Low-temperature sintering and thermal stability of Li$_2$GeO$_3$-based microwave dielectric ceramics with low permittivity

Changzhi Yin$^{1+}$, Huaicheng Xiang$^{1,3+}$, Chunchun Li$^{1,2+}$, Harshit Porwal4, Liang Fang1*

1Guangxi universities key laboratory of non-ferrous metal oxide electronic functional materials and devices, College of Material Science and Engineering, Guilin University of Technology, Guilin, 541004, China
2Materials Research Institute, Pennsylvania State University, University Park, PA 16802, USA
3Microelectronics Research Unit, Faculty of Information Technology and Electrical Engineering, University of Oulu, P.O. Box 4500, FI-90014 Oulu, Finland
4School of Engineering and Material Science, Queen Mary University of London, London E1 4NS, UK

Abstract

A low-permittivity dielectric ceramic Li$_2$GeO$_3$ was prepared by the solid-state reaction route. Single phase Li$_2$GeO$_3$ crystallized in an orthorhombic structure. Dense ceramics with high relative density and homogeneous microstructure were obtained as sintered at 1000-1100 °C. The optimum microwave dielectric properties were achieved in the sample sintered at 1080 °C with a high relative density ~ 96%, a relative permittivity ε_r ~ 6.36, a quality factor $Q\times f$ ~ 29,000 GHz (at 14.5 GHz), and a temperature coefficient of resonance

* Corresponding Author, lichunchun2003@126.com; fanglianggl001@aliyun.com

$^+$ These authors contributed equally to this work.

This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1111/jace.15723

This article is protected by copyright. All rights reserved.
frequency \(\tau \sim -72 \text{ ppm/}^\circ\text{C} \). The sintering temperature of \(\text{Li}_2\text{GeO}_3 \) was successfully lowered via the appropriate addition of \(\text{B}_2\text{O}_3 \). Only 2 wt.% \(\text{B}_2\text{O}_3 \) addition contributed to a 21.2% decrease in sintering temperature to 850 \(^\circ\text{C} \) without deteriorating the dielectric properties. The temperature dependence of the resonance frequency was successfully suppressed by the addition of \(\text{TiO}_2 \) to form \(\text{Li}_2\text{TiO}_3 \) with a positive \(\tau \) value. These results demonstrate potential applications of \(\text{Li}_2\text{GeO}_3 \) in low-temperature cofiring ceramics technology.

Keywords: Ceramics; Microwave dielectric properties; LTCC; \(\text{Li}_2\text{GeO}_3 \)

1. Introduction

Microwave dielectric ceramics have been extensively used as key materials in dielectric resonators, filters, antennas, strip lines, and phase shifters for reasons of low cost, stability, efficiency, and ease of use \(^1\), \(^2\). Recently, in order to meet the increasing demands for miniaturization and integration, low-temperature co-fired ceramics (LTCC) technology has become crucial due to its ability to integrate a versatile mix of passive microwave components to fabricate highly integrated multi-chip modules \(^3\)-\(^6\). These ceramics must fulfill the requirement of lower sintering temperatures than the melting point of the inner metal electrode such as \(\text{Ag} (961 \, ^\circ\text{C}) \), along with the appropriate relative permittivities \((\varepsilon_r) \), high quality factors \((Q\times f)\), and temperature stability \(^7\), \(^8\). In addition, chemical compatibility of the ceramics with inner metal electrode should also be satisfied. LTCC technology has paved a way for the explosive progress of low-firing microwave dielectric ceramics.
Extensive literature reviewing reveals that the presence of low-melting-point constituents, such as Bi$_2$O$_3$, V$_2$O$_5$, GeO$_2$, Li$_2$CO$_3$ etc, is a common feature of the previously reported low-firing ceramics $^{9-13}$. Herein, we are inspired to prepare Li$_2$GeO$_3$ consisting of Li$_2$O and GeO$_2$ with molar ratio 1:1 with an attempt to develop novel low-firing microwave dielectric ceramics. In the present work, Li$_2$GeO$_3$ ceramic was prepared using the solid-state reaction route and the sintering behavior, microstructure and microwave dielectric properties were characterized.

2. Experimental part

The Li$_2$GeO$_3$ samples were synthesized by a solid-state reaction method. The initial reagents Li$_2$CO$_3$ (99.99%) and GeO$_2$ (99.999%) weighed with an accuracy of 0.003 g were mixed through ball milling using ZrO$_2$ balls with ethanol for 6 h. The dried powder was pressed and fired in air at 900 °C for 4 h with 5 °C/min, and re-milled for 4 h. The dried powder was added 10 mol.% PVA as a binder and pressed into 10 mm diameter and 5 mm height disks under a pressure of 200 MPa. The green compacts were firstly fired at 550 °C in air for 2 h to expel the organic binder and then sintered at 1000–1100 °C for 4 h.

Powder XRD data for the Li$_2$GeO$_3$ specimens were analyzed by X-ray diffractometer (X’Pert PRO, PANalytical, Almelo, Holland) using Cu Kα radiation. Cell parameters a, b and c, and cell volume V were refined using the FULLFROF software. The surface microstructures of the pellets were observed by scanning electron microscopy (SEM, JSM6380-LV, Tokyo, Japan). The densities of the sintered ceramics were measured using the Archimedes’ method. The ε_r and $Q\times f$ values were measured in the TE$_{011}$ mode according to the Hakki-Coleman method using an Agilent N5230A network analyzer (Palo Alto, CA).

This article is protected by copyright. All rights reserved.
The temperature coefficient of resonate frequency τ_f value was measured from 25 °C to 85 °C using a temperature chamber (Delta 9039, CA) and was calculated as follows:

$$\tau_f = \frac{f_{f_i} - f_{f_0}}{f_{f_0} (T_i - T_0)}$$ \hspace{1cm} (1)

where, f_{f_i} and f_{f_0} were the resonant frequencies at 85 °C and room temperature, respectively.

3. Results and discussion

Fig.1 shows the Rietveld refinement on the X-ray powder diffraction pattern of the calcined Li$_2$GeO$_3$ at 900 °C/4h. The Rietveld refinement was performed with the Fullprof program based on the XRD data and a starting model from Ref. 14 was used for the structural refinement. The excellent agreement between the calculated and observed XRD profiles and the low residual factors ($R_p = 2.46\%$, $Rwp = 4.22\%$) confirm the phase purity of Li$_2$GeO$_3$ and indicate the formation of single phase Li$_2$GeO$_3$ with a space group $Cmc21$ (36). The schematic crystal structure of Li$_2$GeO$_3$ is shown in the inset of Fig.1, where the ionic arrangement can be clearly shown. The structure is composed of the hexagonal close-packed oxygen and cations ordered on one set of distorted tetrahedral sites. In the structure, Li$^+$ and Ge$^{4+}$ are placed at Wyckoff positions 8b and 4a, respectively; and the oxygen locates at 4a and 8b positions. On the basis of Rietveld refinement, the lattice parameters are refined as $a = 9.6316(7)$ Å, $b = 5.47917(7)$ Å, $c = 4.8417(8)$ Å, and $V = 255.5180(1)$ Å3. The theoretical density was obtained from the crystal structure and atomic weight and yielded a value of 3.496 g/cm3.

This article is protected by copyright. All rights reserved.
SEM micrographs recorded from the polished and thermal etched surfaces of the Li$_2$GeO$_3$ ceramics sintered at 1020-1100 °C are shown in Fig.2. It is evident that no additional phases are visible in the SEM images, which is consistent with the XRD analysis. Visible pores could be observed in the low-temperature sintered samples, as shown in Fig.2 (a). The amount of porosity declined obviously with increasing sintering temperature accompanied by a clear increase in grain size. A densified microstructure with well-packed grains and legible grain boundaries was developed in the sample sintered at 1080 °C and the average grain size was about 5-10 μm. However, abnormal grain growth occurred when sintered at 1100 °C characterized by extremely large grains ~ 20 μm and micro-cracks, which might deteriorate the dielectric properties in Li$_2$GeO$_3$ ceramics.

Fig.3 shows the variation in relative density and microwave dielectric properties (ε_r, $Q\times f$, and τ_f) of Li$_2$GeO$_3$ ceramics as a function of sintering temperature ranging from 1000 to 1100 °C in 20 °C increments. The relative density showed an increased tendency with the increasing sintering temperature and reached a saturated value of 96% at 1080 °C. The increase in density is due to the decrease of porosity and the homogenous grain size. However, it should be noted that Li$_2$GeO$_3$ has a narrow densification sintering temperature intervals. A slight increase in sintering temperature to 1100 °C decreased the relative density. This can be explained by the abnormal grain growth observed in the 1100 °C sintered sample. Combined with the SEM analysis, sintering at 1080 °C was determined to be the optimum sintering condition.

As shown in Fig.3 (b), the variation in relative permittivity (ε_r) is consistent with the density. The higher density corresponds to higher dielectric constant. A maximum value of $\varepsilon_r = 6.36$ was obtained at 1080 °C. It is well known that the microwave relative permittivity can
be affected not only by the intrinsic factors (crystal symmetry, dielectric polarizability, etc) but also by the extrinsic factors, such as secondary phase, density, porosity, grain size, etc \(^{15-17}\). In the present work, the dependence of \(\varepsilon_r\) on density demonstrates that porosity plays a dominant role in affecting the relative permittivity. In order to eliminate the influence of porosity, the relative permittivity was porosity corrected by using the Bosman and Having’s equation: \(\varepsilon_{corr} = \varepsilon_r (1 + 1.5p)\) with \(p\) the fractional porosity. For the sample sintered at 1080\(^\circ\)C, the \(\varepsilon_{corr}\) value was 6.74. According to the Clausius-Mossotti relationship and Shannon’s additive law, the theoretical dielectric constant can be estimated \(^{18, 19}\). The theoretical permittivity of \(\text{Li}_2\text{GeO}_3\) was calculated to be 6.81. The relative error between the porosity corrected and theoretical permittivity is 1.1\%. The small deviation indicates that ionic polarization plays a prominent role in the dielectric polarizability at microwave frequency region.

Fig.3 (c) shows the variation in quality factor \((Q\times f)\) of \(\text{Li}_2\text{GeO}_3\) ceramics sintered at different temperatures. Similar to the relative permittivity, the quality factor exhibited obvious dependence on sintering temperature. With increasing sintering temperature, the quality factor of \(\text{Li}_2\text{GeO}_3\) increased continuously to a maximum value of 29,000 GHz at 1080 \(^\circ\)C and thereafter decreased. The enhanced \(Q\times f\) value is attributed to the decreased porosity with increasing sintering temperature. Further increase in sintering temperature to 1100 \(^\circ\)C induced abnormal grain growth, leading to inhomogeneous microstructure and reappearing porosity, which in turn deteriorate the quality factor. As shown in Fig.3 (d), no obvious dependence on sintering temperature was observed for the \(\tau_f\) value and it remained between -71 and -78 ppm/\(^\circ\)C. This mainly because no structural changed happened over the sintering temperature range of 1000-1100 \(^\circ\)C.
Nevertheless, the sintering temperature is still too high for application in LTCC technology to cofire the low-cost silver electrodes. Thus, in order to lower the sintering temperature, a small amount of B$_2$O$_3$ was added to Li$_2$GeO$_3$. As shown in Fig.4, XRD patterns of the 2 wt.% B$_2$O$_3$ doped ceramic was consistent with the parent Li$_2$GeO$_3$ and all the observed peaks could be indexed, whereas the 5 wt.% B$_2$O$_3$ doped sample exhibited a secondary phase, LiBGeO$_4$ (JCPDS No. 01-074-2079), with a characteristic peak at ~ 23°. This result indicates that Li$_2$GeO$_3$ reacted with B$_2$O$_3$ at 850 °C. And the chemical reaction is as follows:

$$2\text{Li}_2\text{GeO}_3 + \text{B}_2\text{O}_3 \xrightarrow{820°C} \text{LiBGeO}_4 + \text{Li}_2\text{O}$$ (2)

The back scattered SEM (BSEM) image on the Li$_2$GeO$_3$ + 2 wt.% B$_2$O$_3$ demonstrates that B$_2$O$_3$ doping promoted the grain growth, as shown in the inset of Fig.4. The sintering temperature and microwave dielectric properties of x wt.% B$_2$O$_3$ doped Li$_2$GeO$_3$ are summarized in Table 1. As expected, B$_2$O$_3$ addition successfully reduced the sintering temperature of Li$_2$GeO$_3$. Only 2 wt.% B$_2$O$_3$ addition contributed to a 21.2% decrease in sintering temperature to 850 °C. The 2 wt.% B$_2$O$_3$ added Li$_2$GeO$_3$ ceramic exhibited encouraging microwave dielectric properties with $\varepsilon_r = 5.57$ along with $Q \times f = 13,800$ GHz and $\tau_f = -82$ ppm/°C when sintered at 850 °C. Compared with the pure Li$_2$GeO$_3$ ceramic, however, B$_2$O$_3$ addition had an adverse effect on the microwave dielectric properties, mainly owing to the larger grain size and the amorphous phase appeared during liquid-phase sintering. Additionally, it is assumed that the extremely low quality factor and the temperature coefficient of the resonance frequency of the 5 wt.% B$_2$O$_3$ added Li$_2$GeO$_3$ ceramic was partially related to the secondary phase LiBGeO$_4$ that might have a low ε_r and τ_f values. Further work to confirm the microwave dielectric properties of LiBGeO$_4$ is on-going.

This article is protected by copyright. All rights reserved.
In the viewpoint of technological applications, the temperature dependence of the Li$_2$GeO$_3$ ceramics is extremely low with a largely negative τ_f value and must be suppressed. Several approaches, for example, ionic substitution, composite forming or microstructural engineering have been proposed to tune the τ_f value$^{20-22}$. TiO$_2$ was chosen to compensate the negative τ_f of Li$_2$GeO$_3$ because of its large positive τ_f value ($\sim +465$ ppm$°$C) and the chemical similarity of Ti$^{4+}$ to Ge$^{4+}$. The choice of TiO$_2$ was also guided by its successful applications in compensating the temperature stability of other materials23,24. Four different compositions with $y = 0.2, 0.4, 0.6, 0.8$ in the formula Li$_2$Ge$_{1-y}$Ti$_y$O$_3$ were prepared and characterized. XRD analysis, as shown in Fig.5, demonstrates that all the ceramics were comprised of two phases: Li$_2$GeO$_3$ and a rock salt Li$_2$TiO$_3$. With increasing y value, the fraction of rock salt phase increased characterized by the increasing strongest diffraction peak at $2\theta \sim 44°$. As clearly detected, some XRD peaks overlapped, and thus Raman spectra analysis was employed to further confirm the phase constituent due to its sensibility to structural change compared to the XRD analysis. Fig.6 shows the Raman spectra for the Li$_2$Ge$_{1-y}$Ti$_y$O$_3$ ($y = 0.2, 0.4, 0.6, 0.8$) ceramics and the spectroscopy for the nominal Li$_2$GeO$_3$ is also given for comparison. In the range of 100-1100 cm$^{-1}$, all the observed Raman modes can be assigned to the Li$_2$GeO$_3$ phase (marked with the dot lines) and the Li$_2$TiO$_3$ phase (marked with the rectangular). The indexing of the modes for Li$_2$TiO$_3$ is based on the previous reports25,26. These results indicate that only two phases, Li$_2$GeO$_3$ and Li$_2$TiO$_3$, were found in the Li$_2$Ge$_{1-y}$Ti$_y$O$_3$ system.

In order to obtain the precise percentage of Li$_2$TiO$_3$, a quantitative Rietveld analysis was carried out based on the XRD data of the Li$_2$Ge$_{1-y}$Ti$_y$O$_3$. Representative plots of the observed and calculated diffraction patterns performed on the $y = 0.4$ sample are given in Fig.7 as well as the Brag positions. The two-phase Rietveld refinement yielded 37.8 mol.% and 62.2
mol.% for Li$_2$TiO$_3$ and Li$_2$GeO$_3$, respectively. The fractions of the rock salt Li$_2$TiO$_3$ phase based on the Rietveld refinement are 18.1%, 37.8%, 58.3%, and 77.9% for y = 0.2, 0.4, 0.6, and 0.8, respectively. It should be noted that the percentage of Li$_2$TiO$_3$ is slightly lower than the nominal percentage (the y value), which means there is a small amount of Ti dissolved into Li$_2$GeO$_3$ to form the solid solution and the solubility was around 1.7-2.1%. Li$_2$TiO$_3$ was reported to have a positive τ_f value of ~ 20 ppm/°C along with an extremely low dielectric loss 27. Thus, it is expected that the thermal stability of Li$_2$GeO$_3$ could be tuned by forming composite ceramics with Li$_2$TiO$_3$.

Fig.7 lists the ε_r, $Q\times f$, and τ_f values of the Li$_2$Ge$_{1-y}$Ti$_y$O$_3$ ceramics as a function of y value. As expected, the τ_f values of Li$_2$Ge$_{1-y}$Ti$_y$O$_3$ ceramics increased with the y values and shifted from negative to positive. A near-zero τ_f value of +2.9 ppm/°C was obtained in the y = 0.8 composite when sintered at 1100 °C. This is because the Li$_2$TiO$_3$ ceramic sintered at 1230 °C obtained a τ_f value of about +38.5 ppm/°C 28, which also indicates that Li$_2$TiO$_3$ could well compensate for the τ_f value of Li$_2$GeO$_3$. As shown, the ε_r value also increased with increasing Li$_2$TiO$_3$ content, which is attributed to the higher ε_r value of Li$_2$TiO$_3$ (~ 22.1). For a binary phase composite, the theoretical ε_r and τ_f values can be evaluated according to the empirical Lichtenecker logarithmic rule 29:

$$\ln \varepsilon = x_1 \ln \varepsilon_1 + x_2 \ln \varepsilon_2$$

$$\tau_f = x_1 \tau_{f1} + x_2 \tau_{f2}$$
where x_1 and x_2 are the volume fractions, ε_1 and ε_2 are the permittivities, τ_1 and τ_2 are the τ values of the pure Li_2GeO_3 and Li_2TiO_3 phase, respectively. The calculated ε_r and τ values are also given in Fig.7. By comparison, the measured values coincide with the calculated values. On the other hand, the τ value is reported to be closely related to the chemical nature of ions, the distance between cations and anions 30. The slight deviation might be related to the solid solution between Ti and Ge which should lead to the change in the bond distance and structural distortion. The quality factor also exhibited a strong dependence on the composition, which decreased with increasing y value to a minimum value of 11,750 GHz at $y = 0.4$ but increased thereafter to 33,790 GHz at $y = 0.8$. It should be noted that even though the quality factor of the $y = 0.8$ composite is much higher than the end member Li_2GeO_3 but inferior to the other end member Li_2TiO_3 with a $Q\times f = 63,500$ GHz. It is well accepted that the quality factor of the dielectric ceramics strongly depends on the densification, porosity, grain size, phase evolution, etc $^{31}, 32$. In the present case, the internal mismatch or strain because of the coexistence of two phases with different structures dominates the variation in the quality factor. Additionally, the grain boundaries due to the heterostructure would increase the dielectric losses as 2D defects. In summary, a composite with $y = 0.8$ exhibited a good combination of microwave dielectric properties with $\varepsilon_r \sim 18.67$, $Q\times f \sim 33,790$ GHz, and $\tau \sim +2.1$ ppm/°C.

4. Conclusions

Li_2GeO_3 ceramics were prepared by the solid-state reaction method and the crystal structure, microstructure, and microwave dielectric properties were characterized. Single-phase ceramics with orthorhombic structure and homogeneous microstructure were obtained when sintered at 1080 °C. Good microwave dielectric properties with $\varepsilon_r \sim 6.36$, a $Q\times f \sim 29,000$ GHz (at 14.5 GHz), and $\tau \sim -72$ ppm/°C were achieved in the Li_2GeO_3 ceramic.

This article is protected by copyright. All rights reserved.
sintered at 1080 °C. An appropriate amount of B$_2$O$_3$ addition successfully reduced the sintering temperature of Li$_2$GeO$_3$ to 850 °C. The Li$_2$GeO$_3$+2wt% B$_2$O$_3$ exhibited good dielectric performances with $\varepsilon_r \sim 5.57$, $Q\times f \sim 13,800$ GHz, and $\tau_f \sim -82$ ppm/°C when sintered at 850 °C, showing potential applications in low-temperature cofiring ceramics technology. Besides, the temperature dependence of the resonance frequency was successfully suppressed by the addition of TiO$_2$ to form Li$_2$TiO$_3$ with a positive τ_f value. A composite with $y = 0.8$ in Li$_2$Ge$_{1-y}$Ti$_y$O$_3$ exhibited good combination of microwave dielectric properties with $\varepsilon_r \sim 18.67$, $Q\times f \sim 33,790$ GHz, and $\tau_f \sim +2.1$ ppm/°C.

Acknowledgments

This work was supported by Natural Science Foundation of China (Nos. 51502047, 21561008, and 21761008), the Natural Science Foundation of Guangxi Zhuang Autonomous Region (Nos. 2015GXNSFFA139003, 2016GXNSFBA380134, and 2016GXNSFAA380018), Project of Scientific Research and Technical Exploitation Program of Guilin (2016010702-2 and 20170225). Chunchun Li gratefully acknowledges the Guangxi Scholarship Fund of Guangxi Education Department.

References

Table 1 Sintering temperature, bulk density, and microwave dielectric properties of x wt.% B$_2$O$_3$ doped Li$_2$GeO$_3$ ceramics

<table>
<thead>
<tr>
<th>x value</th>
<th>S. T. (°C)</th>
<th>ε_r</th>
<th>$Q\times f$ (GHz)</th>
<th>τ_f (ppm/°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1080</td>
<td>6.36</td>
<td>29,000</td>
<td>-72</td>
</tr>
<tr>
<td>2</td>
<td>850</td>
<td>5.57</td>
<td>13,800</td>
<td>-82</td>
</tr>
<tr>
<td>5</td>
<td>820</td>
<td>5.23</td>
<td>7,750</td>
<td>-108.8</td>
</tr>
</tbody>
</table>
Figure captions:

Fig.1 The Rietveld refinement on the X-ray powder diffraction pattern of the calcined Li$_2$GeO$_3$ at 900 °C/4h (the structure diagram of Li$_2$GeO$_3$ is given in the inset).

Fig.2 SEM micrographs of the polished and thermal etched surfaces of the Li$_2$GeO$_3$ ceramics sintered at (a)1020 °C, (b)1040 °C, (c)1060 °C, (d)1080 °C, and (e)1100 °C.

Fig.3 The variation in relative density and microwave dielectric properties (ε_r, $Q\times f$, and τ_f) of Li$_2$GeO$_3$ ceramics as a function of sintering temperature ranging from 1000 to 1100 °C in 20 °C increments.

Fig.4 XRD patterns of the Li$_2$GeO$_3$ ceramics with (a) 5 wt.% B$_2$O$_3$ and (b) 2 wt.% B$_2$O$_3$ (inset is the SEM image of the Li$_2$GeO$_3$ ceramics with 2 wt.% B$_2$O$_3$ doping and sintered at 850 °C).

Fig.5 (a) XRD patterns of the Li$_2$Ge$_{1-y}$Ti$_y$O$_3$ ($y = 0.2, 0.4, 0.6, 0.8$) sintered at 1100 °C; (b) The Rietveld refinement on the Li$_2$Ge$_{0.6}$Ti$_{0.4}$O$_3$ sample.

Fig.6 Raman spectra for the Li$_2$Ge$_{1-y}$Ti$_y$O$_3$ ($y = 0.2, 0.4, 0.6, 0.8$) ceramics as well as the nominal Li$_2$GeO$_3$.

Fig.7 The ε_r, theoretical ε_r, $Q\times f$, τ_f, and theoretical τ_f values of Li$_2$Ge$_{1-y}$Ti$_y$O$_3$ ceramics as a function of the y values.
This article is protected by copyright. All rights reserved.
This article is protected by copyright. All rights reserved.