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Abstract—Background subtraction is the key step for a wide
spectrum of video applications such as object tracking and
human behavior analysis. Compressive sensing based methods,
which make little specific assumptions about the background,
have recently attracted wide attention in background subtraction.
Within the framework of compressive sensing, background sub-
traction is solved as a decomposition and optimization problem,
where the foreground is typically modeled as pixel-wised sparse
outliers. However, in real videos, foreground pixels are often not
randomly distributed, but instead, group clustered. Moreover,
due to costly computational expenses, most compressive sensing
based methods are unable to process frames online. In this
paper, we take into account the group properties of foreground
signals in both spatial and temporal domains, and propose a
greedy pursuit based method called Spatio-Temporal Group
Sparsity recovery, which prunes data residues in an iterative
process, according to both sparsity and group clustering priors,
rather than merely sparsity. Furthermore, a random strategy
for background dictionary learning is used to handle complex
background variations, while foreground-free training is not
required. Finally, we propose a two-pass framework to achieve
the online processing. The proposed method is validated on
multiple challenging video sequences. Experiments demonstrate
that our approach effectively works on a wide range of complex
scenarios, and achieves a state-of-the-art performance with far
fewer computations.

Index Terms—Background subtraction, foreground detection,
group sparsity, sparse signal recovery, orthogonal matching
pursuit, spatio-temporal

I. INTRODUCTION

TASK of foreground object detection originates from
numerous applications in computer vision, such as hu-

man machine interactions, intelligent video surveillance [1],
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and human behavior analysis. Background subtraction is a
commonly used approach for extracting foreground in videos
from static cameras. The performance of background sub-
traction mainly depends on the algorithm used for modeling
background.

In the past few decades, a large number of models have
been proposed. One of the most famous pixel-based methods
is the Gaussian Mixture Models [2] [3], which use a mixture of
Gaussian probability density functions to model color intensity
variations of individual pixels. In [4], Li et al: utilized spatial
and temporal features to model dynamic backgrounds, and
used a Bayesian rule to estimate the probability distributions.
The code-book methods of [5] [6] record the background states
of each pixel by a certain number of codewords, and the
foreground is detected by a distance measurement. The MAP-
MRF algorithm in [7] used a maximum a posteriori Markov
random fields (MRF) decision framework to determine the
pixels as either background or foreground. The method of self-
organizing artificial neural network in [8] [9] presented another
alternative for solving the background subtraction problem. In
ViBe [10] and PBAS [11], background modeling is based on
the selection and updating of pixel samples. A more detailed
discussion of these conventional techniques can be found in
recent surveys [12] [13] [14] [15].

Despite having made significant progress in foreground
detection, it is still challenging. Most of these methods fail
to work well in dynamic complex situations. The main rea-
sons are that these methods often make overly restrictive
assumptions about the background [16] [17], and that they are
rarely aware of the correlation of background across different
frames. The background is a complex environment that usually
includes distracting motion. An adaptive background model
should also detect shadows cast by moving objects, and handle
various changes such as where new objects are introduced into
the background or old ones are removed from it. Furthermore,
an ideal background modeling should be able to tolerate
sudden background variations like turning on/off of lights,
without losing the sensitivity to detect real foreground objects.
In light of these complex factors, it is very difficult to achieve
good background modeling by making specific assumptions.

Recently, compressive sensing [18] [19] based methods have
shown promising performances in many vision tasks. Fore-
ground detection is formulated as a classic problem of learning
a low dimensional linear model from high dimensional data.
According to different assumptions on background, compres-
sive sensing based methods can be grouped into two major
categories, namely the Robust Principle Component Analysis
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Fig. 1. Illustration of spatio-temporal group properties on foreground from
two consecutive frames on the sequence “Campus” [4].

(RPCA) and sparse signal recovery. The only assumption made
about the background by RPCA [20] is that any variation
in background appearance is highly constrained and can be
captured by the low-rank condition of a suitably formulated
matrix [16]. Sparse signal recovery is another popular model,
which only assumes that a new coming frame can be modeled
as a sparse linear combination of a few preceding frames plus
a sparse outlier term [21]. Compressive sensing based methods
can handle most challenges mentioned above by making very
little specific assumptions about the background [16] [17].
However, there are still three remaining issues :

� The constraint on the foreground tends to treat each entry
independently, without considering the group properties
of the foreground pixels. Few works have explored the
group properties in both spatial and temporal domains.

� Methods based on the sparse signal recovery assume
that background should be modeled as a sparse linear
combination of the preceding frames, but the observations
such as in video surveillance are often corrupted by the
foreground and noise.

� The computation of existing methods is very expensive.
Although some on-line methods have been proposed, only
a few of them can run as a real-time processing system.

To solve the first problem, previous methods
[21] [22] [23] [24] [25] [26] [27] [28] [29] [30] [31]
[32] [33] [34] consider possible relationships among subsets
of the non-zero entries (foreground pixels) on the spatial
domain. In fact, the group information does exist in real
video scenarios, Fig. 1 shows an example, and we can see
that non-zero coefficients are not randomly distributed but
clustered spatially in the foreground image. However, few
works have considered the group clustering priors in the
temporal domain. Moreover, it is not difficult to find the
temporal continuity of non-zero coefficients from the two
consecutive frames in Fig. 1.

With the second issue, conventional sparse signal recovery
methods extract frames directly from video sequence [21] [35],
as the atoms of background dictionary, which often contain
both background and unwanted foreground. Thus, it leads to
poor background recovery and inaccurate foreground segmen-
tation. To deal with this issue, a robust background dictionary
learning mechanism is needed, which can automatically prune
unwanted foreground pixels out, and collect a few clean
background frames as the atoms. Moreover, an ideal dictionary
should represent events in the background as much as possible.

In the third issue, RPCA based algorithms are batch mod-
els [20] [22] [23] [24] [25] [27] [30] [32] [33], emphasize
the low-rank property of the input matrix stacked by a large
number of frames [20], in that the matrix decomposition can
be started only if all of the predefined number of successive
frames is observed. Since the computational cost of most
RPCA algorithms is dominated by the evaluation of the
low-rank of observation matrix, typically, operated by singu-
lar value decomposition (SVD) with high time complexity
O(mnr) [36], where m is the size of a frame, n is the
number of frames, and r is the rank of the matrix. Also, it
should be noted that the tremendous memory requirements
due to the typical size of input matrix, such as the sequence
“Fall” in dataset CDnet [37], its resolution is 720 � 480, the
size of a input matrix with 400 frames is 1036800 � 400,
equivalent to 2.17 Gb in single precision floating-point rep-
resentation. Although some online and incremental RPCA
methods have been proposed, they still need a batch initializa-
tion [28] [38] [39] [40] [41] [42] [43] to guarantee the accuracy
of the background estimation, otherwise they need other
procedure to refine the foreground, such as MRF [44] [45] and
median filter post-processing [46] [42] [43], some incremental
methods also utilized pre-processing step to improve the speed
and the quality of results, for instance, using superpixel to ob-
tain homogeneous regions (structural and group information)
of each frame [28] [47], and saliency map to detect salient
foreground object rather than background [34]. On the other
hand, the sparse signal recovery based methods process the
frames sequentially, but the computations are still expensive,
since most of the existing methods assume that the sparsity
K was known before recovery, while K may not be available
in many practical applications, such as foreground detection.
Therefore, a slow step-wise approximation scheme is always
needed to insure the recovery performance.

In this paper, we propose a novel method for background
subtraction, which falls into the category of sparse signal
recovery. We formulate the problem in a unified framework
named Spatio-Temporal Group Sparsity recovery. The main
contributions are summarized as follows:

1) We propose a new formulation of foreground detection
via a fast greedy pursuit algorithm. It explicitly considers
group properties of sparse outliers (foreground) on both spatial
and temporal domains for better sparse recovery, instead of
merely considering the spatial, as conventional methods do.

2) We formulate the background modeling as a dictionary
learning problem, so that a training sequence without any
foreground is not required. Furthermore, a random update
policy is employed to extend the time windows covered by the
background dictionary, therefore it can deal with a wide range
of events in the background scene, such as dynamic back-
ground motions and illumination variations. This background
model can rapidly respond to sudden background changes.

3) We propose a two-pass framework to achieve the online
processing. The experimental results show that the proposed
framework can significantly improve running speed.

The remainder of this paper is organized as follows. Sec-
tion II reviews prior work and related methods. In Section III,
the spatio-temporal group sparsity recovery for background
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subtraction is presented. In Section IV, the two-pass frame-
work for online processing is described. While experiments
and discussions are presented in Section V and conclusions
are drawn in Section VI.

II. RELATED METHODS

A. Robust Principle Component Analysis

In RPCA [20], Wright et al: considered foreground detec-
tion from a viewpoint of matrix decomposition and optimiza-
tion problems, which can be expressed as follows:

min
L;S
kLk� + �kSk1 s:t: D = L+ S (1)

where D 2 Rm�n is the observed videos (n frames), and
m is the size of a frame. L and S denote the background
and foreground signals respectively. It is assumed that the
background images are linearly correlated with each other,
forming a low-rank matrix L (kLk� means the nuclear norm
of matrix L). And the ‘1-norm is employed to constrain the
foreground, since these regions should be a sparse matrix with
a small fraction of non-zero entries.

However, as the geometry of ‘1-norm is diamond shaped
and this regularization treats each entry (pixel) independently,
it does not take into account any possible relations among
subsets of entries [25] [26], while in real videos, foreground
pixels usually have the group properties of spatial connection
and temporal contiguity (see Fig. 1). To solve this issue,
in [23] [24], the low-rank and block-sparse matrix decomposi-
tion is proposed, which adopts the l2;1-norm to detect outliers
(foreground) with column-wise sparsity. However, the block-
sparsity property still has no structured information to model
sparse outliers [22]. In [48], the local sparseness constraint is
exploited and total variation (TV) penalty was employed to
better deal with corrupted data. In DECOLOR [25], a spatial
constraint that favors contiguous regions was incorporated us-
ing the Markov Random Field (MRF), but foreground regions
tend to be over-smoothed due to the smoothness constraint.
In addition, the structural and group information about non-
zero patterns of variables has been explored in the Bayesian
robust matrix factorization (BRMF) [27], block sparse [16],
TV regularizer with RPCA (TV-RPCA) [29], low-rank and
structured sparse decomposition (LSD) [22], and generalized
fused Lasso (GFL) [30]. However, those approaches like
RPCA (low-rank based) is a batch method stacking a number
of training frames in the input observation matrix [49]. This
limitation restricts them to be used for time-critical purposes
such as unusual event detection. In [50], Oh et al: used partial
sum minimization of singular values rather than nuclear norm
for the rank minimization method in RPCA, which achieved
a better control of the target rank of the low-rank solution,
even when the number of observations is limited. However, it
is still a batch model method.

To solve this issue, many efforts have been devoted to
developing online or incremental model of RPCA. Javed
et al: [44] [45] [46] proposed an online RPCA (OR-PCA) [51]
using multiple features together with MRF constraints. OR-
PCA processes frames in an online manner. Moreover, it
can handle the challenging global illumination changes in
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Fig. 2. An example illustrating the difference between our method and Prox-
Flow [31] and DGS [21] on the sequence “Shopping mall” [4] (Background
(Bg), Foreground (Fg)).

background. However, the method using the MRF may tend
to be over-smoothed, share the same limitation as DECOLOR.
In [47], Javed et al: proposed an online method by using the
superpixel as inputs, named superpixel-based online matrix
decomposition with structured foreground constraints (SOD-
SC), which obtained better F-measure performance than RPCA
with a high frame rate, but may difficult to deal with the
heavy camera jitter case due to the smoothness property of
the superpixel.

In [38], Qiu and Vaswani proposed singular value de-
composition (SVD) based method named recursive projected
compressive sensing (ReProCS), which can process obser-
vations (frames) one by one, but the precondition is that
the background matrix has been accurately estimated [38].
Thus, ReProCS employed a batch method in its SVD-based
initialization step [38] [36]. Guo et al: [39] (Prac-ReProCS)
extended ReProCS by using the incremental SVD procedures
to adapt to slow variations of background, but Prac-ReProCS
also required a batch initialization [39] [36]. In [40], He et al:
proposed an online method for low-rank subspace tracking,
named Grassmannian robust adaptive subspace tracking algo-
rithm (GRASTA). Nevertheless, GRASTA also used the ‘1-
norm as a convex relaxation of the ideal sparsifying func-
tion [49]. Another limitation is that GRASTA requires a batch
initialization stage to guarantee the quality of background
estimation. In [28], Xu et al: proposed a similar two-stage
solution to online processing, called Grassmannian online
subspace updates with structured sparsity (GOSUS), it imposes
a connectivity constraint by grouping pixels with a superpixel
method and encouraging sparsity of the groups. However, due
to the high computational cost of the ADMM, the algorithm
could only achieve 1 � 2 frames per second (FPS) given an
image size of 160�120 [28], which certainly cannot satisfy
the demand of real-time processing. In fact, both GRASTA
and GOSUS have another implementation by initializing the
background in a non-batch model, but the detection results are
not as good as when the default batch procedure is used [36].
In [41], Hu et al: proposed an online method including a
regression based low rank background model and a foreground
model promoting the foreground contiguity, but it also had
a batch initialization step. In pROST [42] [43], an ‘p-norm
(p < 1) of the singular values is used to estimate the low rank
sub-space representation of the background [36], rather than
‘1 in GRASTA. The method has been implemented on GPU,
which can achieve real-time performance at a resolution of



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 4

160�120. However, the occurrence of camouflaging remains
an unresolved problem since the pROST has no means of
exploiting the spatial correlation of foreground pixels [42].
In [36] [52], Rodriguez and Wohlberg proposed a fully in-
cremental principal component pursuit (incPCP) method with
an extremely low memory footprint, and a computational
complexity that allowed real-time processing [36], but the
group sparsity property of the foreground was still ignored.
As reported in [36], in gray-scale, the performance of incPCP
is inferior to traditional PCP [20] on data-set I2R.

In the most recent works [32] [33] [34], Pang et al: [34]
proposed an incremental low-rank based method which is
incorporated with saliency map (SM-RPCA). The guidance
of satisfying saliency map can effectively make estimated
foreground to have high-level semantic objects and less false
alarms, while bad saliency map has a negative influence
(e.g., intermittent object motion) on the result. Also, in [32],
the salient map was utilized to estimate the support of the
foreground, and a tensor based low-rank and saliently fused
sparse decomposition model (TLSFSD) is proposed to detect
foreground [32]. In [33], Erfanian Ebadi et al: proposed
a dynamic superpixel structured-sparse (DSPSS) algorithm.
Different to the pre-defined groups using in [22], DSPSS
dynamically estimates the natural structure of objects in the
scene via a superpixel generation step [33], and then a tree
structured-sparsity inducing norms is utilized to impose spatial
coherence on these regions. Although DSPSS is a batch
model, it achieved top performance in comparison with the
state-of-the-art alternatives on three datasets. A more detailed
discussion of RPCA based techniques can be found in recent
survey [17].

B. Sparse Signal Recovery

The same problem also exists in the sparse signal recovery1

based methods. Most of previous models did not consider
any prior knowledge of the spatial distribution of outliers
(foreground). To solve this problem, ProxFlow [31] used a
structured regularizer to encode the prior that non-zero entries
of sparse signals should be in a group structure. In [21],
Huang et al: proposed a method by making use of group
clustering priors, called dynamic group sparsity (DGS). The
fused sparsity was proposed to deal with the group property of
foreground in [26]. Also in [28], the group lasso was used to
model the foreground. However, to the best of our knowledge,
existing methods only focus on spatial group sparsity, and
few works have exploited both spatial and temporal group
clustering priors for better sparse recovery.

As opposed to the RPCA, methods using sparse signal
recovery process observations sequentially, which is an in-
stinctive online processing modeling. Moreover, for RPCA-
related methods, final foreground mask is dependent by a
thresholding operation to remove background noises. In sparse
signal recovery, foreground pixels are non-zero coefficients
with K sparsity and we can pick K sparsity non-zero coeffi-
cients to extract foreground. This will not need a thresholding

1The procedure of sparse signal recovery for background subtraction is
detailed in Section III.

operation and make our method robust to background noises.
To the best of our knowledge, the performances of exist online
RPCA methods without batch initialization and any pre or
post processing are still inferior to traditional batch-based
RPCA (please see the experiments in Section V). However,
it is noted that sparse signal recovery based methods require
a training sequence that not contain any foreground objects
(foreground-free). While in many practical problems, a well-
defined training sequence may not be easily obtained. Fig. 2
shows such a sequence from an indoor surveillance video,
where crowds of people are always in the scene. “Ghosts” ap-
pear in the background image (see the red rectangle) produced
by the ProxFlow [31] and DGS [21], and result in incomplete
foreground segmentation.

In fact, in most of the current sparsity signal recovery
algorithms [21] [53] [54], the sparsity degree must be given
in advance. Otherwise the method has to initialize the lower
bound of the sparsity range to zero, and search for the sparsity
degree by incrementing the step size until certain halting
conditions are satisfied. It is very difficult to maintain the
balance between the computational cost and the recovery per-
formance [16]. Therefore, a very small step size is commonly
adopted to confirm recovery performance, which results in a
very low processing speed.

III. SPATIO-TEMPORAL GROUP SPARSITY RECOVERY

Based on the assumption of sparse signal recovery [35] [21],
at time t, a new coming video frame2 yt 2 Rm can be
modeled as a sparse linear combination of n preceding image
frames D= [yt�n; : : : ; yt�1] 2 Rm�n plus a sparse outliers
term e 2 Rm :

yt = Dx+ e+ � (2)

where x 2 Rn is the coefficient vector, and � is the additive
noise. The term Dx accounts for background parts, and x
should be a kx sparse vector and kx � n. Also, the sparse
outlier e corresponds to the foreground in yt. In this paper,
we utilize an identity matrix I 2 Rm�m as the complete
dictionary for the foreground, then Eq. (2) can be rewritten
as:

yt = �z + � (� =
�
D; I

�
; z =

�
x
e

�
) (3)

where � 2 Rm�(n+m) and z 2 Rn+m, we denote columns
of � by ’1; : : : ; ’n+m. The essential purpose of the method
is to estimate the coefficient z from a training data-set by
minimizing a given objective function. Therefore, background
subtraction is formulated as the following sparse signal recov-
ery problem:

min
z
kyt � �zk2

+ � kzk0 (4)

where z should be (kx + ke) sparse vector and
(kx + ke)� (n+m). It is known that Eq. (4) is an
NP-hard problem due to the non-convexity of ‘0-norm. To
find the optimal solution, many methods are introduced. One
class of algorithms tries to seek for the sparsest solution by

2yt is reshaped from 2D image frame, and m = w � h, where w and h
are the size of frame.
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performing the basis pursuit (BP) [55] based ‘1-Minimization
instead of ‘0 [19].

min
z
kyt � �zk2

+ � kzk1 (5)

BP provides strong guarantees and stability, but because of
Linear Programming, this method does not yet have strong
polynomially bounded runtimes [54]. Another well-known
algorithm is the orthogonal matching pursuit (OMP) [56],
which uses the observation vector to iteratively calculate the
support of the signal. During each iteration, the OMP selects
the largest component of the observation vector to be in the
support:

�c = arg max
l=1;:::;m+n

�� 
 yc�1
r ; ’l

� �� (6)

T c = T c�1 [ �c (7)

where c is the iteration counter, yr is the residual of the
signal, h:; :i denotes the inner product, and the support set
T is defined as the set of indices corresponding to the non-
zero elements of the signal, which can be used to reconstruct
signal. It also means that OMP chooses the column that most
strongly correlates with the remaining part of y. Then OMP
subtracts its contribution and iterates on the residual.

Although the OMP is a very fast greedy pursuit algorith-
m, it lacks provable recovery guarantees and requires more
measurements for perfect recovery [54] [53] [21]. In order
to close this gap, the backtracking steps were incorporated
in the subspace pursuit (SP) [53] and compressive sampling
matching pursuit (CoSaMP) [54], which select many columns
(through maintaining a list of indices) of the observation vector
at each iteration.

TM = supp(��yc�1
r ;K) (8)

T c = T c�1 [ TM (9)

where supp(X;K) returns the support of the largest K mag-
nitude elements in X , K is the sparsity degree, and � stands
for the matrix transposition. From Eq. (6) to (7), we can find in
OMP that once an index is added into support set, it remains
in this set throughout the remainder of the process. On the
other hand, in the SP and CoSaMP algorithms, a list of indices
with size K is maintained and refined during each iteration.
An index, which is considered reliable in some iteration but
shown to be wrong at a later iteration, can be added into or
removed from the estimated support set freely [53]. SP and
CoSaMP provide strong guarantees as the ‘1 approach, and the
computation complexity is comparable to that of the greedy
pursuit algorithms [21]. However, all of above methods treat
each non-zero coefficient independently, and the confidence
score in Eq. (6) and (8) is only calculated by inner product
(projection).

p(l) =
�� 
 yc�1

r ; ’l
� �� (10)

Neither of them take into account any possible relations among
the subsets of the entries in the sparse matrix.

In contrast, we propose a new greedy sparse recovery
algorithm, which is motivated by the observation that in
real videos, the sparse outliers treated as foreground are not
randomly distributed, but often have group properties of spatial

Algorithm 1 Spatio-temporal group sparsity recovery algo-
rithm (STGS).
Input: K , � , y where y = � z + � , K is the sparsity degree of z, �

is the additive noise, ! are the weights for neighbors, � controls
the size of neighbor, and � encourages temporal continuity.

Output: ẑ: K - sparse approximation of z
Initialize the support: T 0 = ; , the residual: y0

r = y, and
set c = 0
while the halting criterion is not satisfied do

c = c + 1
1) Find new support elements:

Compute subspace projection: P = � � yc� 1
r

For each entry p( i; j ) in P , calculate the confidence
score by Eq. (14)
TM = supp (E; K ).

2) Update the support sets: ~T c = T c� 1 [ TM
3) Compute the representation: zv = � y

~T c y
For each entry p( i; j ) in zv , calculate the
confidence score by Eq. (14)

4) Prune small entries in the representation:
T c = supp (zv ; K )

5) Update the residual: yc
r = y � yp (yp = � T c � y

T c y)
end while

Form final solution: ẑT c = � y
T c y

coherence and temporal contiguity. Based on the observation,
we assume that group signals live in the union of subspaces,
which implies that, if a point lives in the union of subspaces
(see the red point in Fig. 1), its neighboring (spatial and tem-
poral) points would also live in this union of subspaces with
high probability, and vice versa. Inspired by [21] [54] [53], we
propose a Spatio-Temporal Group Sparsity (STGS) recovery
algorithm that includes five main steps in each iteration (see
Algorithm 1).

1) Find new support elements. The objective of signal
reconstruction is to identify the locations of the largest com-
ponents in the target signal. At each iteration c of STGS,
the current approximation induces a residual yc�1

r , the part
of the target signal that has not been approximated. STGS
first computes the subspace projection coefficients by the inner
products of the residual signal with the columns of �.

P = ��yc�1
r (11)

Then, STGS tries to select a set of candidate non-zeros (K
columns of �) that are most correlated with the residual. This
idea is similar to the SP and CoSaMP algorithms. However, in
the task of background subtraction, the relationship of these
non-zeros (foreground) is ignored by the SP and CoSaMP.
In fact, these non-zero coefficients (foreground pixels) are
clustered into G (G < K) groups. Therefore, instead of
only using sparsity (inner product itself), STGS calculates the
confidence score by combining each entry with its neighbors
in both spatial and temporal domains (see Eq. (14) and
its explanation in Step 3). More specifically, if a pixel is
a foreground, its neighboring (spatial and temporal) pixels
would also belong to foreground, and vice versa. Therefore,
STGS obtains the new support sets TM that reflects the current
residual in terms of the order statistics of the confidence score.

2) Update the support sets. STGS maintains a list T c�1

with K columns of � (a temporal solution with K non-zero
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Fig. 3. Illustration of framework of the proposed method. The first-pass introduced a high-speed method [10] to estimate the background and foreground
roughly, and inspired by [21] [54] [53], the spatio-temporal group sparsity recovery is proposed to detect foreground with high-accurate in the second-pass.

entries), and adds an additional set TM of K columns (candi-
date non-zeros) obtained from the last step. Therefore, the size
of merged support sets ~T c should be K � size( ~T c) � 2K.

3) Compute the representation. STGS calculates the
non-zero signal coefficients (representation) by applying the
pseudo-inversion process.

zv = �y~T c y (12)

where the matrix � ~T c consists of the columns of � with
indices ~T c, and �y~T c denotes the pseudo-inverse of the matrix
� ~T c .

�y~T c = (��~T c � ~T c )�1��~T c (13)

Similar to Step 1), STGS calculates the confidence score of
each entry, by not only using the coefficient itself, but also
combining its neighbors in both spatial and temporal domains:

p(i; j) = p2(i; j) +

i+�X

a=i��

j+�X

b=j��

!2(a; b)(1 + �)p2(a; b) (14)

Please note that zv (and P) is a 1-D vector, while we use
p(i; j) rather than p(l) as in Eq. (10) to represent entries of zv .
The reason is that we want to preserve the 2-D structure and
neighboring information of pixels3. In Eq. (14), � controls the
size of spatial neighbor. According to the experimental results,
an 8-connected neighborhood is proved to be satisfactory
for our method (see experiments in Section V), then we
set � = 1. The parameter � is used to encourage temporal
continuity, which is very important for dealing with noise and
dynamic background variations. Because noise or background
motion is usually smaller, shorter and more irregular than real
foreground object motion, and foreground object commonly
has the property of temporal consistency. From experimental
results (see experiments in Section V), if pixel (a; b) in the last
frame is foreground, then we set � = 0:2, otherwise � = 0.

3In Eq. (3) z =
�
x; e

� 0 is a 1-D vector. The e part (of length m) can be
regarded as (or reshape to) a w � h matrix (w and h are the frame size,
m = w� h), so entries of e can be regarded as a pixel with 2-D coordinates
in an image.

It is noticed that the weight of neighbors !, which is used to
control the balance between the sparsity prior and the group
clustering prior. The setting strategy of ! will be subsequently
reported.

4) Prune small entries in the representation. In this step,
STGS produces a new approximation (support sets T c with
K columns of � ) by retaining only the K largest entries.
By enforcing the spatio-temporal group sparsity constraint
mentioned in the last step, the signal pruning process can be
accelerated, since the sparse signals have been significantly
reduced to a narrower union of subspaces [21]. Moreover,
false alarms caused by noise can be reduced since STGS only
permits certain combinations of its support set rather than any
random entries. Results from the first experiment (Fig. 4) have
shown better foreground recovery when compared to related
methods.

It is also noted that STGS extends the backtracking strate-
gies from SP and CoSaMP. However, in traditional greedy
pursuit algorithms, such as the famous OMP, the method
selects only one (or several) column(s) during each iteration
that most strongly relates to the residual, and once this index
is added into the support set, it cannot be removed throughout
the remainder of the process. As a result, these strict inclusion
rules are needed to ensure that a significant fraction of the
newly added index (column) belongs to the correct support
set [53]. On the contrary, STGS maintains a temporal list with
K non-zero entries, and in each iteration it adds an additional
set of K candidate non-zeros that are most correlated with the
residual, and then STGS refines this list back to K elements.
This recursive refinements of the estimate of the support set
will lead to subspaces with strictly decreasing distance from
the measurement vector [53].

5) Update the residual. In this step, STGS first calculates
a new projection yp of y onto span(�T c )

yp = proj(y;�T c ) := �T c �yT c y (15)

The space spanned by the columns of �T c (support set) is
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Algorithm 2 Two-pass framework for background subtraction.
Input: Time t , video frame yt .
Output: êt : sparse approximation of foreground et

First-pass:
Foreground detection [10]
Results: rough estimation of foreground, including foreground
number k̂e and weight !̂ f by Eq. (20), and background image
bf t

Second-pass:
Background part:

Init: Using bf t and Eq. (19) to update background dictionary
D t , C = 0 (iterations of outer loop), support set T C = ; ,
set � = D t , y = yt , ! = 0 , and K = 1 for input of STGS
repeat

C = C+ 1
Perform STGS recovery with sparsity K to obtain zT C

update T C, zT C = � y
T C y, and K = K + � k

until halting criterion (kzT C � zT C� 1 k2 � " ) true
Results: Sparse coefficient of background x = zT C = � y

T C y
foreground candidate (residual) yt � D t x

Foreground part:
Init: C = 0 , support set T C = ; , � = I (identity matrix),
y = yt � D t x , ! = !̂ f , and K = k̂e for input of STGS
Perform STGS with sparsity K + � k and K to obtain
zT 1 and zT 2 respectively, and now C = 2

if kzT 2 � zT 1 k2 � " is satisfied
repeat

C = C+ 1
K = K � � k
Perform STGS with sparsity K to obtain zT C

update T C, zT C = � y
T C y

until halting criterion (kzT C � zT C� 1 k2 > " ) true
T C = T C� 1

else
repeat

C = C+ 1
K = K + � k
Perform STGS with sparsity K to obtain zT C

update T C, zT C = � y
T C y

until halting criterion (kzT C � zT C� 1 k2 � " ) true
Form final solution: êt = � y

T C y

denoted by span(�T c ) [53].

yr = resid(y;�T c ) := y � yp (16)

These five steps are repeated until the halting criterion is
triggered, and STGS uses the final support set T c to get the
sparse non-zero entries.

ẑT c = �yT c y (17)

The halting criterion recommended in [53] is adopted. The
whole algorithm is summarized in Algorithm 1.

Then, STGS computes the residue4 vector, the part of the
target signal that has not been approximated.

The closest work to ours includes SP, CoSaMP, and DGS.
Nonetheless, the group sparsity property of the foreground
signals has been ignored by SP and CoSaMP. Also in DGS, the
temporal information is missing, and it is difficult to handle
complex background variations without temporal information
(see experimental results in Section V). In addition, there
are two other issues with these methods that need to be

4The proof of orthogonality of the residue can be found in [54] [53].

addressed. Firstly, they require the sparsity degree is given in
advance. However, knowing of the sparsity before even recover
foreground makes it become a typical chicken-egg problem.
To ensure the quality of recovery, commonly, a multiple
iterative approximation procedure is utilized, which results in
a very low processing speed. Secondly, they assume that the
background should be modeled as a sparse linear combination
of atoms from dictionary D in Eq. (2), and that they obtain the
atoms directly from n preceding image frames, which contain
both background and unwanted foreground pixels. There is
no mechanism of background dictionary learning in these
methods, which leads to inaccurate background estimation and
poor foreground detection performance.

IV. TWO-PASS FRAMEWORK FOR ON-LINE FOREGROUND
DETECTION

Inspired by [38] [40] [28], we propose a two-pass process to
solve the aforementioned problems. The framework is shown
in Fig. 3. In the first-pass we employ a fast background
modeling, which can rapidly identify the likely regions of
foreground. This leads to several advantages:
� The obtained number of foreground pixels could be

used to estimate the bound or narrow the range of the
sparsity degree. Thus, the number of iterations will be
significantly reduced.

� The location of foreground pixels could be used as the
prior knowledge of group structure.

� The obtained background image could be used as a
candidate for atoms in background dictionary.

Thus, in the first-pass, we employ a pixel intensity sampling
based method, which records a history of recently observed
pixel values, and uses a random aggregation mechanism to
update the background samples. The spirit is the same with
ViBe [10]. The high frame-rate of processing, about 200 FPS
on images of size 640 � 480 as reported in [10] is the main
reason why we utilize this method. Although the foreground
detection performance of ViBe is not top level according to the
evaluation results in [37]. In fact, we tested several different
methods on the first-pass, which are subsequently reported.
The experimental results show that regardless of the detection
precision of the first-pass, the influence on the final result is
constrained. It means that a rough estimation of foreground in
first-pass is sufficient for our system.

In the second-pass, we use the background image bft from
the first-pass (to update background dictionary D) rather than
the original video frame as used by traditional methods. We
then discuss the learning strategy of background dictionary. It
is well known that many previous methods [21] [31] utilized
the first-in and first-out policies to update their dictionaries.
While a good dictionary should contain samples (atoms) from
the recent past background images, older samples should
not necessarily be discarded. Motivated by [10], instead of
removing the oldest atom from the dictionary, we randomly
choose the atom to be discarded according to a uniform
probability density function (see Eq. (19)). The reason for
doing this is to enable the handling of a wide range of
events in the background scene. According to the random
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updating mechanism, the probability of an atom is present
in the dictionary at time t, and preserved after the next update
(t+ 1) is (N �1)=N , where N is the number of atoms in the
dictionary. Thus, the probability of this atom still being alive
in the dictionary after dt time, is equal to

Pr(t; t+ dt) = e� ln( N
N � 1 )dt (18)

As presented in [10], this expression shows that the proba-
bility of an atom being preserved for the interval (t; t + dt)
is independent of t, assuming that it was included in the
dictionary prior to time t. More specifically, an atom is
not to be discarded after a fixed number of frames, but to
be extended for the expected lifespan to keep the diversity
of the background state. In many practical video scenes,
the old history is meaningful, especially for the multi-mode
dynamic background (experiments are reported in Section V).
On the other hand, this random update scheme extends the
time windows covered by the background dictionary, without
increasing the atom numbers, which is of critical for the
control of computational burden and memory requirement.
Moreover, background modeling often encounters challenges
from sudden background changes, like variations in illumi-
nation and other scene parameters that alter the appearance
of the background. In order to rapidly respond to the sudden
changes , we adopt Th as the threshold. Once the foreground
ratio (Fnum=m, Fnum is the number of the foreground, and
m denotes the size of the frame) is greater than Th, then the
origin frame yt is used to update the background dictionary
rather than background image bft produced during the first-
pass. Thus, at time t, the update of the background dictionary
is denoted as:

Dt = Dt�1f 8bi j bi = bt; with probability 1=Ng
(if Fnum=m > Th; bt = yt ; else bt = bft) (19)

As previously discussed, we use a parameter ! to control
the balance between the sparsity prior and the group clustering
prior for the outlier part e in Eq. (2). It also means that if the
degree of the group clustering is higher in the sparse signal,
! should be assigned a greater value, and vice versa. Based
on that observation, we propose an adaptive setting of ! for
image regions with distinct properties for each frame. In our
method, the frame is divided into small blocks with the same
size Bs, and in each block we count the number of foreground
Bfi from first-pass. Then, at time t, for the pixels in block i

!Bi;t = Bfi;t=Bs (20)

Up to now, we have obtained all of the inputs needed
in the second-pass, including the weight !̂f (for the x-
related (background) part, ! can be set as zero), background
dictionary D, and the estimation of foreground pixel number
k̂e from first-pass. As mentioned in Sections II and III, the
conventional sparse signal recovery based methods assume
that sparsity K has been given in advance. However, knowing
about the sparsity (foreground pixels number) even before
segmenting the video frame seems to make the problem
as one of many chicken-egg problems in computer vision.
Commonly, these methods employ an iterative process to

approximate the sparsity. More specifically, there are two loops
in approximation. During each stage (inner loop), sparse data
are iteratively optimized with the fixed sparsity number until
the halting condition within the stage is satisfied. Then the
next stage (outer loop) is switched to after adding step size
�k into the current sparsity number [21] [54]. The range of
the sparsity should start from zero. Thus, the gap between
iteration starting value and ending one is K. Thanks to the
estimation of the foreground pixel number k̂e from the first-
pass, on the foreground part, we can initialize sparsity number
(outer loop) as k̂e. The gap between sparsity K and k̂e is

d = jK � k̂ej (21)

where d is much less than K. From above, it can be concluded
that the times of iteration could be significantly reduced by the
proposed two-pass framework.

We also utilize two loops in the second-pass, while for the
background part, the sparsity degree kx could start from 1 in
the outer loop. On the foreground part, we need to make sure
that k̂e is less or greater than sparsity degree K. Therefore,
we should check whether the halting condition of outer loop
is satisfied after adding the step size �k at the first iteration.
If it is satisfied, we need to subtract a step size from k̂e, and
the whole iterative process would stop whenever the halting
condition is not satisfied, and vice versa.

We summarize the algorithm sketch of our two-pass frame-
work in Algorithm 2. The algorithms such as GRASTA and
GOSUS also utilized two-stages (pass) framework to achieve
the online processing, but they focus on the low-rank property
of the matrix composed by video frames, and are RPCA
based method which need a batch initialization (first) stage
to obtain the background estimation and insure the quality
of background recovery in the second-stage. Otherwise, these
methods cannot obtain a satisfactory foreground detection
results. Different to GRASTA and GOSUS, our method is a
sparse signal recovery based method, which processes images
in a frame by frame manner, the first-pass is to rapidly estimate
a rough foreground results as mentioned above. A further
distinction is that GRASTA ignored the relationship between
pixels of foreground since it used the ‘1-norm as a convex
relaxation of the ideal sparsifying function. In GOSUS, the
structured-sparsity is utilized to impose structural contiguity
in spatial domain, but the group cluster priors in temporal
domain are missing. On the contrary, we take into account the
group properties of the foreground signal in both spatial and
temporal domains.

V. EXPERIMENT

A. Effects of separate steps

In order to better understand the performance of the pro-
posed algorithm, we analyze the effects of separate steps one
by one. First, to evaluate the effectiveness of our spatio-
temporal group sparsity recovery (STGS), we only used STGS
(excluding use of the first-pass, and the weight ! can be set at a
fixed value such as 0.5) to detect foreground, and compared its
performance with two sparse signal recovery related methods
subspace pursuit (SP) [53] and DGS [21]. The first sequence
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(b) F-measure comparisons (c) F-measure comparisons

Frame           Ground truth   STGS                   DGS [21]                 SP [56]                  PCP [20]                  GOS [28]                   TV [29]                 LSD[22]                   GFL [30]                ORM[44] 

(a) Foreground results

Fig. 4. Comparison on sequence from [7] for demonstrating the effects of separate steps.
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Fig. 5. Comparison of random update (random) and first in first out (FIFO) schemes for background dictionary learning. (a) False positive performance of
two dictionary learning schemes on “Fall” [37]. (b) F-measure performance of two dictionary learning schemes on “Fall” [37].

tested here is from [7], which contains a camera motion caused
by wind. This is a commonly used test video for evaluating
the effectiveness of dynamic background modeling techniques.
Fig. 4 (a) shows a qualitative evaluation of algorithms. We can
see that SP produces plenty of false positives, and DGS lost a
few of the real foreground pixels. It is not difficult to find that
SP is the worst since it only uses sparsity without consideration
of any foreground group clustering. By using the group
sparsity on both spatial and temporal domains, the proposed
STGS yields a superior performance when compared to DGS.
For the sake of comparison, we compared six state-of-the-
art RPCA-based approaches, namely RPCA-PCP (PCP) [20],
GOSUS (GOS) [28], TV-RPCA (TV) [29], LSD [22], OR-
PCA with MRF (ORM) [44], and GFL [30], also shown in
Fig. 4 (a). Clearly, STGS archived the best foreground results.
This is confirmed by the performance of the F-Measure5 in
Fig. 4 (b).

Next, to verify our claim that the final result was narrowly

5F-Measure is defined as 2�precision � recall=(precision+recall).

affected by the performance of the first-pass, we chose three
different methods for the role of first-pass, namely PBAS [11],
ViBe [10] and GMM [2]. From Fig. 4 (c) we can easily see
that PBAS, GMM and ViBe obtain the best, inter-mediate and
worst results, respectively. Although the performances of these
three methods are quite different, after the second-pass, their
final results are similar, as shown in Fig. 4 (c). Furthermore, it
is observed that the two-pass result is better than that of STGS,
since weight ! obtained from first-pass is more accurate
than a fixed constant for expressing the group structure of
the foreground. To deal with that sequences with frame size
360�240, SP needs around 1820 ms, DGS 1190 ms, STGS
780 ms, and the proposed two-pass framework only about
110 ms. The proposed method achieved the best foreground
detection performance with far fewer computations.

Moreover, in order to verify the effectiveness of the random
update strategy of the background dictionary learning, we
compared its performance with the first in first out (FIFO)
strategy that was commonly utilized by conventional approach-
es. The sequence evaluated here is “Fall” from the data-set
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(a) Frame  (b) Ground truth   (c) Ours     (d) GOS [28]     (e) DGS [21]      (f) PCP [20]     (g) LBD [24]      (h) DEC [25]      (i) LSD [22]        (j) GFL [30]       (k) TV [29]       (l) ORM[42]     (m) IPC [36] 
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Fig. 6. Detected foreground results of videos from I2R data-set [4].

CDnet [37], which contains a typical dynamic background,
waving trees caused by wind. In the sequence, the video scene
is empty from frames ]1000 to ]1450. As shown in Fig. 5(a),
false positives, the background pixels incorrectly classified as
foreground, caused by waving trees were detected. It can be
seen that the number of false positives when using random
update is much less than when using FIFO. In Fig. 5(b), we
also present the F �measure results of two different update
schemes, and the frames are from ]1451 to ]1550, which con-
tain interesting foreground (moving vehicles) and background
motion (waving trees). We can see that the performance of
the random update strategy is consistently better than that of
FIFO.

B. Qualitative and quantitative evaluations

For the sake of comparison, experiments have been conduct-
ed qualitatively and quantitatively on real sequences from the
I2R6 data-set [4] and CDnet 20127 data-set [37]. We compared
the proposed algorithm with 15 methods, including RPCA-
PCP (PCP) [20], LBD [24], DGS [21], GOSUS (GOS) [28],
DECOLOR (DEC) [25], TV-RPCA (TV) [29], LSD [22],
GFL [30], incPCP (IPC) [36] [52], OR-PCA with MRF
(ORM) [44]. PCP, LBD, GOSUS, DECOLOR, TV-RPCA,
LSD, GFL, incPCP, and ORM are state-of-the-art RPCA based
algorithms. DGS is the state-of-the-art sparse signal recovery
algorithm. GOSUS, incPCP, ORM and DGS are incremental
(online) models whereas PCP, LBD, DECOLOR, TV-RPCA,
LSD, GFL are batch models. For all comparison algorithms,
the results are generated from the source codes released by
original authors, and the parameters use the default settings in
their approaches. In ORM, a 5�5 median filtering was applied

6perception.i2r.a-star.edu.sg.
7www.changedetection.net.

as a post-processing step on binary foreground mask [44].
In other experiments, post-processing was not applied for
fair comparisons (i.e., any morphological operations were not
conducted).

Fig. 6 shows the detected foreground masks on videos
from the I2R data-set [4]. It includes nine sequences, namely
Bootstrap, Campus, Curtain, Escalator, Fountain, Hall, Lob-
by, Shopping Mall, and Water Surface. These videos in-
clude a wide range of challenging scenarios: high dynamic
background, outdoor and indoor environments, sudden light
changes, etc. In the figure, the first three rows present the
indoor scene where people are shown walking in and out. As
discussed in Section III, a key distinction between the pro-
posed method and DGS is the assumption about the availability
of training sequences with/without foreground objects. Sparse
signal recovery based methods such as DGS and ProxFlow
require a set of background frames without foreground, which
is not always available for surveillance of crowded scenes.
Therefore, it is difficult for these methods to recover an accu-
rate background. Instead, RPCA-related methods can estimate
a clean background from occluded data, while DECOLOR
tends to produce a lot of false alarms due to the smoothness
constraint imposed on the foreground. On the other hand,
LBD, PCP, and incPCP failed to obtain complete foreground
without a group or structured sparsity constraint. GOSUS,
GFL, and ORM cannot get the complete foreground mask.
The proposed method performed similarly to LSD and TV-
RPCA, and are found better than the others. The next five
rows illustrate scenes with dynamic background caused by
motion of tree branches, curtain, fountain, water surface, and
escalator. It is not difficult to find out that GOSUS, PCP, LBD,
TV-RPCA, GFL and incPCP had difficulty eliminating false
positives. DGS and GFL lost plenty of foreground pixels in the
“Campus” and “Curtain”. DECOLOR, PCP, and incPCP failed
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Fall (DB)
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Parking (IM)

Sofa (IM)

Traffic (CJ)

Highway (BL)

Boulevard (CJ)

(a) Frame  (b) Ground truth   (c) Ours     (d) GOS [28]      (e) DGS [21]      (f) PCP [20]      (g) LBD [24]      (h) DEC [25]      (i) LSD [22]       (j) GFL [30]       (k) TV [29]        (l) ORM[44]     (m) IPC [36]

Fig. 7. Detected foreground results of videos from CDnet [37].

to detect the person in the “WaterSurface”, and DECOLOR
produces over-smooth results in “Curtain”. In the video “Esca-
lator”, the motion of escalators makes the background motion
regions difficult to be removed. Furthermore, the background
model is hard to establish if there is a steady stream of human
flow in the scenes. The results show that our method, LSD, and
ORM provided better detection results in handling such non-
stationary backgrounds than others can. The last row shown
in Fig. 6 is a sequence with a light being turned on and off.
What is noteworthy is that DGS, GOSUS had difficulties to
deal with such sudden light variations. This is not surprising
as the training sequences composed of background variation-
s are required for these sparse signal recovery and batch
initialization based methods. We can see that the proposed
method removed background motions effectively and detected
the complete silhouette.

For better evaluation, we test the proposed method on
another widely used data-set CDnet [37], which consists of
nearly 90000 frames in 31 video sequences representing six
categories selected to cover a wide range of challenges. These
six categories are: Baseline (BL), Camera Jitter (CJ), Dynamic
Background (DB), Intermittent Object Motion (IM), Shadow
(SD) and Thermal (TM). Due to space constraints, we show
results on ten sequences in Fig. 7, which represent typical
critical situations for the video surveillance systems. The
first row in the figure shows the results of “Highway” from
Baseline category. Clearly, all algorithms performed well on
this fairly easy video. The second and third rows show the
results of “Boulevard” and “Traffic” (Camera Jitter category).
It can be seen that PCP, LBD, TV-RPCA, LSD, and incPCP
are sensitive to the motion of the camera, and produce many
false positives. DGS and GFL could not get the complete

foreground results of the car in “Traffic”, and DGS also fails
in “Boulevard”. GOSUS is able to tolerate the camera jitter,
while achieving incomplete detections in “Traffic”. As can be
seen, our method, ORM and DECOLOR achieve complete
foreground detection with few false positives. The next two
rows present the results of “Canoe” and “Fall”. It appears that
PCP, TV-RPCA, and incPCP were hard to handle dynamic
background with water wave and tree motion. In addition,
LBD could not manage to judge background motion. In LBD,
the ‘2;1-norm is adopted to detect outliers with column-wise
sparsity. However, the block-sparsity property still has no
structured information to model any grouped sparse outliers.
DECOLOR could detect most of foreground pixels, but it
produces many false alarms due to the smoothness constraint
imposed on the foreground shapes. Moreover, DECOLOR fails
to correctly detect the “canoe”. GOSUS filters out dynamic
background variations, but loses many positive foreground
pixels. It is noticed that ORM is one of the top-performing
methods, according to the evaluation results on the CDnet [37].
The proposed method and ORM are able to tolerate most
background motions, while ORM might lose sensitivity in
completely detecting real foreground, as in “Fall”. The sixth
and seventh rows show the results of the Intermittent Ob-
ject Motion category, which depicts background objects that
are moving away, and foreground objects that are stopping
for a short while and then moving away. We can see that
GOSUS, LBD, DECOLOR, incPCP, and LSD fail to detect
the abandoned box in video “Sofa”. In addition, TV-RPCA,
GFL, DGS and GOSUS miss the real foreground (truck) at
the parking lot when the background objects move away
(car) in “Parking”. As can be seen, in the next two rows,
PCP and ORM produce plenty of false positives due to the
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TABLE I
PERFORMANCE OF F-Measure(%) ON DATA-SET I2R [4] (BEST: BOLD, SECOND BEST: UNDERLINE).

Methods DGS [21] PCP [20] LBD [24] GFL [30] DEC [25] TV [29] LSD [22] TLS [32] SM [34] GOS [28] Ours ORM [44] SOD [47] DSP [33] OMM [45]

F-Measure 57.35 58.74 60.25 70:01� 73.08 74.89 75.94 76.22 77.11 77.67 77.81 79.46y 87.51x 88.73x 89.21y

y As reported in [44] [45], a 5� 5 median filtering was applied as a post-processing step on binary foreground mask.
x As reported in [47] [33], the superpixel was utilized as the input of their model.
� Experimental results under comparison are come from paper [32].

TABLE II
PERFORMANCE OF F-Measure(%) ON SIX CATEGORIES (31 VIDEO SEQUENCES) FROM DATA-SETS CDNET [37] (BEST: BOLD, SECOND BEST:

UNDERLINE).

Methods SM [34] TLS [32] DGS [21] LBD [24] PCP [20] GFL [30] TV [29] ORM [44] GOS [28] DEC [25] LSD [22] OMM [45] Ours SOD [47] DSP [33]

BL – – 84.64 86.67 91.09 86.98 91.33 86.26y 91.33 92.15 92.67 93.69y 93.47 94.69x 96.64x

CJ – – 66.09 66.59 72.18 76.27 74.82 75.25y 73.52 77.76 78.19 84.57y 76.22 85.19x 86.62x

DB – 71.50 61.95 59.43 69.41 58.17 65.92 72.10y 77.07 70.84 71.73 77.65y 82.36 80.55x 90.57x

IM – – 57.32 63.16 53.71 63.16 58.78 56.69y 57.67 59.45 67.54 75.89y 67.66 69.88x 78.70x

SD – – 80.15 77.79 78.85 80.26 79.50 74.51y 81.74 83.17 81.58 69.50y 84.61 76.44x 91.77x

TM – – 59.01 71.83 71.92 72.89 70.19 76.32y 70.80 70.81 75.85 79.21y 82.97 81.56x 73.28x

mean – – 68.19 70.91 72.86 72.96 73.42 73.52y 75.36 75.70 77.93 80.01y 81.22 81.39x 86.26x

y As reported in [44] [45], a 5� 5 median filtering was applied as a post-processing step on binary foreground mask.
x As reported in [47] [33], the superpixel was utilized as the input of their model.

TABLE III
COMPARISONS OF COMPUTATIONAL TIME (SECONDS) FOR SEVEN ON-LINE METHODS.

Resolution� No. frames DGS [21] GOS [28] OMM [45] SOD [47] ORM [44] Ours IPC [36]

[160� 128]� 100 68.13 20.33 9.50 8.12 6.17 4.53 4.41
[320� 240]� 100 127.37 46.49 17.00 19.22 10.54 9.62 8.93

shadows in “Backdoor” and “Bus Station”. It is noticed that
the proposed method could not completely filter out shadows.
It is because that we did not introduce any sophisticated
procedure to identify shadows. The last row depicts a thermal
sequence captured by a far-infrared camera. Our method was
able to handle such large-sized foreground object, and obtain
much more complete foreground detection than others. What
is noteworthy is that DGS failed in “Corridor”. This is because
DGS obtains the atoms (background dictionary) directly from
n preceding image frames with foreground objects, which
leads to inaccurate background estimation.

Qualitatively, the results of the proposed method look better
and are the closest to the ground-truth references. A quanti-
tative evaluation provides more solid conclusions on the per-
formance of the proposed method. As a quantitative analysis,
we evaluate the performance in terms of F-measure, which is
a weighted harmonic mean of precision and recall that can
be used to rank different methods. In quantitative evaluation,
more state-of-the-art methods are compared, including two
online algorithms, OR-PCA with MRF via multiple features
(OMM) [45], SODSC (SOD) [47], and three most recent
algorithms DSPSS (DSP) [33], SM-RPCA (SM) [34], and
TLSFSD (TLS) [32]. As reported in OMM [45], a 5 � 5
median filtering was applied as a post-processing step on
binary foreground mask. Also, it is noticed that the superpixel
was utilized as the input in SODSC [47] and DSPSS [33].
These pre or post processing would undoubtedly improve the
accuracy of foreground detection (while the proposed and
other algorithms are just using the pixels value and without any

refinement procedure). Like most of other algorithms, in this
paper, we just employ pixels value as the input, without using
any refinement procedure. In Table I, the average F-measure
performance of methods on data-set I2R [4] are compared. It
can be seen, in all of the eleven methods without any pre or
post processing, our model has achieved the best numerical
value, even though against to most recent methods, such as
TLSFSD [32] and SM-RPCA [34]. Also, under the same
conditions, as shown in Table II, our method obtained the best
average metrics on the CDnet [37] data-set. Here, we cannot
present complete metrics of SM-RPCA [34] and TLSFSD [32]
in Table II, since the source code of these methods are not
publicly available, and only a fraction of the results on CDnet
were reported in [32].

VI. CONCLUSION

Our method has been implemented in C++ and MATLAB.
Tests were executed on a PC with a 2.6 GHz CPU and 8 GB
of RAM. Finally, to complete our analysis, in Table III we
present the computational time of seven online (incremental)
processing methods. The computational time is recorded as
the average processing time on one hundred frames with
different resolutions. In the methods evaluated above, GOSUS
(GOS), incPCP (IPC), ORM, OMM, SOD, and DGS are
online models. SM-RPCA [34] is also an incremental method.
But the source code is not publicly available now, and no
computational time with different resolutions was reported
in [34]. The rest of methods are batch models. Table III shows
that the proposed method is very close to the processing speed
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of incPCP, and faster than the others. Our method achieved
nearly 22 FPS at a resolution of 160�128, which is close to
performing real-time processing.

In this paper, we have proposed a spatio-temporal group
sparsity recovery method for background subtraction which
takes into account the group properties of the foreground
signal on both spatial and temporal domains. Moreover, a
two-pass framework is proposed to meet the online process
requirement. Qualitative and quantitative evaluations on the
challenging data-sets demonstrate the superior performance of
the proposed method in terms of detection accuracy and time
complexity. In the future, the goal will be to further improve
computational efficiency to achieve real-time processing, and
we plan to develop the moving camera version of STGS
that can work efficiently on motion segmentation problems.
Furthermore, we plan to apply this method to our research in
human behavior recognition and micro gesture analysis.
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