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Association of circulating 
metabolites with healthy diet 
and risk of cardiovascular disease: 
analysis of two cohort studies
Tasnime Akbaraly  1,2,3,17,18, Peter Würtz4, Archana Singh-Manoux2,5, Martin J. Shipley2,  
Rita Haapakoski2, Maili Lehto2, Catherine Desrumaux1,18,17, Mika Kähönen6, Terho 
Lehtimäki7, Vera Mikkilä8, Aroon Hingorani  9, Steve E. Humphries9, Antti J. Kangas4, Pasi 
Soininen4,10, Olli Raitakari6,11, Mika Ala-Korpela4,10,12,13,14,15 & Mika Kivimäki2,16

Diet may modify metabolomic profiles towards higher or lower cardiovascular disease (CVD) risk. We 
aimed to identify metabolite profiles associated with high adherence to dietary recommendations - the 
Alternative Healthy Eating Index (AHEI) - and the extent to which metabolites associated with AHEI 
also predict incident CVD. Relations between AHEI score and 80 circulating lipids and metabolites, 
quantified by nuclear magnetic resonance metabolomics, were examined using linear regression 
models in the Whitehall II study (n = 4824, 55.9 ± 6.1 years, 28.0% women) and were replicated in the 
Cardiovascular Risk in Young Finns Study (n = 1716, 37.7 ± 5.0 years, 56.3% women). We used Cox 
models to study associations between metabolites and incident CVD over the 15.8-year follow-up in the 
Whitehall II study. After adjustment for confounders, higher AHEI score (indicating healthier diet) was 
associated with higher degree of unsaturation of fatty acids (FA) and higher ratios of polyunsaturated 
FA, omega-3 and docosahexaenoic acid relative to total FA in both Whitehall II and Young Finns studies. 
A concordance of associations of metabolites with higher AHEI score and lower CVD risk was observed in 
Whitehall II. Adherence to healthy diet seems to be associated with specific FA that reduce risk of CVD.

The benefits of healthy diet are supported by nutritional epidemiological studies on coronary heart diseases1, 
respiratory diseases2 and healthy old-age phenotypes3. Recent advancements of high-throughput metabolite 
profiling in large epidemiological studies allow the determination of metabolites predicting the risk for cardio-
metabolic diseases, providing insights into the molecular mechanisms underlying age-related diseases, such as 
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cardiovascular diseases (CVD)4. It has been hypothesized that metabolites are very responsive to dietary exposure 
as diet is an important source of metabolite variation and also induces metabolic response.

Few studies have examined the association between overall diet and metabolites and a majority of investiga-
tions assessed metabolites via mass spectrometry methods. In the EPIC-Potsdam cohort study of 2380 adults, 
for example, dietary patterns were derived through reduced rank regression methods to explain the maximum 
variations of metabolites5 and a weak association between habitual diet and serum metabolites was observed. 
In a subsample of 1977 participants of the ARIC study, amongst the 336 metabolites assessed, dietary pattern 
“sugar-rich food and beverages” was associated with 7 unsaturated long-chain fatty acids, five 2-hydroxybutyrate–
related metabolites, two sex steroids, five �-glutamyl dipeptides, and four metabolites in other pathways6 and in 
the Women’s Health Initiative study, Prudent dietary pattern was associated with 85 metabolites (mostly lipids)7. 
Another study, carried out on 502 participants from the Prostate, Lung Colorectal and Ovarian Cancer Screening 
Trial, examined the correlations between 412 metabolites, food groups and the Healthy Eating Index score8. The 
authors reported that 39 metabolites were associated with 13 dietary groups and concluded that the metabolomic 
approach might be useful in identifying biomarkers reflecting the effect of nutrition intakes on human metab-
olism. In agreement with this, results from a study assessing lipoprotein particle subclasses profile via Nuclear 
Magnetic Resonance (NMR) in 663 adults showed associations between specific dietary patterns (“fish” and 
“junked food” pattern) and lipoprotein subclasses9. Identifying robust associations between dietary habits and 
metabolites may offer the possibility to better understand pathways by which overall diet mediates protection 
against chronic diseases, such as CVD, but none of these studies examined this issue.

In this study, we sought to identify metabolites associated with adherence to a healthy diet and to determine 
the extent to which these metabolites are also related to reduced risk of CVD. To do so, we assessed adherence 
to dietary guidelines in a large cohort of British middle-aged men and women from the Whitehall II study10 
using the Alternative Healthy Eating Index (AHEI) – a dietary index whose high scores have been shown to be 
associated with reduced risk of CVD morbidity11 and mortality12. We examined associations of healthy diet with 
metabolites quantified using a serum NMR metabolomics and replicated the results in an independent cohort, the 
Cardiovascular Risk in Young Finns Study13. We then determined the extent to which metabolites associated with 
AHEI were also associated with the risk of developing CVD over 15.8 years of follow-up in the Whitehall II study.

Results
Participant characteristics. A total of 4824 participants from the Whitehall II study were included in the 
discovery analysis. Characteristics are described in Table 1. Mean concentration of the 80 metabolites are detailed 
in Supplementary Material-Table A. The mean (�SD) score of AHEI was 50.7 � 9.8 points. Compared to the 
3034 participants who attended the 1997/99 examination but were not included in the present analysis, those 
included were more likely to be men, white, with high socio-economic status, to practice physical activity and to 

Characteristics

Whitehall II Young Finns Study

N
% or mean 
(SD) N

mean ± SD 
or ��

Sex
Men 3483 72.2 966 56.3

Women 1341 27.8 750 43.7

Age, years 4824 55.9 (6.1) 1716 37.7 (5.0)

Ethnicity

White 4541 93.9 1716 1716 (100.0)

South Asian 183 3.9 / /

Black 100 2.2 / /

Smoking habits

Non 2490 52.1 886 51.6

Former 1864 39.1 421 24.5

Current 470 8.9 409 23.8

Physical activity MET unit /hours/week 4824 15.6 (14.8) 1716 19.6 (21.5)

Total score in AHEI, points 4824 50.7 (9.8) 1716 46.3 (8.0)

Total energy intake, kcal/day 4824 2233 (683) 1716 2392 (800)

Prevalent type 2 diabetes
No 4528 93.9 1665 97.0

Yes 296 6.1 51 3.0

Systolic blood pressure, mmHg 4824 123.1 (16.5) 1716 120.3 (14.3)

Diastolic blood pressure, mmHg 4824 77.4 (10.5) 1714 75.4 (11.4)

Use of antihypertensive treatment
No 4 229 87.4 1604 93.5

Yes 607 12.6 112 6.5

Triglycerides, mmol/L 4823 1.35 (0.86) 1714 1.38 (0.90)

HDL-cholesterol, mmol/L 4298 1.46 (0.39) 1708 1.34 (0.32)

Use of lipids lowering drugs
No 4669 96.9 1686 98.2

Yes 155 3.1 30 1.7

Body mass index, kg/m² 4175 26.0 (3.9) 1695 25.8 (4.7)

Table 1. Characteristics of Whitehall II participants and Young Finns Study participants.
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report higher total energy intake. Participants included were also less likely to be smoker, to use antihypertensive 
or lipids lowering drugs and showed lower concentrations of triglycerides and lower diastolic blood pressure. No 
significant difference in AHEI score was observed (Supplementary Material- Table B). Regarding participants 
included in the Young Finns Study (replication cohort), the latter were younger and showed lower means of AHEI 
compared to participants included in Whitehall II study (Table 1).

Association between AHEI score and metabolites in the Whitehall II study. Results of the asso-
ciations between AHEI z-score and 80 metabolites in Whitehall II study are shown in Fig. 1, (estimates and  
p values are available in Supplementary Material-Table C). Good adherence to healthy dietary recommenda-
tions, as assessed by higher AHEI score, was associated with lower circulating concentrations of specific amino 
acids (isoleucine, leucine and phenylalanine) and of metabolites related to gluconeogenesis (mainly glycerol) as 
well as lower chronic inflammation (assessed by glycoprotein acetyls) after accounting for Bonferroni correction 
for 80 tests. Adherence to healthy diet was also associated with a smaller average size of VLDL particles and 
larger average size of HDL particles. Regarding lipids in different lipoproteins subclasses, participants with higher 
AHEI score showed lower concentration of lipids in VLDL, IDL and LDL particles (from large to small) and 
with lipids in small HDL particles. AHEI score was also inversely associated with concentrations of cholesterol 
in VLDL, cholesterol not contained in HDL nor LDL (remnant cholesterol) and with free cholesterol. Higher 
AHEI score was associated with lower triglycerides concentrations in all lipid subfractions and lower circulating 
sphingomyelins.

The strongest associations between metabolites and AHEI score were observed for fatty acid measures, espe-
cially for monounsaturated and conjugated linoleic acids for which linear regression coefficients were three times 
higher than for other metabolites on average (Supplementary Material-Table B). Regarding fatty acids, high 
AHEI score was associated with lower concentrations of saturated and monounsaturated fatty acids. Conversely, 
participants with higher AHEI score displayed higher concentrations of polyunsaturated fatty acids, including 

Figure 1. Age-, sex- and energy intake-adjusted associations between AHEI z-score and metabolites in 
Whitehall II study. Results are expressed as regression coefficients accompanied with their 95% confidence 
interval for one standard deviation increment in AHEI diet score. To facilitate comparison, metabolites were 
square root transformed and standardized to z-scores (mean � 0, SD � 1).  P � 0.0006;  P � 0.0006.
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omega-3 (docosahexaenoic acid especially) and omega-6 (linoleic acids) but lower concentrations of conjugated 
linoleic acids. Analyses for ratios of each fatty acids category relative to total fatty acid concentrations confirmed 
the association between AHEI score and fatty acids and tended to display even stronger associations. All anal-
yses were repeated by replacing AHEI by AHEI 2010 and similar trends were observed. Results are detailed in 
Supplementary Material-Table D.

The metabolites associations were only modestly attenuated (30.7% on average) after further adjustment for 
ethnicity, physical activity, smoking habits and cardiovascular risk factors (including type 2 diabetes, diastolic 
and systolic blood pressure, use of antihypertensive drugs and use of lipid-lowering drugs). All but one remained 
statistically significant (Table 2). An additional model in which body mass index (BMI) was added as covariate 
was performed. Analyses, carried out on the 4175 participants with available data on BMI, showed similar results 
(Supplementary Material-Table E).

Because both dietary changes and a modification of circulating metabolites are expected in participants with 
prevalent CVD, cancer or longstanding illness, we performed sensitivity analyses to assess the extent by which 
the AHEI-metabolites associations reported here might be explained by these diseases. Analyses repeated after 
excluding participants (1) reporting history of cardiovascular diseases (2) with a diagnosis of cancer and (3) 
reporting a longstanding illness indicate that the associations reported were not explained by these chronic dis-
eases (Supplemental Material-Table F).

Replication analysis in the Young Finns study. Analyses of the associations between the 41 metabolites 
(those significantly associated with AHEI score in multivariate model performed in Whitehall II study) and AHEI 
z-score were repeated in the Young Finns Study whose sample effective was about the third of the Whitehall II 
effective. Mean concentration of these 41 metabolites in Young Finns are listed in Supplemental Material-Table 
G. The replication analyses and meta-analyses, displayed in Table 2 and Supplementary Material-Table H respec-
tively and illustrated in Fig. 2 showed that 38 of the 41 diet-metabolites associations were directionally concord-
ant. The only deviating measures are branched amino acids, glycerol and size of HDL particle.

Of the 41 metabolites assessed, AHEI score was significantly associated with two fatty acids and 5 fatty acids 
ratio (Fig. 2 and Supplementary Table H) confirming the strong associations between good adherence to healthy 
diet and higher concentrations of omega-3 and docosahexaenoic acid, higher ratios of all polyunsaturated fatty 
acids ratio (including omega-3, omega-6) and lower ratios of saturated and monounsaturated fatty acids relative 
to total fatty acids. Regarding the other metabolites, even if the direction of most of associations was similar as 
observed in Whitehall II, the associations were weaker and did not reach statistical significance in the Young 
Finns study with much smaller sample size than in Whitehall II.

Metabolites associated with AHEI and predicting cardiovascular disease. We assessed the extent 
to which each of the 41 metabolites associated with diet score also predicted CVD events. Of the 5481 Whitehall 
II participants, 697 developed CVD over the 15.8 years of follow-up. Results are presented in Table 3. Metabolites 
found to significantly predict CVD risk consisted of amino acids, glycoprotein acetyls, size of lipoprotein parti-
cule size, total lipids in lipoproteins (except those in IDL and in small HDL), total cholesterol in VLDL particles 
and triglycerides. Amongst fatty acids, significant association were found for saturated fatty acids and monoun-
saturated fatty acids. Degree of unsaturation was inversely associated with CVD risk. When ratio of fatty acids 
categories relative to total fatty acids concentration was considered, significant associations were observed for 
mono- and poly-unsaturated fatty acids, omega-3 and docosahexaenoic acid, with higher ratio of monounsatu-
rated fatty acids increasing the risk of CVD risk, and higher ratio of polyunsaturated fatty acids, omega-3 and 
docosahexaenoic acid decreasing CVD risk. Other fatty acids ratios were not found significantly associated with 
CVD risk.

Figure 3 illustrates whether metabolites associated with poor adherence to healthy dietary guidelines were 
also related to higher CVD risk. Of the 41 diet-metabolites and metabolites-CVD risk associations assessed, only 
5 were directionally discordant and concerned polyunsaturated fatty acids, omega 6 and linoleic acids whose 
higher blood concentrations were associated with higher CVD risk but without reaching statistical significance. 
Discordance in terms of direction of association was also observed for total lipids in small HDL and sphingomy-
elin (Fig. 3).

Discussion
The present study based on metabolic profiling analyses identified and replicated metabolites associated with 
the adherence to dietary recommendations provided by the Alternative Healthy Eating Index after taking into 
account potential confounders and multiple testing in two population-based studies - the Whitehall II and the 
Cardiovascular Risk in Young Finns. A key finding of these analyses concerns the metabolic profiles of fatty 
acids associated with diet score. Furthermore, our study highlights the concordance between metabolites profile 
associated with low adherence to healthy diet and the metabolites profile associated with 15.8-year risk of CVD 
in Whitehall II participants by showing that an increased risk of CVD onset was associated with high levels of 
saturated and monounsaturated fatty acids and a decreased risk of CVD was associated with a higher ratio of 
polyunsaturated fatty acids, omega-3 and docosahexaenoic acid relative to total fatty acids concentrations (Fig. 4).

Our metabolic profiling analyses identified 41 metabolites associated with the adherence to healthy diet. The 
strongest associations between metabolites and AHEI score were observed for fatty acid measures. We reported a 
robust and positive association between AHEI scores and degree of unsaturation of fatty acids, ratio and concen-
trations of polyunsaturated fatty acids including omega-3 (docosahexaenoic acid in particular, brought by fatty 
fish intake but also oil supplements), omega-6 (linoleic acids found in nuts, fatty seeds and their derived vegetable 
oil). Conversely, a negative association was found between AHEI scores and ratio (and concentrations) of satu-
rated (found in dairy products, fatty products, processed food and fatty meat intakes) and monounsaturated fatty 
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Multivariable-adjusted Model�
Whitehall II (N = 4699) Young Finns Study (N = 1625)
Beta 95% CI p Beta 95% CI p

Amino Acids
Isoleucine �0.044 �0.072 to �0.017 0.002   0.011 �0.034 to 0.056 0.64
Leucine �0.061 �0.088 to �0.034 1�10�5   0.010 �0.035 to 0.055 0.65
Phenylalanine �0.074 �0.104 to �0.044 1�10�6 �0.038 �0.090 to 0.014 0.15
Glycolysis related metabolites
Glycerol �0.044 �0.074 to �0.014 0.004 �0.009 �0.060 to 0.042 0.73
In�ammation
Glycoprotein acetyls �0.035 �0.064 to �0.006 0.02 �0.012 �0.063 to 0.039 0.64
Size of lipoprotein particles (Mean diameters)
VLDL particle size �0.048 �0.076 to �0.019 0.0009 �0.003 �0.051 to 0.046 0.91
HDL particle size   0.033   0.006 to 0.061 0.02 �0.005 �0.051 to 0.040 0.82
Total lipid concentrations in lipoprotein subclasses
Total lipids in chylomicrons and extremely large VLDL �0.073 �0.102 to �0.044 8�10�7 �0.033 �0.082 to 0.016 0.19
Total lipids in very large VLDL �0.061 �0.089 to �0.032 4�10�5 �0.022 �0.070 to 0.027 0.38
Total lipids in large VLDL �0.049 �0.078 to �0.021 0.0007 �0.006 �0.054 to 0.042 0.81
Total lipids in medium VLDL �0.036 �0.067 to �0.008 0.01   0.001 �0.048 to 0.048 0.99
Total lipids in small VLDL �0.019 �0.048 to 0.010 0.21   0.017 �0.031 to 0.065 0.49
Total lipids in IDL �0.039 �0.069 to �0.010 0.01 �0.032 �0.084 to 0.021 0.24
Total lipids in large LDL �0.045 �0.075 to �0.015 0.003 �0.032 �0.084 to 0.021 0.24
Total lipids in medium LDL �0.044 �0.074 to �0.014 0.004 �0.028 �0.080 to 0.024 0.29
Total lipids in small LDL �0.039 �0.069 to �0.009 0.01 �0.028 �0.080 to 0.023 0.28
Total lipids in small HDL �0.054 �0.083 to �0.024 0.0003   0.001 �0.052 to 0.054 0.96
Cholesterol
Cholesterol in VLDL �0.036 �0.065 to �0.006 0.02 �0.006 �0.055 to 0.043 0.81
Remnant cholesterol (non�HDL, non�LDL �cholesterol) �0.041 �0.071 to �0.011 0.007 �0.021 �0.072 to 0.029 0.41
Free cholesterol �0.055 �0.084 to �0.026 0.0002 �0.035 �0.089 to 0.018 0.19
Glycerides and other Phospholipids
Serum total TG �0.034 �0.063 to �0.005 0.02 �0.002 �0.050 to 0.047 0.95
TG in VLDL �0.031 �0.061 to �0.003 0.04   0.001 �0.046 to 0.049 0.95
TG in LDL �0.031 �0.060 to �0.002 0.04 �0.012 �0.064 to 0.041 0.66
TG in HDL �0.060 �0.090 to �0.031 5�10�5 �0.017 �0.070 to 0.036 0.53
Sphingomyelins �0.081 �0.110 to �0.053 2�10�8 �0.022 �0.074 to 0.031 0.42
Fatty Acids (FA)
Saturated FA �0.056 �0.086 to �0.027 0.0002 �0.029 �0.080 to 0.022 0.27
Monounsaturated FA �0.069 �0.098 to �0.040 2�10�6 �0.022 �0.072 to 0.028 0.39
Polyunsaturated FA   0.076 0.047 to 0.106 4�10�7   0.028 �0.025 to 0.080 0.30
Omega-3 FA   0.140 0.111 to 0.169 1�10�20   0.097   0.045 to 0.149 0.0003
docosahexaenoic acid   0.176 0.147 to 0.205 1�10�32   0.096   0.044 to 0.149 0.0003
Omega-6 FA   0.054 0.024 to 0.083 0.0004   0.009 �0.043 to 0.062 0.72
linoleic acid   0.076 0.046 to 0.105 6�10�7   0.004 �0.049 to 0.056 0.89
Conjugated linoleic acid �0.198 �0.227 to �0.169 2�10�40   NA NA
Fatty acids ratios, relative to total fatty acids
Estimated degree of unsaturation   0.210 0.183 to 0.238 1�10�48   0.116   0.066 to 0.166 5�10�6

Ratio of saturated FA to total FA (%) �0.164 �0.194 to �0.134 4�10�27 �0.089 �0.141 to �0.037 0.0008
Ratio of monounsaturated FA to total FA (%) �0.124 �0.152 to �0.095 2�10�17 �0.034 �0.082 to 0.015 0.17
Ratio of polyunsaturated FA to total FA (%)   0.194 0.162 to 0.219 2�10�41   0.082   0.033 to 0.131 0.0011
Ratio of omega-3 FA to total FA (%)   0.190   0.162 to 0.219 1�10�37   0.142   0.091 to 0.193 5�10�8

Ratio of docosahexaenoic acid to total FA (%)   0.220   0.192 to 0.249 9�10�52   0.139   0.090 to 0.189 4�10�8

Ratio of omega-6 FA to total FA (%)   0.137   0.109 to 0.166 6�10�21   0.044 �0.006 to 0.094 0.08
Ratio of linoleic acid to total FA (%)   0.145   0.116 to 0.174 1�10�22   0.029 �0.022 to 0.080 0.26
Ratio of conjugated linoleic acid to total FA (%) �0.226 �0.255 to �0.197 7�10�52   NA   NA /

Table 2. Results of multivariable adjusted linear regression models of the association between AHEI z-score 
and the 42 selected metabolites in the Whitehall II study and in Young Finns Study. �Multivariable adjusted 
model: adjusted for age, sex, total energy intake, ethnicity, smoking habits, physical activity, type 2 diabetes, 
diastolic and systolic blood pressure, use of antihypertensive drugs and use of lipid-lowering drugs. Results 
were expressed as linear regression coefficients accompanied with their 95% confidence interval. Analyses were 
carried out on participants for which all metabolites measurement were available.
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acids (affected by vegetable oils, lean meat but also produced endogenously by the desaturation of dietary satu-
rated fatty acids4,14) and conjugated linoleic acids (found in ruminant meat and dairy products15). This fatty acids 
pattern associated with AHEI score was directionally concordant with fatty acids pattern (except for omega-6) 
associated with incident CVD in Whitehall II study. Our results are also concordant with previous findings from 
observational studies suggesting associations of higher levels of omega-316 and linoleic acid17 with lower coronary 
heart disease events and an increased disease risk in relation to high levels of monounsaturated fatty acids4,18. The 
strong association found between fatty acids and diet in the Whitehall II and Young Finns studies and the fact that 
similar metabolic profile of fatty acids was associated with incident CVD suggest that these specific fatty acids are 
potential molecular mediators between unhealthy diet and increased CVD risk. Even if recent randomized tri-
als19,20 did not indicate a beneficial impact of replacing dietary saturated fatty acids with polyunsaturated ones on 
CVD risk, our work suggests that the better understanding of the mechanisms underlying the variability of these 
fatty acids may be helpful in explaining how overall diet might be linked to CVD development.

We identified detailed lipid profiles associated with a good adherence to AHEI recommendations. Using NMR 
spectroscopy, we were able to determine the lipoprotein subclasses distribution as well as their lipid composition. 
We found that participants with high score in AHEI had a lipid profile characterized by lower concentrations of 
lipids in chylomicrons and extremely large, very large and large VLDL, as well as small HDL compared to partici-
pants with low score in AHEI. Higher amounts of lipids packaged into chylomicrons may reflect higher ingestion 
of lipids through the diet and postprandial lipidemia, an established risk factor for CVD21,22. Since chylomicrons 
and VLDL are competitive substrates for triglyceride hydrolysis by lipoprotein lipase in adipose and muscle tis-
sues, higher amounts of circulating chylomicrons are usually associated with predominance of oversized VLDL 
particles. This specific metabolic profile of lipids in participants with low AHEI scores has also been linked to an 
increased risk of artherosclerosis and premature CVD23–25. The predominance of large VLDL has also been linked 
to metabolically unhealthy individuals, regardless of BMI and metabolic health definition21.

Even if the NMR metabolomics platform featured here is not designed for novel biomarker discovery and 
includes less metabolites than mass spectrometry-based platforms, the panel of biomarkers covers a wide range 
of potential relevant biomarkers for diet-CVD associations, including amino acids, glycolysis related metabolites, 
inflammation, lipids and cholesterol, glycerides and other phospholipids, and fatty acids. The possibility to quan-
tify these measures robustly in a single experiment26 is important to determine their relative importance for diet 
and CVD risk.

In contrast to other NMR methodologies of advanced lipoprotein profiling27, the platform used in this 
study provides quantification of many fatty-acid measures, some abundant proteins, and a broad range of 
low-molecular-weight metabolites together with very detailed lipoprotein subclasses profiling28. This simultane-
ous quantification of circulating biomarkers across multiple pathways provide a very detailed picture of a person’s 
metabolic state27; we found that in particular fatty acids and lipids components metabolites play a role in both 
overall unhealthy diet and incidence of CVD events.

Beyond the lipid and fatty acids components, we showed that amino acid components – phenylalanine, leu-
cine and isoleucine - were also associated with both lower AHEI score and increased incident CVD risk. These 
amino acids have previously been associated with higher risks of developing type 2 diabetes29–31. Branched-chain 
and aromatic amino acid are affected by intakes of animal (pork, beef, chicken, eggs and dairy products) and plant 
(soy beans, rice, corn, wheat) protein32. However, our analyses did not allow to assess the associations of these 
amino acids in the diet-CVD association according to their plant or animal origins. Further analyses to examine 
this question would be relevant in a context where beneficial effects of plant protein on cardiometabolic diseases 
has been reported33.

Our study has both strengths and limitations. First, the assessment of dietary intake using a semi-quantitative 
food frequency questionnaire covered only specific foods and is recognized to be less precise than dietary assess-
ment by the food diary method. However, in a large sample size cohort study, the use of food frequency ques-
tionnaires is particularly adapted and a commonly used method. Second, we assessed healthy diet through using 
the AHEI score which is a summary measure of the degree to which an individual’s diet conforms to the serving 
recommendations of the US Department of Agriculture Food Guide Pyramid and the US Dietary Guidelines 
for Americans11. By being based on a set of specific and limited food groups, AHEI does not cover all aspects of 
“healthy” diet and may not be adapted to dietary habits in all populations. However, high scores on this index 
have been shown to be associated with reduced risk of CVD11, and type 2 diabetes34. The use of AHEI in the pres-
ent analyses is particularly relevant, as previous findings from the Whitehall II study suggest that adherence to 
the AHEI may reduce the long-term risk of all-cause and cardiovascular mortality12 and to be related to an almost 
2-fold higher odds of reversing the metabolic syndrome35, a condition known to predict cardiovascular morbidity 
and mortality36. Third, AHEI provides an overall measure of the extent to which a person adheres healthy dietary 
guidelines in terms of the intake of vegetables, fruits, nuts and soy, white vs red meat, trans-fat, polyunsaturated 
and saturated fatty acids, multivitamin, alcohol and cereal fiber. Fourth, to counteract the problem of multi-
ple comparisons we applied a stringent Bonferroni correction which reduces the probability of false significant 
findings but might increase the probability of false negative results, since many of the examined metabolites and 
lipid components are strongly correlated with one another. Additionally, we adjusted our analyses for correlated 
measures such as blood pressure that may artificially reduce the associations’ estimates. Fifth, with an epidemi-
ological observational framework, our observations may be partly explained by unmeasured confounders such 
as gut microbiota which can potentially influence metabolite variability as well as dietary behaviors. However, 
by carrying out our analyses on a larger sample size population study compared to previous studies on the same 
topic and by replicating our findings in another cohort study while previous reports were based on single cohort 
studies, bring strength to the validity of our observations. The NMR platform used has also limitations. The met-
abolic profile measured through this platform provided fasting steady-state levels of metabolites. The fact that 
metabolites related to carbohydrate and protein intakes might be less detectable in fasting state than lipids and 
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fatty acids might explain why metabolites found to be associated with high quality diet were lipids and fatty acids 
while significant associations with branched amino acids, metabolites related to glycolysis were scarce and most 
of them were not confirmed in the replication analyses. Furthermore, as glycolysis related metabolites and some 
amino-acids, lipids and specific fatty acids are produced endogenously with different rates depending on issues, 
such as individual’s metabolic state, the NMR metabolite measures reflect both metabolites’ exogeneous intake 
and their endogenous synthesis; they cannot be viewed as markers of specific dietary intakes. A further limita-
tion is that the NMR platform does not include many metabolites from vegetables, fruits, nuts and soy. Further 
research examining the association of dietary exposure to a wider range of metabolites is needed.

Conclusions
Our metabolic profiling study enabled us to identify and replicate a number of metabolites robustly associated 
with adherence to dietary recommendations provided by the Alternative Healthy Eating Index. A key finding of 
these analyses concerns the metabolic profiles of fatty acids (higher ratio of polyunsaturated fatty acids, omega-3, 
omega-6 and lower ratio of saturated, monounsaturated and conjugated fatty acids relative to total fatty acids) 
associated with AHEI score in Whitehall II Study and in Young Finns Study. Our report also highlights the 
high overlap in metabolites associated with low adherence to healthy dietary guidelines and those predicting 
long-term risk of CVD in Whitehall II. By showing that an increased risk of CVD onset was associated with high 
levels of saturated and monounsaturated fatty acids and a decreased risk of CVD was associated with higher ratio 
of polyunsaturated fatty acids, omega-3 and docosahexaenoic acid relative to total fatty acids concentrations, our 
findings suggest that these specific fatty acids might be important molecular mediators linking overall unhealthy 
diet to increased CVD risk.

Methods
Study samples. Participants of the discovery cohort were drawn from the Whitehall II cohort study10, 
an on-going prospective cohort study of adults recruited from 20 London-based Civil Service departments in 
198510. Of these, 10 308 (6,895 men and 3,413 women, aged 35 to 55) enrolled, a response proportion of 73%. 
The baseline medical examination (phase 1) took place during 1985/88, and subsequent phases including both 
clinical examination and self-administrated questionnaire have taken place approximately every 5 years. The 

Figure 2. Multivariable-adjusted associations between AHEI z-score and metabolites from meta-analysis of the 
Whitehall II Study and the Young Finns Study (YFS).  Whitehall II study;  YFS;  Meta-
analysis. Linear regression models were adjusted for age, sex, total energy intake, ethnicity, smoking habits, 
physical activity, type 2 diabetes, diastolic and systolic blood pressure, use of antihypertensive drugs and use of 
lipid-lowering drugs. Results are expressed as linear regression coefficients accompanied with their 95% 
confidence interval. To facilitate comparison, metabolites were first square root transformed and then 
standardized to z-scores (mean � 0, SD � 1).
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Association with CVD risk (total 
N = 5481; N incident cases = 697)
Hazard 
Ratio� 95% CI p

Amino Acids
Isoleucine 1.14 1.06 to 1.24 0.001
Leucine 1.13 1.04 to 1.22 0.003
Phenylalanine 1.14 1.07 to 1.23 0.000
Glycolysis related metabolites
Glycerol 1.06 0.98 to 1.14 0.14
In�ammation
Glycoprotein acetyls 1.20 1.11 to 1.30 3�10�6

Size of lipoprotein particles (Mean diameters)
VLDL particle size 1.12 1.03 to 1.21 0.007
HDL particle size 0.86 0.79 to 0.94 0.0006
Total lipid concentrations in lipoprotein subclasses
Total lipids in chylomicrons and extremely large 
VLDL 1.09 1.01 to 1.18 0.02

Total lipids in very large VLDL 1.09 1.01 to 1.17 0.03
Total lipids in large VLDL 1.12 1.03 to 1.21 0.005
Total lipids in medium VLDL 1.12 1.04 to 1.21 0.004
Total lipids in IDL 1.07 0.99 to 1.16 0.003
Total lipids in large LDL 1.09 1.01 to 1.18 0.01
Total lipids in medium LDL 1.09 1.01 to 1.18 0.08
Total lipids in small LDL 1.08 1.00 to 1.17 0.03
Total lipids in small HDL 0.97 0.90 to 1.05 0.02
Cholesterol
Cholesterol in VLDL 1.09 1.01 to 1.18 0.03
Remnant cholesterol (non-HDL, non-LDL 
-cholesterol) 1.07 0.99 to 1.16 0.07

Free cholesterol 1.04 0.96 to 1.12 0.36
Glycerides and other Phospholipids
Serum total TG 1.15 1.07 to 1.24 0.0002
TG in VLDL 1.14 1.05 to 1.23 0.0013
TG in LDL 1.19 1.11 to 1.28 3�10�6

TG in HDL 1.13 1.04 to 1.22 0.0021
Sphingomyelins 0.98 0.90 to 1.06 0.56
Fatty Acids (FA)
Saturated FA 1.09 1.01 to 1.18 0.02
Monounsaturated FA 1.12 1.04 to 1.21 0.004
Polyunsaturated FA 1.05 0.97 to 1.13 0.26
Omega-3 FA 0.97 0.90 to 1.05 0.43
docosahexaenoic acid 0.96 0.89 to 1.04 0.33
Omega-6 FA 1.06 0.98 to 1.14 0.14
linoleic acid 1.06 0.98 to 1.14 0.14
Conjugated linoleic acid 1.05 0.97 to 1.13 0.23
Fatty acids ratios, relative to total fatty acids
Estimated degree of unsaturation 0.90 0.83 to 0.97 0.009
Ratio of saturated FA to total FA (%) 1.01 0.93 to 1.08 0.90
Ratio of monounsaturated FA to total FA (%) 1.11 1.03 to 1.21 0.007
Ratio of polyunsaturated FA to total FA (%) 0.90 0.84 to 0.97 0.009
Ratio of omega-3 FA to total FA (%) 0.90 0.83 to 0.97 0.008
Ratio of docosahexaenoic acid to total FA (%) 0.90 0.83 to 0.97 0.009
Ratio of omega-6 FA to total FA (%) 0.93 0.87 to 1.01 0.083
Ratio of linoleic acid to total FA (%) 0.96 0.89 to 1.04 0.28
Ratio of conjugated linoleic acid to total FA (%) 1.03 0.95 to 1.11 0.53

Table 3. Association between baseline metabolites and incident cardiovascular disease over 15.8 years of 
follow-up in the Whitehall II study. �Cox regression models were performed to estimate association between 
each metabolites and risk of CVD onset over the 16-y of follow-up. Models were adjusted for age, sex, total 
energy intake, ethnicity, smoking habits, physical activity, type 2 diabetes, diastolic and systolic blood pressure, 
use of antihypertensive drugs and use of lipid-lowering drugs.
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Figure 3. Comparison of diet-metabolites associations and metabolites-incident CVD risk associations in 
Whitehall II study.  Associations directionally concordant.  Associations directionally discordant. On 
the left hand size: Linear regression models estimating the associations between AHEI z-score and the 41 selected 
metabolites performed in 4824 participants and adjusted for age, sex, total energy intake, ethnicity, smoking habits, 
physical activity, type 2 diabetes, diastolic and systolic blood pressure, use of antihypertensive drugs and use of 
lipid-lowering drugs. Results are expressed as linear regression coefficients accompanied with their 95% 
confidence interval. To facilitate comparison, metabolites were first square root transformed and then standardized 
to z-scores (mean � 0, SD � 1). On the right hand size: Cox proportional hazards regression models estimating the 
association between the selected 41 metabolites and the risk of incident CVD over the 15.8 years of follow-up, 
performed in 5840 Whitehall II participant, adjusted for age, sex, total energy intake, ethnicity, smoking habits, 
physical activity, type 2 diabetes, diastolic and systolic blood pressure, use of antihypertensive medication. Results 
are expressed as Hazard Ratio accompanied with their 95% confidence interval. To facilitate comparison, 
metabolites were first square root transformed and then standardized to z-scores (mean � 0, SD � 1).
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subjects included in the metabolites-diet association analyses (n � 4824) was a sample of men (n � 3483) and 
women (n � 1341) who participated in the 1997/99 clinical examination, and whose serum sample was profiled 
using NMR metabolomics and had complete data on diet and covariates assessed in 1997/99. Participants gave 
full informed written consent to participate in the study and ethical approval was obtained from the University 
College London Hospital committee on the Ethics of Human Research. All research was performed in accordance 
with relevant guidelines/regulations.

Replication analyses were based on the 2001 survey of the Cardiovascular Risk in Young Finns Study origi-
nally designed to study associations of childhood risk factors to disease in adulthood (youngfinnsstudy.utu.fi)13. 
The baseline study conducted in 1980 included n � 3596 children and adolescents aged 3–18. The 2283 individu-
als participating in 2001 survey (response rate 64%)13,37 were representative of the baseline cohort13. Among these, 
n � 2247 individuals provided an overnight fasting blood samples, and the resulting serum samples were stored at 
�80 °C prior to metabolic profiling by serum NMR metabolomics which was complete for 2161 participants. We 
further excluded from the present analyses participants with missing data on dietary variables, and main covari-
ates including age sex, total energy intake, alcohol consumption, smoking status, physical activity index assessed 
by metabolic equivalent of task, systolic and diastolic blood pressure (mm Hg), use of antihypertensive drugs and 
type 2 diabetes. Assessment of these variables have been described elsewhere13,38,39. All participants gave written 
informed consent, and the study was approved by the ethics committees of each of the five participating medical 
university sites in Finland.

The flow chart diagrams mapping the selection of Whitehall II and Young Finns Study participants are pro-
vided in Fig. 5.

Assessment of clinical characteristics. In the Whitehall II study, socio-demographic, health behaviors 
and health status factors assessed in 1997/99 were considered. Socio-demographic factors included sex, age and 

Figure 4. Metabolomic profiles associated with low adherence to healthy dietary guidelines and with the risk 
of incident cardiovascular diseases -. The metabolic profiling analyses identified 41 metabolites associated with 
the adherence to healthy diet in Whitehall II study. Replication analyses in the Young Finns Study showed that 
most of these diet-metabolites associations were directionally concordant. We then assessed the extent to which 
each of the 41 metabolites associated with diet score also predicted CVD events over the 15.8 years of Whitehall 
II Study follow-up. Results showed that most of metabolites associated with poor adherence to healthy dietary 
guidelines are also related to higher CVD risk and consisted of amino acids, glycoprotein acetyls, size of 
lipoprotein particule size, lipids in lipoproteins, cholesterol and triglycerides and fatty acids. These findings 
highlight a specific fatty acid patterns robustly associated with both adherence to healthy diet and reduced risk 
of CVD. These specific fatty acids pattern consisted of lower levels of saturated and monounsaturated fatty acids 
and higher ratio of polyunsaturated fatty acids, omega-3 and docosahexaenoic acid relative to total fatty acids 
concentrations, possibly representing a molecular link between healthy diet and lower cardiovascular disease risk.
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ethnicity (white/South Asian/Black). Health behaviors consisted of smoking status (current/former/non smoker), 
total energy intake (in kcal per day, estimated from the food frequency questionnaire) and physical activity. Based 
on the physical activity questionnaire that consisted of 20 items on frequency and duration of participation in 
walking, cycling, sports, gardening, housework, and home maintenance, frequency and duration of each activity 
were combined to compute Metabolic Equivalent of Task (MET) units/hours/week of moderate to vigorous phys-
ical activity40. Health status factors considered were those related to cardiovascular risk factors. They included 
measures of systolic and diastolic blood pressure, use of antihypertensive drugs; type 2 diabetes (diagnosed 
according to the WHO definition);and use of lipid-lowering drugs. In the Young Finns Study, corresponding 
assessment of socio-demographic, health behaviors and clinical characteristics was undertaken13,38.

Metabolite quantification. A high-throughput NMR metabolomics platform28 was used for the quanti-
fication of metabolites from serum samples4. We focused on 80 lipid and abundant metabolite measures listed 
in Supplemental Material-Table A. All metabolites were measured in a single experimental setup that allows for 
the simultaneous quantification of both routine lipids, total lipid concentrations of 14 lipoprotein subclasses, 
fatty acid composition such as MUFA and PUFA, various glycolysis precursors, ketone bodies, and amino acids 
in absolute concentration units. The NMR metabolomics platform has previously been used in various epide-
miological studies4,41, details of the experimentation have been described4 and the method has recently been 
reviewed28,42,43.

Dietary assessment. Dietary intake was assessed using a semi-quantitative food-frequency questionnaire 
(FFQ) including 127 food items as described previously12,44. The validity and reliability of the FFQ in terms 
of nutrients and food consumption have been documented in detail elsewhere44,45. The AHEI score11 - a score 
reflecting dietary guidelines adapted to the UK framework - was implemented in Whitehall II and Young Finns 
Study cohorts. It was based on the intake of 9 dietary components: (1) vegetables, (2) fruits, (3) nuts and soy, (4) 
the ratio of white (seafood and poultry) to red meat, (5) trans-fat, (6) the ratio of polyunsaturated to saturated 
fatty acids, (7) long-term multivitamin use (�5 or �5 y), (8) alcohol consumption and (9) cereal fiber. Each com-
ponent had the potential to contribute 0 to 10 points to the total score, with the exception of multivitamin use, 
which contributed either 2.5 or 7.5 points. All the component scores were summed to obtain a total AHEI score 
ranging from 2.5 to 87.5 with higher scores denoting a healthier diet. Means of AHEI score and its components 
for both cohorts are detailed in Supplementary Material-Table I. AHEI was defined a priori based upon previous 
knowledge. In 2012, a new measure of the AHEI has been proposed – the AHEI 2010. This index has also been 
implemented, It includes 11 components, its distribution is detailed in Supplementary Material-Table J.

Ascertainment of incident cardiovascular disease. Whitehall II participants were linked to electronic 
medical records to ascertain cardiovascular disease, including coronary heart disease and stroke. Records for the 

Figure 5. Flow chart diagram mapping the inclusion of Whitehall II and Young Finns Study participants.
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first included hospitalisations from coronary heart disease as a primary or secondary diagnosis (defined using 
ICD-9 codes 410-414 and ICD-10 codes I20-I25 or procedures K40-K49, K50, K75, U19) and coronary deaths 
(defined using ICD-9 codes 410-414 and ICD-10 codes I20-I25 in death certificates). Data on stroke included 
records on hospitalizations due to stroke as a primary or secondary diagnosis and stroke deaths (defined using 
ICD-9 codes 430, 431, 434, 436 and ICD-10-codes I60, I61, I63, I64). The Young Finns Study participants were 
too young to have CVD events (less than 20 events during the 12 years follow-up).

Statistical analyses. All metabolite concentrations were squared root transformed prior to analyses to 
obtain approximately normal distribution. The metabolite measures were subsequently standardized using 
z-score (mean � 0, standard deviation � 1). The overall AHEI scores, normally distributed in the two cohorts, 
were analyzed as continuous variable using z-scores too. Associations between AHEI z-score and each metab-
olite were assessed by performing linear regression models first adjusted for age, sex and total energy intake. 
Metabolites found significantly associated with AHEI score at p � 0.0006 (Bonferroni correction of p � 0.05 
accounting for 80 independent tests) were selected for further testing, including replication analysis and asso-
ciations with CVD event risk. For the selected metabolites, linear regression models further adjusted for ethnic-
ity, smoking habits, physical activity, systolic and diastolic blood pressure, use of antihypertensive drugs, type 2 
diabetes and use of lipid-lowering drugs were performed. These analyses were repeated after taking into account 
BMI. In sensitivity analyses these multivariable adjusted models estimating the association between AHEI z-score 
and metabolites were repeated (1) in participants free of cardiovascular diseases in 1997/99 (i.e. clinically verified 
non-fatal myocardial infarction or definite angina), (2) in participants without prevalent cancer and (3) after 
excluding participants who self-reported longstanding illness.

To examine whether the findings of the associations between AHEI and metabolites in Whitehall II study 
were replicable, we used data from the Young Finns Study and applied similar multivariable linear regression 
models. As for analyses in Whitehall II, metabolites were square rooted and z-scores were computed and AHEI 
was treated as a z-score. The results from individual cohorts were then combined by using inverse variance fixed 
effect meta-analysis.

To assess the extent to which metabolites associated with diet score were also those predictive of CVD events, 
we conducted Cox proportional hazards regression models for each of the selected metabolites as predictors 
of incident CVD events (adjusted for similar risk factors as those considered in the above-mentioned analy-
ses). To do so we selected the 5840 Whitehall II participants for whom quantification of metabolites and clinical 
characteristics were available in 1997/99 and a follow-up of cardiovascular diseases over the 16-year follow-up. 
Participants with prevalent CVD were excluded to concentrate on associations with first onset of CVD.

Data availability. The datasets generated during and/or analysed during the current study are available from 
the corresponding author on reasonable request.

References
 1. Hu, F. B. & Willett, W. C. Optimal diets for prevention of coronary heart disease. Jama 288, 2569–2578 (2002).
 2. Varraso, R. et al. Alternate Healthy Eating Index 2010 and risk of chronic obstructive pulmonary disease among US women and 

men: prospective study. BMJ (Clinical research ed.) 350, h286 (2015).
 3. Akbaraly, T. et al. Does overall diet in midlife predict future aging phenotypes? A cohort study. Am J Med 126, 411–419 e413 (2013).
 4. Wurtz, P. et al. Metabolite profiling and cardiovascular event risk: a prospective study of 3 population-based cohorts. Circulation 

131, 774–785 (2015).
 5. Floegel, A. et al. Variation of serum metabolites related to habitual diet: a targeted metabolomic approach in EPIC-Potsdam. 

European journal of clinical nutrition 67, 1100–1108 (2013).
 6. Zheng, Y., Yu, B., Alexander, D., Steffen, L. M. & Boerwinkle, E. Human metabolome associates with dietary intake habits among 

African Americans in the atherosclerosis risk in communities study. American journal of epidemiology 179, 1424–1433 (2014).
 7. Chandler, P. D. et al. Abstract P278: Metabolomic Profiles Associated with Dietary Patterns in Women. Circulation 133, 

AP278–AP278 (2016).
 8. Guertin, K. A. et al. Metabolomics in nutritional epidemiology: identifying metabolites associated with diet and quantifying their 

potential to uncover diet-disease relations in populations. Am J Clin Nutr 100, 208–217 (2014).
 9. Bogl, L. H. et al. Association between habitual dietary intake and lipoprotein subclass profile in healthy young adults. Nutrition, 

metabolism, and cardiovascular diseases: NMCD 23, 1071–1078 (2013).
 10. Marmot, M. & Brunner, E. Cohort Profile: the Whitehall II study. Int J Epidemiol 34, 251–256 (2005).
 11. McCullough, M. L. et al. Diet quality and major chronic disease risk in men and women: moving toward improved dietary guidance. 

Am J Clin Nutr 76, 1261–1271 (2002).
 12. Akbaraly, T. N. et al. Alternative Healthy Eating Index and mortality over 18 y of follow-up: results from the Whitehall II cohort. Am 

J Clin Nutr 94, 247–253 (2011).
 13. Raitakari, O. T. et al. Cohort profile: the cardiovascular risk in Young Finns Study. Int J Epidemiol 37, 1220–1226 (2008).
 14. Liu, J. et al. Monounsaturated fatty acids generated via stearoyl CoA desaturase-1 are endogenous inhibitors of fatty acid amide 

hydrolase. Proceedings of the National Academy of Sciences of the United States of America 110, 18832–18837 (2013).
 15. Silveira, M. B., Carraro, R., Monereo, S. & Tebar, J. Conjugated linoleic acid (CLA) and obesity. Public health nutrition 10, 1181–1186 

(2007).
 16. Superko, H. R., Superko, S. M., Nasir, K., Agatston, A. & Garrett, B. C. Omega-3 fatty acid blood levels: clinical significance and 

controversy. Circulation 128, 2154–2161 (2013).
 17. Wu, J. H. et al. Circulating omega-6 polyunsaturated fatty acids and total and cause-specific mortality: the Cardiovascular Health 

Study. Circulation 130, 1245–1253 (2014).
 18. Stegemann, C. et al. Lipidomics profiling and risk of cardiovascular disease in the prospective population-based Bruneck study. 

Circulation 129, 1821–1831 (2014).
 19. Chowdhury, R. et al. Association of dietary, circulating, and supplement fatty acids with coronary risk: a systematic review and 

meta-analysis. Annals of internal medicine 160, 398–406 (2014).
 20. Vafeiadou, K. et al. Replacement of saturated with unsaturated fats had no impact on vascular function but beneficial effects on lipid 

biomarkers, E-selectin, and blood pressure: results from the randomized, controlled Dietary Intervention and VAScular function 
(DIVAS) study. Am J Clin Nutr 102, 40–48 (2015).



www.nature.com/scientificreports/

13SCIENTIFIC REPORTS |  (2018) 8:8620 �������������ã�w�v�ä�w�v�y�~���•�z�w�{�•�~�æ�v�w�~�æ�x�|�z�z�w�æ�w

 21. Phillips, C. M. & Perry, I. J. Lipoprotein particle subclass profiles among metabolically healthy and unhealthy obese and non-obese 
adults: Does size matter? Atherosclerosis 242, 399–406 (2015).

 22. Pechlaner, R. et al. Very-Low-Density Lipoprotein-Associated Apolipoproteins Predict Cardiovascular Events and Are Lowered by 
Inhibition of APOC-III. Journal of the American College of Cardiology 69, 789–800 (2017).

 23. Arsenault, B. J. et al. HDL particle size and the risk of coronary heart disease in apparently healthy men and women: the EPIC-
Norfolk prospective population study. Atherosclerosis 206, 276–281 (2009).

 24. Garvey, W. T. et al. Effects of insulin resistance and type 2 diabetes on lipoprotein subclass particle size and concentration 
determined by nuclear magnetic resonance. Diabetes 52, 453–462 (2003).

 25. Rizzo, M., Pernice, V., Frasheri, A. & Berneis, K. Atherogenic lipoprotein phenotype and LDL size and subclasses in patients with 
peripheral arterial disease. Atherosclerosis 197, 237–241 (2008).

 26. Soininen, P. et al. High-throughput serum NMR metabonomics for cost-effective holistic studies on systemic metabolism. �e 
Analyst 134, 1781–1785 (2009).

 27. Wurtz, P. et al. Quantitative Serum Nuclear Magnetic Resonance Metabolomics in Large-Scale Epidemiology: A Primer on -Omic 
Technologies. American journal of epidemiology 186, 1084–1096 (2017).

 28. Soininen, P., Kangas, A. J., Wurtz, P., Suna, T. & Ala-Korpela, M. Quantitative serum nuclear magnetic resonance metabolomics in 
cardiovascular epidemiology and genetics. Circulation. Cardiovascular genetics 8, 192–206 (2015).

 29. Wang, T. J. et al. Metabolite profiles and the risk of developing diabetes. Nature medicine 17, 448–453 (2011).
 30. Stancakova, A. et al. Hyperglycemia and a common variant of GCKR are associated with the levels of eight amino acids in 9,369 

Finnish men. Diabetes 61, 1895–1902 (2012).
 31. Zheng, Y. et al. Cumulative consumption of branched-chain amino acids and incidence of type 2 diabetes. Int J Epidemiol (2016).
 32. Kohlmeier, M. Nutrient Metabolism, (Elsevier’s science, 2003).
 33. Patel, H., Chandra, S., Alexander, S., Soble, J. & Williams, K. A. Sr. Plant-Based Nutrition: An Essential Component of Cardiovascular 

Disease Prevention and Management. Current cardiology reports 19, 104 (2017).
 34. Fung, T. T., McCullough, M., van Dam, R. M. & Hu, F. B. A prospective study of overall diet quality and risk of type 2 diabetes in 

women. Diabetes Care 30, 1753–1757 (2007).
 35. Akbaraly, T. N. et al. Overall diet history and reversibility of the metabolic syndrome over 5 years: the Whitehall II prospective 

cohort study. Diabetes Care 33, 2339–2341 (2010).
 36. Sundstrom, J. et al. Clinical value of the metabolic syndrome for long term prediction of total and cardiovascular mortality: 

prospective, population based cohort study. Bmj 332, 878–882 (2006).
 37. Nuotio, J. et al. Cardiovascular risk factors in 2011 and secular trends since 2007: the Cardiovascular Risk in Young Finns Study. 

Scandinavian journal of public health 42, 563–571 (2014).
 38. Wurtz, P. et al. Metabolic profiling of alcohol consumption in 9778 young adults. Int J Epidemiol (2016).
 39. Wurtz, P. et al. Metabolic signatures of adiposity in young adults: Mendelian randomization analysis and effects of weight change. 

PLoS medicine 11, e1001765 (2014).
 40. Hamer, M. et al. Physical activity patterns over 10 years in relation to body mass index and waist circumference: the Whitehall II 

cohort study. Obesity (Silver Spring, Md.) 21, E755–761 (2013).
 41. Inouye, M. et al. Metabonomic, transcriptomic, and genomic variation of a population cohort. Molecular systems biology 6, 441 

(2010).
 42. Rankin, N. J. et al. The emergence of proton nuclear magnetic resonance metabolomics in the cardiovascular arena as viewed from 

a clinical perspective. Atherosclerosis 237, 287–300 (2014).
 43. Mallol, R., Rodriguez, M. A., Brezmes, J., Masana, L. & Correig, X. Human serum/plasma lipoprotein analysis by NMR: application 

to the study of diabetic dyslipidemia. Progress in nuclear magnetic resonance spectroscopy 70, 1–24 (2013).
 44. Brunner, E., Stallone, D., Juneja, M., Bingham, S. & Marmot, M. Dietary assessment in Whitehall II: comparison of 7 d diet diary and 

food-frequency questionnaire and validity against biomarkers. �e British journal of nutrition 86, 405–414 (2001).
 45. Bingham, S. A. et al. Validation of dietary assessment methods in the UK arm of EPIC using weighed records, and 24-hour urinary 

nitrogen and potassium and serum vitamin C and carotenoids as biomarkers. Int J Epidemiol 26(Suppl 1), S137–151 (1997).

Acknowledgements
We thank all of the participating civil service departments and their welfare, personnel, and establishment officers; 
the British Occupational Health and Safety Agency; the British Council of Civil Service Unions; all participating 
civil servants in the Whitehall II study; and all members of the Whitehall II study team. The Whitehall II Study 
team comprises research scientists, statisticians, study coordinators, nurses, data managers, administrative assistants 
and data entry staff, who make the study possible. The Whitehall II study has been supported by grants from the 
UK Medical Research Council (K013351 and MR/R024227/1); the British Heart Foundation (PG/11/63/29011 
and RG/13/2/30098); the British Health and Safety Executive; the British Department of Health; the National 
Heart, Lung, and Blood Institute (R01HL036310); the National Institute on Aging, National Institute of Health 
(R01AG013196, R01 AG034454); the Economic and Social Research Council (ES/J023299/1). The Young Finns 
Study has been financially supported by the Academy of Finland: grants 286284 (T.L.), 134309, 126925, 121584, 
124282, 129378 (Salve), 117787 (Gendi), and 41071 (Skidi); the Social Insurance Institution of Finland; Kuopio, 
Tampere and Turku University Hospital Medical Funds (grant X51001 for T.L.); Juho Vainio Foundation; Paavo 
Nurmi Foundation; Finnish Foundation of Cardiovascular Research; Finnish Cultural Foundation; Tampere 
Tuberculosis Foundation (T.L.); Emil Aaltonen Foundation (T.L.); Yrjö Jahnsson Foundation (T.L.). and Signe ja 
Ane Gyllenberg’s Foundation (T.L). Tasnime Akbaraly is supported by the Medical Research Council (K013351). 
Peter Würtz is supported by the Novo Nordisk Foundation and the Academy of Finland (294834). Martin Shipley 
is supported by the British Heart Foundation. Steven Humphries was supported by the BHF (PG08/008) and the 
National Institute for Health Research University College London Hospitals Biomedical Research Centre. Rita 
Haapakoski was supported by the European Commission LIFEPATH project (Horizon 2020 grant 633666). Mika 
Ala-Korpela has been supported by the Sigrid Juselius Foundation and the Strategic Research Funding from the 
University of Oulu, Finland. He works in a unit that is supported by the University of Bristol and UK Medical 
Research Council (MC_UU_12013/1). The Baker Institute is supported in part by the Victorian Government’s 
Operational Infrastructure Support Program. Mika Kivimaki is supported by the Medical Research Council 
(K013351 and MR/R024227/1), UK, NordForsk, the Nordic Programme on Health and Welfare, the Academy 
of Finland (311492) and a Helsinki Institute of Life Science fellowship. The funding organization or sponsor had 
no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; 
preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication.



www.nature.com/scientificreports/

1 4SCIENTIFIC REPORTS |  (2018) 8:8620 �������������ã�w�v�ä�w�v�y�~���•�z�w�{�•�~�æ�v�w�~�æ�x�|�z�z�w�æ�w

Author Contributions
T.A., P.W. and M.Ki. designed the research. T.A. analysed data and performed statistical analyses. M.Ki. supervised 
the study. T.A. wrote the first draft. A.J.K., P.S., and M.A.-K. designed and performed the metabolomics analyses. 
T.A., P.W., A.S.M., M.J.S., R.H., M.L., C.D., M.Ka., T.L., V.M., A.H., S.H.E., A.J.K., P.S., O.R., M.A.-K., and M.Ki. 
made a critical revision of the manuscript for important intellectual content and T.A. had primary responsibility 
for final content.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-018-26441-1.
Competing Interests: T.A., A.S.-M., M.J.S., R.H., M.L., C.D., M.Ka., T.L., V.M., A.H., S.H.E., O.R., M.A.-K., 
M.Ki. declare no conflict of interest. P.W., A.J.K. and P.S. are shareholders and employees of Brainshake Ltd, a 
company offering NMR-based metabolite profiling.
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2018


	Association of circulating metabolites with healthy diet and risk of cardiovascular disease: analysis of two cohort studies ...
	Results
	Participant characteristics. 
	Association between AHEI score and metabolites in the Whitehall II study. 
	Replication analysis in the Young Finns study. 
	Metabolites associated with AHEI and predicting cardiovascular disease. 

	Discussion
	Conclusions




