use (Okkonen 1993: 35–36).
Field research: –

61. Sotkamo, Kekkolanniemi

Region: Kainuu
Finds: NM 1999: 4
Register number: –
Coordinates: x=7118907, y=550311, z=140
Description: An axe-blade found on the northern shore of Lake Nuasjärvi, approximately 19 kilometres northwest of the town centre of Sotkamo in 1879. The information regarding the specifics and condition of the find is sparse and the location of the axe-blade can only be placed loosely in the Kekkolanniemi area. According to Laulumaa (1997: 49), the location of the discovery is today most likely submerged and, therefore, no conclusions of the archaeological context of the artefact can be made. Wuolijoki (1972: 22–23, 52) identifies the axe-blade as a straight-backed Finnish type with most parallels in the regions of Tavastia and Satakunta. The dating of these axe-blades ranges from the 9th to 11th century covering most of the Viking Age.
Field research: 1957, Survey, Martti Linkola
62. Sotkamo, Naapurinvaara

Region: Kainuu
Finds: NM 2173
Register number: –
Coordinates: x=7118607, y=560439, z=200–240 (approximated coordinates)
Description: An axe-blade found somewhere in the Naapurinvaara area in 1882. No information regarding the discovery remains, and therefore nothing can be said about the Late Iron Age context of the artefact. The axe-blade is overlooked by Wuolijoki (1972), but both Huurre (1986: 167) and Laulumaa (1997: 49) place it at the Late Iron Age.86
Field research: –

63. Sotkamo, Kaitainsalmi

Region: Kainuu
Finds: NM 13266
Register number: –
Coordinates: x=7116541, y=570857, z=140 (approximated coordinates)
Description: A socketed spearhead found in Sotkamo sometime during the early 20th century and first catalogued by the archaeologist Jorma Leppäaho from the Museum of Sotkamo in 1953. The location of the discovery is unknown and can only be placed loosely in the Kaitainsalmi area some five kilometres north of the Sotkamo town centre. The spearhead is equipped with a broad and strongly tapering blade, which is separated from the socket by three knobs. The spearhead belongs to Petersen’s M-type (Huurre 1986: 139; Laulumaa 1997: 49), which is considered to be among the more common Viking Age spear types in Finland, Scandinavia, Russia and the Baltics. In the research area, another M-type spearhead is documented in the cremation burial of Heinisaari in Suomussalmi (Paper IV). The age of the M-type spears ranges from the 10th to 11th century although in Estonia and Russia they are also recorded in 12th century contexts (e.g. Creutz 2003: 48–66, 92–96).
Field research: –

86 The artefact was not documented during the writing of this dissertation as it was not located in the archive of the Finnish Heritage Agency.
64. Sotkamon, Ammonsaari

Region: Kainuu
Finds: NM 29036
Register number: 765010062
Coordinates: x=7113601, y=566242, z=137
Description: A penannular bronze brooch recovered during the archaeological excavation on the southeast corner of the forested island of Ammonsaari in 1995. Standing on Lake Pirttijärvi, the island is located just two kilometres northwest of the town centre of Sotkamo and is known as one of the more prominent prehistoric occupational areas in Sotkamo. The archaeological materials recovered on the island include quartz flakes, various stone implements, ceramics and charred bones, many of which were discovered during the excavations of 1995–1997. With most of these finds belonging to the Stone Age, the brooch remains the only tangible evidence of the Late Iron Age usage of the site. It was discovered under a rectangular stone setting of approximately 200x90 centimetres in size. Laulumaa (1997: 49–50) interprets the stone setting as a possible inhumation furnished with a single artefact, but it might also be a rectangular hearth similar to those found in northern Fennoscandia (Korhonen 2008). The brooch is funnel-ended and the cross-section of the rim is nearly hexagonal. These brooches are relatively common in the southwest regions, but in northern Finland only a few are registered (Appx. 1: 15, 59). The Ammonsaari brooch is dated to the 10th or 11th century (Laulumaa 1997: 49; Korhonen 2008).

65. Sotkamo, Heinonen 2

Region: Kainuu
Finds: NM 39621
Register number: 1000023193
Coordinates: x=7102084, y=580793, z=153
Description: An axe-blade (Fig. 37) found by a local metal detectorist in 2013 on the western shore of Lake Heinonen, approximately 16 kilometres southeast of the town centre of Sotkamo. The site is situated just below the waterline and the artefact was found under the bottom sediments of the lake. The site was surveyed
soon after, but no archaeological features related to the axe-blade were detected. The artefact is somewhat difficult to identify due to its highly corroded state. However, it seems to be a bearded miniature axe-blade with no noticeable lugs. Due to the unknown context and the lack of other archaeological finds, the dating and the provenience are difficult to determine. The artefact may originate from younger periods.

Field research: 2013, Inspection, Esa Suominen

![Fig. 37. The axe-blade of Heinonen.](image)

66. *Suomussalmi, Keskimmäinen*

Region: Kainuu
Finds: NM 5335
Register number: 777010034
Coordinates: x=7235152, y=615110, z=201
Description: An oval tortoise brooch found at the Juntusranta village by local children in the early 20th century. The exact location of the discovery cannot be determined, but according to the record, it was found on the shore of Lake Kokkojärvi near the Keskiitalo estate behind a fence and subsequently collected by O.A. Tudeer in 1908. The Juntusranta area can be regarded as one of the more interesting Late Iron Age occupational areas in the North Finnish interior as, besides the brooch, several interesting finds have been documented in the area over the years (Appx. 1: 67, 68), and the cremation burial of Mikonsärkkä (see Chapter 2.2.2.) is located in the nearby area. With various animal motifs covering the shell.
of the brooch, the artefact can be placed under the category of Karelian tortoise brooches. Within this group, the brooch of Keskimmäinen represents the so-called “animal brooches”, which are among the more common Karelian brooches in the Finnish record (Ailio 1922: 18–28). According to Huurre (1986: 136; 1992: 56), the artefact belongs to the oldest form of this type and can be roughly dated in the 11th century.

Field research: –

67. Suomussalmi, Syväniemi

Region: Kainuu
Finds: NM 10916: 1–2
Register number: 777010024
Coordinates: x=7234955, y=620645, z=205
Description: Two bronze pendants found during the construction of a new summer cottage on the northern shore of Lake Kulmajärvi in the village of Juntusranta in 1935. According to the record, both pendants were recovered some 20 centimetres deep together with soot, ashes, coal and a handle of copper-vessel. Based on this, Huurre (1986: 132-133) suggests that these artefacts, as well as the now-missing handle, have originally belonged to an Iron Age cremation burial largely similar to those recorded elsewhere in Suomussalmi (see Chapter 2.2.2.). The site is also known as a Stone Age dwelling site.

NM 10916: 1 pendant is animal-shaped and stylised into the form of a horse or an ox. The ornaments of this style are generally interpreted as Permian, and they are relatively common in the Baltics, the Volga-Oka area and the southeast corner of Lake Ladoga, where their dating ranges from the 12th to the 13th centuries (e.g. Rjabinin 1980a: 215; Rjabinin 1980b: 27–28). In Fennoscandia, only a few rough parallels are currently known (e.g. Serning 1956, pl. 41:15). NM 10916: 2, on the other hand, is rectangular and equipped with several attachment-hoops, which have originally been fitted with a number of smaller pendants or chains. As is the case with the animal-shaped pendant in general, the ornament finds most parallels in eastern Europe and Russia, but there are some examples in southwestern Finland and northern Fennoscandia as well (Kivikoski 1973: Abb. 477; Serning 1956: 44; Huurre 1983: 360). The dating of these pendants ranges from the Merovingian period to the Viking Age. Based on the find combination, Syväniemi can be placed at the 11th or 12th centuries (Huurre 1983: 359–360; Huurre 1986: 132–133; Huurre 1992: 56).
Field research: 1957, Survey, Matti Huurre

68. Suomussalmi, Kalmosärkkä

Region: Kainuu
Finds: NM 14830: 2; NM 19811: 10; NM 23600
Register number: 777010025
Coordinates: x=7234018, y=614403, z=199

Description: An axe-blade, a glass-bead and a bronze pendant have emerged in the Kalmosärkkä area since the discovery of the site by local children and their history teacher in 1952. Locating at the outskirts of the village of Juntusranta, approximately 44 kilometres northeast of the Suomussalmi town centre, the site is among the most important prehistoric occupational areas of northern Finland (Purhonen 2001: 271–272). The archaeological record of Kalmosärkkä ranges from the Stone Age to the modern times and include scores of prehistoric artefacts, pit-features and structures, historical coins and other finds as well as modern remains such as fortifications from the Second World War era. However, the site is constantly damaged by the shoreline erosion, and today but a small portion remains untouched. The site has been excavated on a number of occasions since 1958, but these investigations have chiefly brought up Stone Age and Early Metal Age materials, which is why the Iron Age usage of the site remains difficult to understand.

The axe-blade found at Kalmosärkkä during the excavations of 1959 is bearded and its blade is relatively broad. Wuolijoki (1972: 17) places the artefact under the category of hammer-butted axe-blades (Appx. 1: 20). These blades tend to vary in form and, therefore, the artefact cannot be discussed in detail. It is considered as Late Iron Age based on a number of 11th-century Russian counterparts (Wuolijoki 1972: 17; Huurre 1983: 378; 1986: 143; 1992: 57). The context of the axe-blade could not be determined during the 1959 excavation. The bronze pendant consists of a round ring, which has been filled with a number of bronze wires arranged in a diagonal grid pattern. With a close parallel in TB:n ranta (Appx. 1: 76), the artefact is uncommon in the Finnish record, but frequently documented in northwestern Russia, especially in Novgorod and its vicinity, where these pendants are loosely dated to between the 12th and 14th centuries (Huurre 1992: 56–57; Okkonen 2012a). In addition to the pendant and the axe-blade as well as the glass bead, also several possible Late Iron Age finds are recovered in Kalmosärkkä. For example, the knife fittings (NM 14829: 346, 989; NM 20413: 48), the spearhead (NM 14830:
as well as the copper-alloy sheets (e.g. NM 14830: 1333, 771) might originate from the Late Iron Age context, although no conclusive statements about their age can be made.

69. Suomussalmi, Kuikkaniemi

Region: Kainuu
Finds: NM 17605
Register number: 777010035
Coordinates: x=7172155, y=644363, z=245
Description: An axe-blade found on a small neck of land between Lake Kuikkajärvi and Lake Kuivajärvi, approximately 60 kilometres southeast of the town centre of Suomussalmi in 1964. When detected, the artefact was located on the surface of the ground and most likely not in its original context. The site was surveyed in 2007, but no further observations regarding the nature of the site were made. The axe-blade is four-lugged and three grooves are carved on its side. Wuolijoki (1972: 21) places the artefact within the category of unclassified straight-sided Scandinavian axe-blades with an age-estimation revolving around the 11th century. The Kuikkaniemi axe-blade most likely originates from southwestern Finland (Huurre 1992: 55).

Field research: 2007, Survey, Mika Sarkkinen

70. Suomussalmi, Jalonniemi

Region: Kainuu
Finds: NM 19243
Register number: –
Coordinates: x=7197250, y=590794, z=199 (approximated coordinates)
Description: A spearhead found on the shore of Lake Kiantajärvi on the northern side of the Suomussalmi town centre in 1973. The site of the discovery as well as the specifics and conditions of the find are unknown, but the overall area is
known to contain many prehistoric sites, the oldest of which are dated to the Stone Age. The spearhead found at Jalonniemi is socketed and equipped with a long and lean blade. According to Huurre (1983: 1986: 139; 1992: 54–55), the artefact is similar to those documented in southwestern Finland, Estonia and northwestern Russia. The dating of the spearhead ranges from the 11th to the 13th centuries (Kirpičnikov 1966: 7, 15–17). In the research area, no similar specimens are recorded.

71. Suomussalmi, Salonsaari

Region: Kainuu
Finds: NM 19899: 1
Register number: 777010089
Coordinates: x=7216870, y=602214, z=199
Description: An axe-blade found at the southeast corner of the Island of Salonsaari during the early 1970s. The exact location of the discovery is unknown, but according to the record, it was exposed by the shoreline erosion near the waterfront. The southwest shores of the island are known for Stone Age finds, most of which were documented in an area of some 150 metres in length along the shoreline. The site was excavated in 1997, but no indicators of the Late Iron Age occupation were detected. Based on the excavated material, the site can be interpreted as a long-term occupational area, which – despite the damage caused by the erosion – could still produce interesting information about the studied period. The axe-blade is beardless and four-lugged, but the lower extensions are merged with the butt of the blade. It is roughly parallel to other four-lugged specimen in the research area (Appx. 1: 11, 19, 21, 25, 50, 52, 84, 101, 104, 108). According to Huurre (1983: 378–380; 1986: 143–144), the dating of the Salonsaari axe-blade ranges from the 11th century to the end of the Crusader Period.

72. Suomussalmi, Komeronniemi 2

Region: Kainuu
Finds: NM 20369
Register number: 777010211
Coordinates: x=7225712, y=598445, z=199
Description: An axe-blade found on the northern end of Lake Kiantajärvi, approximately 30 kilometres north of the Suomussalmi town centre in 1978. The site of the discovery is situated at the tip of the prominent peninsula of Komeronniemi, but the context of the artefact is difficult to estimate as no information regarding the specifics and conditions of the discovery have survived. A number of stone tools and quartz flakes are recorded in the area as well and they show that the site has been occupied during the earlier prehistoric periods. Other than the unreported survey by Huurre in 1981, no investigations are conducted in the area. The axe-blade is bearded and somewhat robust. There are no noticeable lugs, but instead the extensions have merged with the butt of the axe (Huurre 1983: 380–381; 1986: 144; 1992: 57). Based on this, the artefact can be identified as Karelian with dating ranging from the 11th to the 14th centuries (Wuolijoki 1972: 57).

Field research: 1981, Inspection, Matti Huurre

73. Suomussalmi, Salmensivu

Region: Kainuu
Finds: NM 20397: 1
Register number: 777010009
Coordinates: x=7199304, y=592814, z=200
Description: An arrowhead found in a long-term prehistoric occupational area near the Salmensivu estate about 3.7 kilometres north of the Suomussalmi town centre. The prehistoric materials recovered in the area include a number of destroyed fireplaces, charred animal bones, flint flakes, iron slag, stone and iron implements and a number of historic coins, the oldest of which belongs to the year 1650. The site was excavated in 1981, but no documentation other than a few maps exists, and therefore the prehistoric context of the arrowhead remains unclear. The artefact is of a long-bladed style and difficult to classify due to the poor condition. Acknowledging that the artefact could be historical, Matti Huurre (1986: 139) places it among the Late Iron Age finds of Suomussalmi.
Field research: 1957, Survey, Matti Huurre; 1981, Excavation, Mikko Perkko

74. Suomussalmi, Kattilakaarre

Region: Kainuu
Finds: NM 20545: 1
Register number: 777010152
Coordinates: x=7201900, y=593942, z=199
Description: A spearhead found on the westernmost tip of the Vuoriniemi peninsula, some 6.5 kilometres northeast of the Suomussalmi town centre in 1979. The area is dominated by forested cliffs and exposed bedrock some of which protrude into Lake Kiantajärvi to the west. The spearhead as well as three stone implements were recovered in the shoreline during the low-tide period, and, therefore, it seems likely that most of the prehistoric context is today submerged. As a curiosity, there are stories about a “kettle filled with treasure” hidden somewhere in the area. With a socketed shaft and a relatively lean blade, the spearhead is closest to those of Petersen’s E-type (Huurre 1983: 369; 1986: 139; 1992: 55; cf. Petersen 1919: 26–28). In the research area similar spearheads are registered in Kuhmo and Suomussalmi (Appx. 1: 14, 78, 98). The spearhead of Kattilakaarre has been partially repaired as shown by the change in the angle of the blade near the tip of the artefact.

Field research: 1979, Inspection, Matti Huurre

75. Suomussalmi, Kellolaisten tuli

Region: Kainuu
Finds: NM 20546
Register number: 777010027
Coordinates: x=7234794, y=614727, z=199
Description: A spearhead found in the long-term occupational area on a small sandbank surrounded by waters of Lake Kiantajärvi, approximately 45 kilometres northeast of the Suomussalmi town centre in 1979. Once a small hillock bordered by wetlands, the site is today mainly submerged. While, most of the site is probably destroyed, the shores of the bank have offered a large record of prehistoric finds over the years. These include ceramics, flint and quartz implements and burned bones, the majority of which belong to the Stone Age as well as a knife and other
small iron artefacts of undetermined age. Archaeological excavations conducted by Huurre have shed no light on the Iron Age utilisation of the site, and, therefore, the context of the spearhead is difficult to estimate. The artefact is equally problematic, as no close parallels are documented. It bears some resemblance to Petersen’s E-type spearheads (cf. Petersen 1919: 26–28), but according to Huurre (1986: 139; 1992: 55), it is not of Scandinavian style. For this reason, Huurre concludes that the origin of the artefact is likely somewhere in the east. The dating of the spearhead is broadly placed at the end of the Iron Age.

76. Suomussalmi, TB:n ranta

Region: Kainuu
Finds: NM 20788: 70, 21344, 23605: 8; 31396: 176, 177, 178
Register number: 777010103
Coordinates: x=7196384, y=591801, z=199
Description: Several Late Iron Age artefacts are documented in the long-term prehistoric occupational area of TB:n ranta on the northern side of the Suomussalmi town centre since the discovery of the site in 1976. Named after the nearby gas station, the site stretches to an area of approximately 800 metres in length along the shore of Lake Kiantajärvi. Despite the close proximity to the town, the site is unbuitl and mostly used for recreational activities. The site has been excavated on multiple occasions and the documented prehistoric evidence includes finds and structures from all of the prehistoric periods (for overview, see Okkonen 2012a).

The Late Iron Age or early medieval finds documented in the site include a flat-bladed iron arrowhead (NM 20788: 70), two iron knives (NM 21344; 23605: 8), a knife fitting of bronze (NM 31396: 178), a small bronze bell (NM 31396: 177) and a bronze pendant (NM 31396: 176). Although, only the pendant and the bell permit more detailed scrutiny, all of the above-mentioned artefacts are categorised as Late Iron Age (Huurre 1986: 139; Huurre 1992: 55; Okkonen 2012a). The pendant (Fig. 38) is similar to the one recovered in Kalmosärkkä (Appx. 1: 68) and,

87 The axe-blade (NM 27082) found in Kattilakaaree is registered as Iron Age, but it was not documented during the writing of this dissertation as it was unavailable in the archive of the Finnish Heritage Agency.
therefore, its dating ranges from the 12th to the 14th centuries. The artefact was discovered during the excavations of 1999 in a coal-filled feature just under the turf. The feature was small and difficult to interpret and, therefore, not much can be said about the pendant's Late Iron Age context. The bronze bell was discovered within the borders of the same feature. The bell is small with a spherical shape bearing some resemblance to modern-day jingle-bells. Rainio (2010: 59–61) places the artefact in a group which is most commonly met in eastern Finland, where some 23 samples are currently documented. Similar bells are also recorded in northwestern Russia, where they are often attached to the animal-shaped pendants and other ornaments. The dating of the artefact falls between the 11th and 13th centuries (Rainio 2012: 59–61; Okkonen 2012a; Moisanen & Hamari 2000: 159).

Fig. 38. The pendant of Kalmosärkkä after Okkonen (2012a: 12, (published by permission of the author).

77. Suomussalmi, Vängänniemi

Region: Kainuu
Finds: NM 21375
Register number: 777010220
Coordinates: x=7178425, y=624030, z=187
Description: A knife fitting of bronze found on the northern shore of the Vängänniemi peninsula, approximately 38 kilometres southeast of the Suomussalmi town centre in 1982. Protruding into Lake Vuokkijärvi, the peninsula is among the more prominent topographical features in the area and several prehistoric and historic remains have been registered in the area over the years. These include a Stone Age dwelling site and undated cairn on the southern edge of the peninsula as well as several historic tar-burning pits and house-remains scattered throughout the peninsula. The knife fitting is cylinder-shaped and made out of a copper-alloy sheet. The shell of the fitting is thoroughly decorated with stylised ring and ribbon motifs, which, according to Huurre (1983: 369; 1986: 142; 1992: 55) are similar to Romanesque style. Based on the ornamentation, the artefact can be placed broadly to the Crusader Period with the closest stylistic counterparts in some of the East European sword-hilts of this time (e.g. Tallgren 1925: Fig. 154, 157).
Field research: 1982, Inspection, Matti Huurre

78. Suomussalmi, Vanhala
Region: Kainuu
Finds: NM 21394
Register number: 777010228
Coordinates: –
Description: A spearhead, which has been found in an unspecified location and subsequently donated to the museum of Suomussalmi in 1982. The spearhead is similar to the one found in Kättilakaarre (App. 1: 74) meaning that it, too, is typologically closest to Petersen’s E-type (cf. Petersen 1919: 26–28). The dating of the artefact can be placed between the 9th and 10th centuries.
Field research: –

79. Suomussalmi, Varposaari
Region: Kainuu
Finds: NM 21746
Register number: 777010157
Coordinates: x=7202850, y=593328, z=199

Description: A strike-a-light iron found on the island of Varposaari, approximately six kilometres north of the Suomussalmi town centre in 1982. Standing some 800 metres off the mainland, the island is mostly known for the Stone Age finds recovered from the southern and western shores since the late 1970s. Although the exact location or other specifics of the discovery are not documented, based on the prehistoric material in general, it seems likely that the artefact has been discovered near the waterfront in which case the archaeological context is possibly damaged by the shoreline erosion. The object belongs to the group of oval strike-a-light irons and is, therefore, difficult to date due to the extensive span of time they were used. Based on the similarities to the strike-a-light iron of the Kivisaari burial, Huurre (1983: 1986: 145; 1992: 54) places the artefact at the Late Iron Age.

Field research: 1979, Inspection, Matti Huurre

80. Suomussalmi, Vehmassaari

Region: Kainuu
Finds: NM 21988; NM 33070: 1
Register number: 777010145
Coordinates: x=7204073, y=587496, z=199

Description: A penannular bronze brooch and a fragment of an axe-blade found at the forested island of Vehmassaari, approximately 7.5 kilometres northwest of the town centre of Suomussalmi. Discovered in 1983 and 2002, both the brooch and the axe-blade were recovered somewhere on the northern side of the island, but little else is known about the conditions and specifics of the find. Apart from the unreported survey by Huurre in 1979 – during which a number of quartz flakes, stone tools and other Stone Age artefacts were recovered on the southern shores of the island – no archaeological investigations have been undertaken and, therefore, the nature of the site is difficult to estimate. Based on the nearby cremation burials of Heinisaari and Iso-Märäntö (Paper IV), the artefacts of Vehmassaari could originate from a grave.

The penannular brooch is flat knobbed and the cross-section of the rim is oval apart from the protuberance at the zenith. The brooch has apparently been fitted with a decorative extension such as a cross motif. While the point of origin for these brooches is in Scandinavia and especially on the island of Gotland (Stenberger 1958: Abb. 284, 286; Kivikoski 1973: 97, 131, Abb. 704, 1036–1037), they are also
relatively common in Finland and even further to the east (Salmo 1956: 65–71). In the research area, however, no parallels are currently known. The dating of the brooch ranges from the 11th to the 12th century (Huurre 1986: 134–135). The axe fragment seems to originate from the Late Iron Age beardless and curve-backed axe, but no further discussion can be made as only a small section of the blade remains.

Field research: 1979, Inspection, Matti Huurre

81. Suomussalmi, Vanha Kirkkosaari

Region: Kainuu
Finds: NM 24254: 1
Register number: 777010109
Coordinates: x=7196455, y=592248, z=199
Description: A fragment of an axe-blade found on the island of Vanha Kirkkosaari in 1988. Standing on the northern side of the Suomussalmi town centre just 280 metres of TB:n Ranta (Appx. 1: 76), the island is registered as a long-term prehistoric occupational area with several Stone Age, Early Metal Age and historic data. These include some of the oldest Stone Age settlement finds in Finland as well as 17th century burial ground at the southeast corner of the island (Huurre 1992: 25, 73). Apart from a few knives and a strike-a-light iron with nebulous dating, the axe-blade fragment is currently the only reliable source of information regarding the island’s Late Iron Age usage. The blade is fragmented to the point where nothing but the beard remains and – while clearly belonging to the studied period – no further discussion can be presented (Huurre 1992: 56). The site has been excavated on a number of occasions, but no observations regarding the context of the axe-blade were detected.

82. Suomussalmi, Vuonanniemi

Region: Kainuu
Finds: NM 27052
Register number: 777010005
Coordinates: x=7199476, y=588808, z=199
Description: An axe-blade found on the southern end of the Vuonanniemi peninsula, approximately three kilometres north of the Suomussalmi town centre in 1992. In addition to the blade, Stone Age finds such as tools, quartz flakes and charred bones are documented along the waterfront of this extensive prehistoric occupational area. Apart from a few surveys, no investigations are conducted and the archaeological context of the blade remains unclear. The artefact is relatively similar to those recovered in Utajärvi and Vaala (Appx. 1: 103, 109), and based on these it, too, can be placed in the group of curve-backed Finnish axe-blades. The dating of these axes falls between the 11th and 14th centuries, although some samples are also documented in slightly older contexts (Wuolijoki 1972: 23–25).

Field research: 1957, Survey, Matti Huurre; 1978, Inspection, Matti Huurre; 2013, Survey, Riikka Mustonen

83. Suomussalmi, Kiviranta

Region: Kainuu
Finds: NM 27778
Register number: –
Coordinates: x=7242778, y=596709, z=251 (approximated coordinates)

Description: A fragment of an axe-blade found in the village of Kivisaari, approximately 46 kilometres north of the Suomussalmi town centre in 1993. No archaeological fieldwork has been conducted at the site, and, therefore, no estimates concerning the Late Iron Age context of the axe-blade can be made. The artefact is disintegrated to the point where only a small and highly corroded section of the blade remains. Based on this, the fragment seems to originate from a beardless axe of Late Iron Age style. Two vertical grooves can be discerned on the neck of the blade.

Field research: –

84. Suomussalmi, Vasonniemi

Region: Kainuu
Finds: NM 27881
Register number: 777040009
Coordinates: x=7225042, y=598036, z=199

Description: An axe-blade (Fig. 39) found on the shore of the Vasonlahti bay in the village of Kiannanniemi, approximately 29 kilometres north of the
Suomussalmi town centre in 1993. No fieldwork has been conducted in the site so far, which is why no estimates about the archaeological context of the axe-blade can be made. The artefact can be identified as a beardless four-lugged axe largely similar to those recovered in several sites within the research area (Appx. 1: 11, 19, 21, 25, 50, 52, 71, 101, 104, 108). Following the dating of these axe-blades (Wuolijoki 1972: 20–22), the dating of the artefact revolves around the 11th century.

Field research: –

![Fig. 39. The axe-blade of Vasonniemi.](image)

85. *Suomussalmi, Ukonniemi*

Region: Kainuu
Finds: NM 27922
Register number: –
Coordinates: x=7241984, y=593803, z=251 (approximated coordinates)
Description: An axe-blade (Fig. 40) found on the forested Ukonniemi peninsula, approximately 46 kilometres north of the Suomussalmi town centre in 1993. The site has not been surveyed, and, therefore, not much can be said about the nature of the site. The axe-blade is bearded and four-lugged although the front lugs are on a rudimentary level. Following the classification of Iron Age axe-blades by Wuolijoki (1972: 11–15), the artefact is closest to the bearded Scandinavian axe-blades, which are among the more heterogeneous Late Iron Age axe types in
Finland. In the interior and northern areas, the artefacts of this type are uncommon, and in the research area, only one axe-blade can be arguably identified as such. The dating of the artefact can be placed between the 11th and 12th centuries.

Field research: –

![Fig. 40. The axe-blade of Ukonniemi.](image)

86. Suomussalmi, Pitkähiekka

Region: Kainuu
Finds: NM 29006
Register number: 777010227
Coordinates: x=7200346, y=592003, z=199
Description: An arrowhead (Fig. 41) found on a long-term prehistoric site of Pitkähiekka, approximately four kilometres north of the Suomussalmi town centre in 1995. The site has not been surveyed. The arrowhead is willow-leaf shaped and bears resemblance to the Merovingian period and Viking Age arrowheads presented by Markus Hiekkaknen (e.g. 1979: 76–78).

Field research: –

![Fig. 41. The arrowhead of Pitkähiekka.](image)
87. Suomussalmi, Tyynelänranta

Region: Kainuu
Finds: NM 29611: 1–10; 29704: 1–2
Register number: –
Coordinates: x=7220428, y=601417, z=199
Description: An assemblage of Late Iron Age artefacts found near the Tyynelä estate, approximately 26 kilometres north of the Suomussalmi town centre by a local student in 1996. Recovered on the foreshore of Lake Kiantajärvi, the bundle of artefacts include fragments of silver and bronze brooches, two bronze strap-dividers, seven bronze fittings, a bronze belt-buckle, a bird-shaped bronze pendant, an iron knife and other unidentifiable metal fragments as well as a small number of charred bones. Most of the artefacts were recovered around a large boulder and while their context was not conclusively solved, it seems highly probable that the artefacts belong to a burial site, which has been destroyed by the shoreline erosion (Taskinen 1998). Most of the artefacts from Tyynelänranta can be placed at the 12th century and originate predominantly from the regions of Savo and Karelia with the exception of the bird-shaped pendant, which may derive further from the east.
Field research: –

88. Suomussalmi, Aittokoski

Region: Kainuu
Finds: NM 30981
Register number: –
Coordinates: x=7191409, y=587917, z=220 (approximated coordinates)
Description: An axe-blade (Fig. 42) found in the Aittokoski area, approximately six kilometres southwest of the Suomussalmi town centre in 1998. No survey or other archaeological fieldwork has been done and the nature of the site is currently unclear. The artefact is badly corroded and somewhat difficult to identify with certainty. However, it bears relatively close resemblance to the beardless Karelian axes (Wuolijoki 1972: 31–32) and appears to be largely similar to the one found in Muhos (Appx. 1: 36). The artefact assemblage of Parsiaismaa in Pudasjärvi includes one blade of this type as well (Appx. 1: 44). These Karelian blades are dated between the 12th and 14th centuries.
Field research: –
89. Suomussalmi, Luhtalamminsärkkä

Region: Kainuu
Finds: NM 36710
Register number: 1000008447
Coordinates: x=7188366, y=607762, z=199
Description: An axe-blade (Fig. 43) found near the southern tip of Luhtalamminsärkkä, approximately 19 kilometres southeast of the Suomussalmi town centre. Located on the northern shore of Lake Vuokkijärvi, the site of the discovery is submerged, and the archaeological context of the axe-blade is probably largely destroyed. The artefact can be identified as a Finnish-Russian curve-backed axe-blade and is somewhat similar to those documented in Kuusamo and Puolanka (Appx. 1: 20 52). The dating of the blade ranges from the 9th to the 14th centuries.
Field research: –
Fig. 43. The axe-blade of Luhtalamminsärkkä.

90. *Suomussalmi, Mökkimaa 2*

Region: Kainuu
Finds: NM 39923: 1–2
Register number: 1000023519
Coordinates: x=7198249, y=580105, z=225

Description: A penannular bronze brooch and an arrowhead found by a local metal detectorist on a swamp-surrounded narrow ridge of Mökkimaa approximately 10 kilometres west of the Suomussalmi town centre in 2014. According to the finder, the arrowhead was found at the edge of the swamp while the brooch was situated some 15 metres to the north. There is also a historical tar-burning pit located in the area. The site was surveyed in 2014, but no observations regarding the archaeological context of the finds were made. As no modern day forestry, harrowing or other disturbances have taken place in the area, the site may be relatively well preserved.

The brooch (Fig. 44) is small and heavily corroded. The end-knobs are simple and almost hemispherical in shape although this may be the result of the corrosion. No ornamentation can be discerned on the ring, and the pin is simple and apparently manufactured of copper-alloy sheet. Due to the poor condition of the artefact, its identification is problematic, but it seems to share similarities with small brooches with flat or faceted end-knobs of Viking Age and Crusader Period dating (cf. Salmo 1956: 59–63). These brooches are relatively common throughout Scandinavia and the Baltics, but they are also found in Finland (e.g. Lehtosalo-Hilander 1982b: 105–106; Taavitsainen 1990: 206–207). The arrowhead is in a relatively poor condition...
as well, but it seems to be transverse-bladed, which is a common arrowhead-type throughout the Iron Age northern Europe. The artefact appears to be closest to the specimens found in the Viking Age or Crusade period contexts in southwestern Finland (Hiekkanen 1979: 30–32).

Field research: 2014, Inspection, Esa Suominen

Fig. 44. The penannular brooch of Mökkimaa.

91. Suomussalmi, Markonsuo 1-3

Region: Kainuu
Finds: NM 40334: 1–2
Register number: 1000025088; 1000027331; 1000027330
Coordinates: \(x=7200795, y=577041, z=220; x=7200665, y=577043, z=220; x=7200692, y=577251, z=217, 5 \)

Description: Several Late Iron Age or early historic artefacts and artefact fragments have been recovered in the Markonsuo area since the year 2014. The area consists of three separate concentrations of material dispersed in an area of some 250 metres in diameter and based on elevated portions of the otherwise swamp-dominated area. The find material recovered from these three sites includes an axe-blade, two knives, nails, copper-alloy cooking container fragments and burned bones. The site was surveyed in 2015 and during the fieldwork, some indicators of fireplaces, such as patches of red-burned sand, were detected in the area. Based on the assemblage of finds as well as the fieldwork results, at least some of these artefacts seem to belong to dwelling sites or camps. Currently, the
only identifiable artefact in Markonsuo is the axe-blade, which can be categorised as a curve-backed Finnish-Russian type (cf. Wuolijoki 1972: 9–11). Therefore, the artefact is of same 9th–14th century style as those documented in Kuusamo, Puolanka and Suomussalmi (cf. sites).

Field research: 2015, Inspection, Esa Suominen & Petri Anttonen

92. Suomussalmi, Ikusranta

Region: Kainuu
Finds: NM 40871
Register number: 1000027436
Coordinates: x=7200019, y=588426, z=200
Description: An axe-blade found by a local metal detectorist on the western side of the Vuonanniemi peninsula, approximately 3.5 kilometres northwest of the Suomussalmi town centre in 2015. The specifics of the find are well documented and the location of the discovery can be placed in a thicket at the edge of a small wetland separating the site from Lake Kiintajärvi. The artefact was detected immediately under the turf at the interface between the humus and the mineral-soil. The site was surveyed by Suominen soon after the discovery, but the archaeological context of the axe-blade could not be determined. The artefact is robust and typologically closest to the long-butted bearded axe-blade found in Komeronniemi (Appx. 1: 72). The dating of these Karelian axe-blades ranges from the 11th to the 13th century (Wuolijoki 1972: 33).

Field research: 2015, Inspection, Esa Suominen & Petri Anttonen

93. Suomussalmi, Kortejärvi

Region: Kainuu
Finds: NM 40872
Register number: 1000027464
Coordinates: x=7216291, y=567385, z=190
Description: A pair of penannular bronze brooches and a few unidentified iron fragments found by a local metal detectorist on the northern side of Lake Kortejärvi in 2015. Located approximately 32 kilometres northwest of the Suomussalmi town centre, the site is based on the tip of an old peninsula now surrounded by wetlands. Brooches were found immediately under the turf with only about one metre in between. Interestingly, an earthen mound of approximately 0.4 metres in height and
2.8 in diameter was also detected. Although the nature of this mound is currently unknown, it seems to be related to the artefacts. The site was surveyed soon after the discovery, but no conclusive interpretations regarding the archaeological context of the brooches were made. However, it seems likely that the artefacts may originate from a grave, which was marked with a mound.

Both brooches are relatively similar to each other (Fig. 45). The cross-section of the rim is oval and the end-knobs are flattened and rolled upwards. There is no visible ornamentation to be seen in either of the artefacts. Based on their morphology, the objects can be placed in the group of penannular brooches with rolled end knobs. These brooches are most commonly found in southwestern Finland, where they are presumed to have been manufactured. In the research area, the closest parallel can be found in Pyhäntä (Appx. 1: 58). The dating of the penannular brooches of this style ranges from the 10th to 13th century (Salmo 1956: 54–57).

Field research: 2015, Inspection, Esa Suominen & Petri Anttonen

Fig. 45. One of the penannular brooches of Kortejärvi after photo by P. Anttonen (published by permission).

94. Suomussalmi, Niemenkangas 7

Region: Kainuu
Finds: NM 40875
Register number: 1000027437
Coordinates: x=7200234, y=588357, z=202, 5
Description: Several small metal fragments found on the southwest side of the Vuonanniemi peninsula by a local metal detectorist in 2015. Artefacts were scattered in an area of about 20x10 metres in size and were mostly unearthed immediately under the turf. The site is located just 200 metres southeast of the find location of the Karelian axe-blade of Ikusranta (Appx. 1: 92). The material recorded from Niemenkangas 7 consists of several copper-alloy sheets and unidentified iron fragments as well as a handle of a copper-vessel. While the dating of the site is difficult to determine, the handle is similar to those used in the Late Iron Age and medieval copper kettles (Schwindt 1893: Figs. 92, 93, 97; Kivikoski 1934: Fig: 4; Taavitsainen 1986; Anttila 2002: Figs. 1, 6, 8, 58, 59). The archaeological context of the site can only be confirmed by excavations.

Field research: 2015, Inspection, Esa Suominen & Petri Anttonen

95. Suomussalmi, Tökinlampi

Region: Kainuu
Finds: NM 41074
Register number: 1000028684
Coordinates: x=7196338, y=582741, z=211

Description: A fragment of an oval tortoise brooch, a knife and several copper-sheets found by a local metal detectorist on the northeast corner of the small Tökinlampi pond in 2015. Artefacts were recovered immediately under the turf in an area of some 50x25 metres in size. Most of the objects emerged along the edge of a gently descending slope. Further, several Late Iron Age axe-blades are documented approximately 500 metres to the southeast (Appx. 1: 100), further increasing the archaeological interest of this area. The survey of the site was conducted in 2016 by the archaeologists of the Museum of Kainuu, but currently no report is available. Based on the assemblage of artefacts, however, the find might represent a dwelling site (Hakamäki & Anttonen: 32–36). The brooch is broken and only half is remaining. Other than this, the object is in a relatively good condition and identifiable as a Karelian Crusader Period brooch. It is thoroughly covered by animal motifs, and based on the ornament pattern, it seems to be largely similar to the oval brooch found in the site of Keskimmäinen (Appx. 1: 66). Following the discussion regarding the Keskimmäinen brooch, the Tökinlampi specimen can be most likely placed in the 11th century. The knife and the copper-sheets are likely of the same age.
Field research: 2016, Inspection, Esa Suominen, Riikka Mustonen & Petri Anttonen

96. Suomussalmi, Kellojärvi

Region: Kainuu
Finds: No catalogue number available during the writing of this dissertation
Register number: –
Coordinates: x=7252813, y=603463, z=243
Description: A wooden ski found on the eastern shore of Lake Kellojärvi approximately 58 kilometres northeast of the Suomussalmi town centre in 1961. The artefact was found partially submerged in the mud after the water levels of the lake were artificially lowered for several metres due to the road building. The artefact can be identified as a Bothnic ski, although it represents the later variant of these skis. The C-14 sample analysed from the artefact places the ski in the 13th century, but no further evidence of the Late Iron Age usage has been detected (Kovalainen 1991: 30–31).

Field research: –

97. Suomussalmi, Märännönkangas

Region: Kainuu
Finds: No catalogue number available during the writing of this dissertation
Register number: –
Coordinates: x=7204353, y=585277, z=209
Description: A bronze ear-spoon found by a local metal detectorist on the southern side of Lake Iso-Märäntö, approximately 9 kilometres northwest of the Suomussalmi town centre in 2015. The site of the discovery is situated along the edge of a gently descending slope leading to the wetlands around the lake. When first detected, the artefact was exposed due to the moss harvesting conducted some time earlier. Several fragments of burned bones as well as charcoal and ash were detected in the same context. The ear-spoons were used for a long span of time starting from the Iron Age and their distribution covers most of northern Europe. In Finland, the oldest specimens come from Viking Age contexts, but they were used during the Crusader Period and the Middle Ages as well (e.g. Taavitsainen 1990: 210; Uino 1997: 363–364). The artefact found in Märännönkangas is typologically closest to the Karelian ear-spoons of the 13th and 14th centuries.
(Kivikoski 1973: Figs: 1213; 1214), which means that it has originally been a part of an elaborate chain ornament. In the research area, no other Iron Age ear-spoons are documented.

Field research: 2014, Inspection, Ville Hakamäki

98. Suomussalmi, Jysmänniemi

Region: Kainuu

Finds: No catalogue number available during the writing of this dissertation

Register number: 1000028683

Coordinates: x=7177164, y=624166, z=197

Description: Two spearheads, a knife and several burned bones found at the tip of the Jysmänniemi peninsula by a local metal detectorist in 2016. Located on the eastern end of Lake Vuokkijärvi, some 39 kilometres southeast of the town centre of Suomussalmi, the site is located in a scenic overlook of the lake. Finds were detected immediately under the turf in an area of only a few metres in diameter. The site was surveyed soon after the discovery, but no report is currently available. Although the site can be interpreted as a cremation burial much like the other isolated cremations known in the interior and northern Finland, archaeological excavations are required to confirm the nature of the site. The first spearhead (Fig. 46) can be classified as Petersen’s E-type (cf. Petersen 1919: 26–28) and is somewhat similar to the Viking Age spearheads found in Kuhmo as well as the sites of Kattilakaarre and Vanhala in Suomussalmi (Appx. 1: 14, 74, 78). The second spearhead (or arrowhead) is more problematic to interpret. It is tanged and somewhat resemblant to the artefact recovered in the cremation burial of Heinisaari (Paper IV) although slightly smaller. Based on the E-type spearhead, the site of Jysmänniemi can be placed roughly at the 9th or 10th centuries.

Field research: 2016, Inspection, Esa Suominen, Riikka Mustonen & Petri Anttonen

Fig. 46. The spearhead of Jysmänniemi after photo by P. Anttonen (published by permission).
99. Suomussalmi, Kutusaari

Region: Kainuu
Finds: No catalogue number available during the writing of this dissertation
Register number: –
Coordinates: x=7203624, y=578996, z=214, 5
Description: An axe-blade, several copper-alloy sheets and other fragments found by a local metal detectorist on the island of Kutusaari, approximately 13 kilometres northwest of the Suomussalmi town centre in 2016. The site of the discovery is located near the shoreline of the island and is otherwise surrounded by wetlands. Buried deep in the gravel, the axe-blade can be placed in the category of bearded Karelian axes (cf. Wuolijoki 1972: 33) and it is largely similar to those documented in Pyhäjärvi and Suomussalmi (Appx. 1: 57, 72, 92). The dating of these artefacts ranges from the 11th to 14th century and this is the most likely dating for the axe-blade of Kutusaari as well. The handle of a copper-alloy container belongs to the same Late Iron Age type as the ones documented in Niemikangas 7 and Sotkajärvi (Appx. 1: 51, 94).

Field research: 2017, Inspection, Riikka Mustonen

100. Suomussalmi, Varisjärvi

Region: Kainuu
Finds: No catalogue number available during the writing of this dissertation
Register number: 1000028685
Coordinates: x=7196090, y=583149, z=210
Description: A total of five axe-blades and copper-alloy sheets found by a local metal detectorist on the eastern end of Lake Varisjärvi in 2015. Located approximately 7 kilometres west of the Suomussalmi town centre and only about 500 metres southeast of the Tökinlampi site (Appx. 1: 95), the material was detected immediately under the turf in an area of 50 metres in diameter near the shoreline of the lake. Not all artefacts were exposed completely and several axe-blades are still *in situ*, which is why discussion about the provenience and the dating can only be offered for a few of these blades. The exposed artefacts seem to be of long-butted style, placing their point of origin in the Crusader Period Karelia. At least two of them have beards and one seems to be beardless. While archaeological excavations are obviously needed to understand the site, based on the axe-blades, the dating of the site seems to fall between the 11th and 14th centuries.
Field research: –

101. Taivalkoski, Salmela

Region: Northern Ostrobothnia
Finds: NM 2266: 27
Register number: –
Coordinates: –
Description: An axe-blade found in an undisclosed location in Taivalkoski during the late 19th century. The artefact is of four-lugged style with clearly extended upper lugs and a slightly asymmetrical blade. Wuolijoki (1972: 21) notes that, while the artefact has some similarities with Scandinavian axe-blades, its origin is problematic due to the variety of forms within this type (Appx. 1: 11, 19, 21, 25, 50, 71, 84, 104, 108). Huurre (1983: 378) seems to concur with the estimates made by Wuolijoki. Based on the dateable parallels, the axe-blade of Salmela can be placed in the 11th century. The exact location of the discovery cannot be determined.

Field research: –

102. Utajärvi, Lamminvaara

Region: Northern Ostrobothnia
Finds: NM 2508: 92
Register number: –
Coordinates: x=7192853, y=492936, z=143 (approximated coordinates)
Description: An axe-blade found in the swamp-surrounded highland of Lamminvaara approximately 23 kilometres northeast of the Utajärvi town-centre around 1887. The site was surveyed in 1987, but the precise location, as well as the nature of the site remains unknown. The blade of the axe is broad and four-lugged, although the uppermost lugs are on a rudimentary level. While the earliest accounts suggest that the artefact is a woodcutter’s axe, it belongs to Petersen’s M-type (Wuolijoki 1972: 29; Huurre 1983: 381). Therefore, the dating of the artefact ranges from the 11th to 12th century.

Field research: 1987, Survey, Simo Vanhatalo
103. Utajärvi, Rokuanvaara

Region: Northern Ostrobothnia
Finds: NM 2508: 101
Register number: –
Coordinates: x= 7161235, y=475364, z=193 (approximated coordinates)
Description: An axe-blade found in the Rokua area some 22 kilometres south of the Utajärvi town-centre in 1887. The area is topographically impressive and known for its highlands, valleys and lakes, but specific information concerning the circumstances, context or the location of the find cannot be determined. The axe-blade is two-lugged with gently curving back and its blade is decorated with simple motifs. Wuolijoki (1972: 23) places the axe-blade in the group of curve-backed Finnish axe-blades with most parallels in Savo and Karelia. In the research area, similar blades are documented in Kajaani, Kärämäki, Suomussalmi and Vaala (Appx. 1: 6, 31, 82, 91, 109). The artefact can be dated to the Crusader Period.
Field research: 1987, Survey, Simo Vanhatalo

104. Utajärvi, Marttisjärvi

Region: Northern Ostrobothnia
Finds: –
Register number: –
Coordinates: x=7214902, y=503086, z=120 (approximated coordinates)
Description: An axe-blade (see Fig. 10) found in the field near the Uutela estate on the northern shore of Lake Marttisjärvi in the village of Juorkuna sometime during the 1960s or 1970s. The artefact was brought to the University of Oulu in 1985, and it was documented and conserved in the archaeology laboratory. Afterwards it was returned to Utajärvi, where it eventually went missing (Okkonen 2009). Although the whereabouts of the artefact are unknown, the documentation remains, providing a basis for estimating its provenience and age as presented by Huurre (1991) and Okkonen (2009). The blade belongs to the four-lugged type, and its blade increases slightly asymmetrically towards the tip. Morphologically, the artefact is relatively similar to other four-lugged axe-blades known in the research area (Appx. 1: 11, 19, 21, 25, 50, 71, 84, 102, 108) and can be, therefore, dated around the 11th century.
Field research: 1987, Survey, Simo Vanhatalo
105. **Utajärvi, Sorsasaari**

Region: Northern Ostrobothnia
Finds: NM 3147: 23
Register number: 1000011987
Coordinates: x=7185532, y=465832, z=72, 5

Description: A knife handle found on the island of Sorsasaari approximately six kilometres northeast of the Utajärvi town centre during the early 20th century. The age of the artefact is unclear. However, according to Huurre (1991: 54–55), the ornamentation and the form are akin to the Karelian Crusader Period handles, though in this case the artefact might represent a medieval variant. The exact location of the discovery is unknown, but it was allegedly found in a stone setting resembling the foundations of a house, which offered ceramics, glass and animal bones as well. Several Stone Age artefacts are documented on the northern side of the island. The site has been visited by archaeologists on three occasions, but no further information concerning the handle has surfaced. In the research area, a somewhat similar handle is known in the municipality of Hyrynsalmi (Appx. 1: 2).

Field research: 1954, Survey, Matti Huurre; 1987, Survey, Simo Vanhatalo; 2008, Survey, Johanna Seppä

106. **Utajärvi, Kokkomaa**

Region: Northern Ostrobothnia
Finds: NM 39816: 1–27
Register number: 1000023380
Coordinates: x=7219560, y=502380, y=120–127

Description: Several Late Iron Age and historical finds recovered by the metal detectorists at the southbound terrace on the northern side of Lake Iso Olvasjärvi, near the municipal border between Utajärvi and Pudasjärvi in 2014. The find consists of a tanged spearhead with a barber tip, several knives, a bronze bell, a fishing-hook and several copper sheets and unidentified iron fragments. Artefacts were found in several clusters in an oval area of approximately 300 metres in length and 150 in width. The site of the discovery is sandy moraine covered by a coniferous forest and most of the artefacts were recovered just under the turf. The site is closely associated with Pitääminmaan and Viinivaara E (Appx. 1: 49; Paper III). Although, no clear aboveground structures were detected, based on the assemblage of finds including several copper sheets as well as the observations
made in the nearby sites, it seems plausible that at least a Late Iron Age dwelling site is located in the area. For the most part, the dating and provenience of the artefacts is impossible to discuss in detail due to their fragmented nature and ageless form. For example, the bell is somewhat similar to the cast bells discussed by Rainio (2010: 44–49) although a great deal of variation exists among these artefacts and their dating is broad. The same is true for the other identifiable objects perhaps with the exception of the spearhead (Fig. 10) which bears resemblance to the 8th–13th century javelins of the Baltics (Atgāzis 1974: Fig. 2–3) as well as to some of the Scandinavian Viking Age spear forms (e.g. Solberg 1984: 137–140). With most of the tang missing, however, the typing of the artefact is problematic at best.

Field research: 2014, Inspection, Mika Sarkkinen

107. Vaala, Koveronkoski

Region: Northern Ostrobothnia
Finds: NM 150
Register number: –
Coordinates: $x=7161724$, $y=486744$, $z=94–98$

Description: A silver neck-ring found during the river dredging of the Kovero rapids in the village of Lintukylä in 1825. The site is located at the upper reaches of the river Oulujoki, only about seven kilometres of its source at Lake Oulujärvi. Little is known about the circumstances of the discovered and no estimates about the exact location or the nature of the site can be made. Today, the site is home to one of the largest hydroelectric plans in the research area, which is why it seems likely that nothing remains of the contexts of the neck-ring. The artefact is of Permian type and counterparts are documented in a wide geographical area including Russia, Scandinavia, the Baltics as well as the British Isles (Närhi 1978: 14–15; Huurre 1983: 363). In Finland, neck-rings of this type are met mostly in the southwest regions (Kivikoski 1972: 68, 100). The artefact is manufactured of a decorated silver rod and both ends are equipped with attachment-hoops. While the artefact has originally formed a round hoop, it has been subsequently bent into a spiral form (Huurre 1983: 363). A similar treatment is seen with most of the Permian rings, and the practise has been interpreted either as an attempt to transform the artefact into armrings (Närhi 1972: 15) or as a sign of them representing money (Hårth 2007). According to Närhi (1978: 14–15), the Koveronkoski neck-ring belongs to the 9th or 10th century.

Field research: 1969, Survey, Leena Tomanterä & Marja Mustakallio

205
108. Vaala, Kökkölä

Region: Northern Ostrobothnia
Finds: NM 3663:21
Register number: 785010013
Coordinates: x=7156104, y=489533, z=125
Description: An axe-blade found near the Kökkölä estate on the eastern shore of Lake Nimisjärvi, approximately 4.5 kilometres southwest of the Vaala town centre during the late 19th century. Although, the exact location of the discovery is not documented, according to the record, it was found about 30 centimetres deep in one of the fields separating the Kökkölä estate from Lake Nimisjärvi. According to Suominen, many of these fields are today largely overgrown, making the site difficult to observe. Interestingly, the area has offered a large number of Stone Age, Early Metal Age and historical finds. The axe-blade found in the site is four-lugged and the blade has been equipped with two vertical grooves. Typologically it correlates with other four-lugged axes documented in the research area (Appx. 1: 11, 19, 21, 25, 50, 52, 71, 84, 101, 104), although it is of miniature stature. Wuolijoki (1972: 20) places the artefact in the unclassified style of Scandinavian axe-blades with large tongue-like lugs and dates it to the 9th century.

Field research: 1900, Inspection, Julius Ailio; 1969, Survey, Marja Mustakallio & Leena Tomanterä; 1987, Inspection, Esa Suominen; 1999; Excavation, Esa Suominen; 2017, Survey, Hans-Peter Schulz & Jaana Itäpalo

109. Vaala, Lassila Leväpuro

Region: Northern Ostrobothnia
Finds: NM 3862: 20
Register number: –
Coordinates: x=7159224, y=507976, z=115
Description: An axe-blade found in the village of Jaalanka about 15 kilometres east of the Vaala town centre. The artefact was discovered on the Leväpuro estate by a local farmer during the late 19th century, but today the location of the discovery is forgotten. Therefore, nothing can be said about the archaeological context of the find. The axe-blade is two-lugged, its back curving slightly towards the edge. Typologically, the artefact is almost identical to the one found in Rokuanvaara (Appx. 1: 103), though no grooves or patterns can be seen on its blade. Wuolijoki (1972: 23–25) places the artefact in the group of curve-backed
Finnish axe-blades with similar examples in both southwestern Finland and Karelia. Dating of these axe-blades covers the Crusader Period.

Field research: 1969, Survey, Marja Mustakallio & Leena Tomanterä
Original papers

IV Hakamäki, V. & Maijanen, H. Manuscript. Fragmented and separated: Cultural Implications of the Late Iron Age Burial Site of Heinisaari, Northeast Finland. *Fennoscandia Archaeologica*.

Reprinted with permission from The Archaeological Society of Finland (I & IV), The Historical Association of Northern Finland (II) and Taylor & Francis (III & V).

Original publications are not included in the electronic version of the dissertation.
152. Sarviaho, Samu (2017) Ikuinen rauha : vuoden 1323 Pähkinäsaaren rauha suomalaisessa historiantutkimuksessa ja historiokulttuurissa 1800- ja 1900-luvuilla
153. Niemitalo-Haapola, Elina (2017) Development- and noise-induced changes in central auditory processing at the ages of 2 and 4 years
154. Sandbacka, Kasimir (2017) Utopia derailed : Rosa Liksom’s retrospective of the modern project
156. Martinviita, Annamari (2017) Online community as experience and discourse : a nexus analytic view into understandings of togetherness online
162. Lehto, Liisa-Maria (2018) Korpusavustain diskurssanalyysi japanisuomalaisten kielipuheesta
163. Parhi, Katarina (2018) Born to be deviant : histories of the diagnosis of psychopathy in Finland

Book orders:
Granum: Virtual book store
http://granum.uta.fi/granum/
Ville Hakamäki

SEEING BEHIND STRAY FINDS

UNDERSTANDING THE LATE IRON AGE SETTLEMENT OF NORTHERN OSTROBOTHNIA AND KAINUU, FINLAND