Hypoxia-inducible factor prolyl 4-hydroxylases and Metabolism

Peppi Koivunen¹,* and Thomas Kietzmann²

¹Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland. ²Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland.

*Correspondence: peppi.koivunen@oulu.fi (P. Koivunen)

Key words: ALD, HCC, insulin resistance, cholesterol, metabolic syndrome, NAFLD

This is the peer reviewed version of the article, which has been published in final form at https://doi.org/10.1016/j.molmed.2018.10.004.
Abstract

Hypoxia-inducible factor prolyl 4-hydroxylases (HIF-P4Hs, also known as PHDs or EglNs) are enzymes that act as cellular oxygen sensors. Inhibition of HIF-P4Hs leads to stabilization of hypoxia-inducible transcription factors (HIFs) which initiate a gene expression program that allows to cope with low oxygen levels and to restore tissue oxygenation. This involves for example upregulation of erythropoiesis and angiogenesis, modulation of inflammatory responses and reprogramming of metabolism. Currently, several pharmacological HIF-P4H inhibitors are in clinical trials mainly for renal anemia. However, recent data suggest that HIF-P4H inhibitors could also be considered to treat metabolic disorders. Here we will discuss the potential of targeting HIF-P4Hs and the HIF pathway for the treatment of obesity, metabolic syndrome, atherosclerosis and fatty liver diseases.
HIF-P4H inhibitors and renal anemia – What about beyond?
After birth the kidney overtakes liver as the major organ responsible for synthesis of erythropoietin (EPO) [1]. Therefore, conditions such as chronic kidney disease (CKD), can cause renal anemia [1]. The current anemia treatment in CKD is recombinant EPO, often with iron supplementation. However, due to CKD-associated inflammation involving e.g. upregulation of hepcidin, the treatment is often insufficient [1]. Hence, alternative renal anemia treatments are of high demand. Induction of EPO expression and erythropoiesis are also key events of a physiological response to hypoxia, which occurs e.g. at high altitude (Fig.1). The genetic program of the hypoxia response is primarily driven by hypoxia-inducible factors (HIFs) (Fig. 1). Under normoxic conditions, the three HIFs known to date, with HIF2 being the primary EPO inducer in kidney, are targeted for VHL-mediated degradation by HIF prolyl 4-hydroxylases (HIF-P4Hs, also known as PHDs or EglNs) (Fig. 1). Three variants have also been identified for HIF-P4Hs [2]. Thus, inhibitors of the HIF-P4H enzymes, which prevent the degradation of HIFs provide a novel, efficient method to treat at least CKD by inducing the endogenous hypoxia response. These inhibitors are chemical analogues of 2-oxoglutarate (2-OG), a reaction cofactor for HIF-P4Hs (Fig. 2), and act as competitive antagonists that stabilize HIFs in the presence of oxygen (Fig. 2). Several such compounds are in clinical trials for treatment of renal anemia (Table 1).

Since HIFs regulate many processes beyond erythropoiesis (Fig. 1), HIF-P4H inhibition has been exploited widely in preclinical conditions, and indeed found beneficial in ischemic and inflammatory conditions (for reviews see [3, 4]) and lately in metabolic diseases [4-9]. However, there exists concern about the use of HIF-P4H inhibitors. This arises from findings showing that cancerous lesions typically express high levels of HIF and HIFs are often associated with increased mortality [10]. Hence, close care is required although in tumors HIF stabilization is driven by hypoxia due to uncontrolled proliferation and inadequate vascularization, and HIF itself has not been found to be an oncogene [11]. This review focuses on the potential role of HIF-P4H inhibition in treatment of metabolic disorders.

Hypoxia and HIFs as metabolic reprogrammers
The hypoxia response consists of an acute phase and a prolonged phase where transcriptional changes orchestrated by HIFs are central (Fig. 1). During extended oxygen deprivation mitochondrial ATP production by oxidative phosphorylation suffers most, because the majority of oxygen is used there as a terminal electron acceptor. As an adjustment, many HIF target genes encode enzymes and factors that decrease oxidative phosphorylation and induce glucose uptake and glycolysis, thereby a minor ATP production can be maintained in the expense of lactate generation (Fig. 3). To cope with the
latter, the HIF response promotes acid-base homeostasis by upregulating lactate export and recycling for gluconeogenesis (Fig. 3).

Hypoxia, HIFs and HIF-P4Hs in obesity, metabolic syndrome and beyond

According to WHO statistics a quarter of World’s adults has metabolic syndrome, characterized by visceral obesity, dyslipidemia, hypertonia and hyperglycemia or insulin resistance, and which predisposes to type 2 diabetes (T2D), cardiovascular diseases, stroke and hepatic steatosis. Several epidemiological studies associate hypoxia in people living at high altitude with a lower prevalence of obesity, T2D, ischemic heart disease and mortality from it or from stroke, but with harmful effects on chronic obstructive pulmonary disease [12-15]. In addition, mouse data corroborate this. For example, exposure of C57Bl/6J mice to chronic environmental hypoxia (8% O₂ for 3 weeks) associated with decreased fat mass, adipocyte size and white adipose tissue (WAT) inflammation [16] (Fig. 4). In line with the substrate preference (Fig. 1), mice with systemic HIF-P4H-1 (PHD1/EglN2) deficiency lowered their skeletal muscle O₂ consumption through activation of PPARα as well as HIF2α-mediated development of hypoxia tolerance [17] but had no difference in body weight [18]. These mice also displayed reduced LDL-C levels, less circulating immune cells, and an improved glucose tolerance [9] (Fig. 4). When Hif-p4h-1/- mice were crossed into a LDL receptor (LDLR) knockout background and fed a Western-type diet, they showed protection against atherosclerosis [9] (Fig. 4). However, these studies are opposed by another report in which HIF-P4H-1-deficient mice exhibited a higher body weight, hepatic steatosis, glucose intolerance as well as systemic insulin resistance [19] (Fig. 4). While the reasons for the apparent differences are not known, these mice displayed a certain degree of protection as their metabolic aggravations were not altered when fed a high fat diet (HFD) [19]. Haplodeficiency for HIF-P4H-2 (PHD2/EglN1), the most abundant isoenzyme, associates with lower body weight [18] (Fig. 4). Further, systemic reduction of it in HIF-P4H-2 hypomorphic mice, which display differing HIF1α and HIF2α stabilization in various tissues [20, 21], reduced body weight, adiposity and WAT inflammation, lowered hepatic cholesterol synthesis, improved the HDL/LDL+VLDL ratio, amended glucose tolerance and insulin sensitivity and protected against hepatic steatosis [6, 8] (Fig. 4). When these mice were crossed with LDLR mutant mice protection against atherosclerosis was reported [8] (Fig. 4). The hepatic HIF-P4H-2/HIF1α axis has also been reported to contribute to post-exercise metabolic homeostasis [22]. Global HIF-P4H-3 (PHD3/EglN3) deficiency caused systemic hypotension [23] but no difference in body weight [18] (Fig. 4). By contrast, global inactivation of the HIF asparaginyl hydroxylase FIH (Fig. 1) reduced body weight, elevated metabolic rate and improved glucose and lipid homeostasis, and offered resistance to HFD-induced weight gain and hepatic steatosis [24]. Moreover, activation of
both HIF1α and HIF2α in adipocytes of mice by deleting a negative regulator, e.g. HIF-P4H-2, VHL or FIH (Fig. 1), reduces fat mass [6, 24-26]. Oppositely, endothelial cell-specific deficiency of HIF-P4H-2 increased body and fat weight, impaired glucose tolerance and induced hepatic steatosis and fibrosis (Fig. 4) [27].

Interestingly, the findings from the genetic studies were partially reproduced by the preclinical pharmacological pan HIF-P4H-1-3 inhibitor FG-4497. Treatment of C57Bl/6J mice with FG-4497 phenocopied protection against obesity and metabolic dysfunction seen in the HIF-P4H-2 hypomorphs [6] (Fig. 4). FG-4497-treatment also reduced adiposity and improved glucose tolerance in mice fed a HFD suggesting that in addition to prevention, it could be used for obesity treatment [6]. Along with the improved metabolism, systemic FG-4497 treatment of Ldlr-/- mice also reduced aortic plaques, reduced inflammation in WAT and led to higher levels of autoantibodies targeting oxidized-LDL [8] (Fig. 4).

In clinical trials with renal anemia patients the HIF-P4H-1-3 inhibitor roxadustat not only corrected anemia but also reduced serum cholesterol levels and improved the HDL/LDL ratio [28] (Table 1). Similar effects on serum lipids were reported by daprodustat [29] whereas vadadustat did not alter serum cholesterol levels [30] (Table 1), however, vadadustat and molidustat were associated with lowered blood pressure [31, 32] (Table 1). Altogether, data from preclinical, clinical and epidemiological studies support that activation of the hypoxia response via HIF-P4H inhibition is a powerful tool to regulate metabolism (Fig. 4). So far, majority of the data associate HIF-P4H inhibition to be beneficial for metabolic health (see Clinician’s Corner).

Hypoxia, HIFs and HIF-P4Hs in fatty liver disease

Fatty liver disease is characterized by an excessive accumulation of macro- or microvesicular lipid droplets in the cytoplasm of hepatocytes. Commonly, the presence of lipid droplets in more than 5% of hepatocytes is defined as steatosis [33]. The lipids, mainly triglycerides, can arise from diet, de novo lipogenesis or fatty acids released and re-esterified from the adipose tissue. In addition, ethanol, which in many Western cultures is consumed at a daily rate of 20-30 g, leads to formation of fatty acids. Hence, any imbalance in triglyceride acquisition and removal in the hepatocytes can lead to steatosis. Clinically fatty liver disease is categorized into non-alcoholic fatty liver disease (NAFLD) and alcoholic fatty liver disease both of which can progress to fibrosis, cirrhosis and hepatocellular carcinoma (HCC) [34].

Hypoxia, HIFs and HIF-P4Hs in nonalcoholic fatty liver disease (NAFLD)
NAFLD became a major health problem in adults and children, since it parallels the pandemic spread of obesity, T2D and cardiovascular diseases [35]. Currently, the worldwide prevalence of NAFLD is estimated to be ~24% [36]. NAFLD comprises a range of conditions including simple, still benign steatosis and pathological nonalcoholic steatohepatitis (NASH). About 10-30 % NASH patients will progress into cirrhosis and about 40–60% of the cirrhosis patients will develop HCC [37]. Despite growing prevalence, the factors influencing NAFLD and progression to NASH, fibrosis, cirrhosis and HCC are poorly understood. Apart from continued nutrient excess, insulin resistance, impaired autophagy, endoplasmic reticulum stress and reactive oxygen species (ROS) formation [38, 39], hypoxia may occur and aggravate development and progression of NAFLD [40, 41]. The role of hypoxia for steatosis development was also supported by a recent mathematical model [42]. Interestingly, steatosis and later cellular damage observed in NASH are mainly found in the less oxygenated pericentral areas of the liver acinus (Fig. 5). This goes in line with the concept of “metabolic zonation” (Fig. 5). In that concept, the metabolic capacities in the smallest functional unit, the liver acinus, are found distributed in different zones which exist according to the proximity of the portal triad and the O₂ gradient (Fig. 5) [43].

The occurring physiological oxygen gradient, among other morphogens, is considered to be a major modulator of metabolic zonation [43, 44]. In line, it was shown that the expression of the fatty acid synthase (FASN) can be induced by hypoxia [45]. Thereby, HIFs, which are expressed in a zonated manner [46], appear to have not entirely identical functions. While deletion of the common HIF destruction protein VHL [47] and constitutive activation of hepatic HIF2α, but not HIF1α, in mice resulted in increased lipid storage associated with steatosis [48], HIF1α suppressed expression of the β-oxidation involved medium- and long-chain acyl-CoA dehydrogenase (MCAD and LCAD) genes [49]. Accordingly, transcriptomic profiling revealed overlapping but not entirely identical HIF1α and HIF2α target genes [47]. In line, hepatocyte-specific deletion of HIF2α in mice ameliorated NAFLD after feeding either a choline-deficient L-amino acid–defined or a methionine/choline-deficient diet [50]. The NAFLD reduction appeared to be mediated by down-regulated macrophage M1 polarizing histidine-rich glycoprotein (HRGP) expression [50], which links hepatocyte function with inflammation.

HIF2α appears not only to be a stronger regulator than HIF1α with respect to lipid storage and insulin sensitivity [51], but also with the lipid profile. Studies with hepatocyte-specific VHL, VHL/HIF1α and VHL/HIF2α knockout mice revealed that HIF2α is the major driver of a selective autophagy pathway, namely pexophagy [52]. Since peroxisomes account for about 20% of O₂ consumption and 35% of H₂O₂ production in liver [53], it is conceivable that cells reduce the number of peroxisomes during hypoxia. As a consequence of the HIF2α-driven pexophagy, the decreased
peroxisomal metabolic activity and the HIF2α-mediated PPARα antagonism [52, 54] shift the lipid profile to a pattern which is similar to that seen in patients with NAFLD [55]. Hence, a pattern showing an increase of triglycerides with very long-chain and polyunsaturated fatty acids as well as a decrease in docosahexaenoic and arachidonic acid [52, 55]. Moreover, the effects of HIF2α on pexophagy were not restricted to normal hepatocytes. In particular a reduced number of peroxisomes was found in clear cell renal cell carcinomas with high HIF2α levels [52]. Another layer of complexity was added by a study linking stabilization of intestinal HIF2α with NAFLD. Here, deletion of HIF2α from intestinal cells or the HIF2α specific inhibitor PT2385 prevented HFD-induced hepatic steatosis [56].

In line with the substrate preference (Fig. 1), it was demonstrated that liver specific lack of HIF-P4H-2 induced HIF1α, whereas lack of HIF-P4H-3 primarily activated HIF2α, and that the apparent severe hepatic steatosis in the HIF-P4H-2/HIF-P4H-3 double knockout mice was mainly the result of HIF2α activation [57]. In addition to steatosis, the liver specific HIF-P4H triple knock-out mice had hepatic vascular malformations and massive erythrocytosis induced by hepatic EPO expression. Interestingly, the presence of a single HIF-P4H-1 or HIF-P4H-3 allele minimized steatosis and vascular malformations while high hematocrit levels persisted, whereas in HIF-P4H-2/3 double knockouts all these parameters were rather normal [58]. Further, HIF-P4H-2 deficiency in mouse liver was shown to enhance hepatic and renal gluconeogenesis from lactate produced in skeletal muscle (Cori cycle) and hence contribute to reduced circulating lactate [59]. Similar results were obtained upon oral administration of the HIF-P4H inhibitors REC2923 or roxadustat, and these effects could be advantageous e.g. in T2D patients suffering from metformin-associated lactic acidosis [60]. In addition, liver-specific HIF-P4H-3 deletion in mice was shown to improve insulin signaling and to counteract diabetes [5]. Thereby, HIF-P4H-3 lack acted mainly through HIF2α stabilization, which then increased insulin receptor substrate-2 (IRS2) transcription and insulin-dependent PKB/Akt activation. Interestingly, a further increase in HIF2α (and HIF1α), obtained by additional HIF-P4H-1 and/or HIF-P4H-2 deletions caused liver steatosis and did not lead to additive metabolic improvements [5].

Another report, although not in liver, links HIF-P4H-2 inactivation with regulation of glycolysis, glycogen storage and inflammation [61], the latter being a feature of NASH. In that study, myeloid-specific loss of HIF-P4H-2 in mice caused a glycolysis-dependent delay in inflammation resolution paralleled by enhanced neutrophil survival and augmented chemotaxis. Application of the HIF-P4H inhibitor molidustat also enhanced neutrophil function and delayed resolution of inflammation [61]. Hence, while the liver and kidney-specific lack of HIF-P4H-2 appear to be
beneficial under conditions such as HFD or lactic acidosis, the latter study suggests that in myeloid cells it may aggravate inflammation.

In summary, the role of HIF-P4Hs in NAFLD appears to be complex and not yet fully understood. While the data mainly from liver/hepatocyte-specific settings with inhibition of all HIF-P4Hs or stabilization of HIF2α indicate a NAFLD promoting role, the data also suggest that restricting the inhibition to selected HIF-P4H isoenzymes may have beneficial effects.

Hypoxia and HIFs in alcoholic liver disease (ALD)

ALD has several features in common with NAFLD. Steatosis is seen in ~90% of the heavy drinkers. About 30% of them will develop cirrhosis and ~10% of those will progress to HCC [37]. While gender and ethnic specific differences exist, e.g. women are more susceptible to ALD than men, obesity has evolved as a common and central risk factor that accelerates ALD [62]. Moreover, other liver diseases such as hepatitis B or C virus infections promote the disease and progression into HCC [37].

Acute or chronic ethanol ingestion is supposed to act directly on hepatocytes by finally inducing apoptosis via organelle dysfunction, mediator release and oxidative stress [63]. The latter, together with hormones (e.g. catecholamines), contributes to an increase in oxygen consumption [64]. As a result, this leads to hypoxia, which is best visible in the perivenous area of animal models (Fig. 5) and in patients with ALD [63, 65]. Accordingly, HIFs may play a role in the pathogenesis of ALD. Given the common aspects between NAFLD and ALD, such as steatosis as result of HIF2α activation, one could expect a similar role in ALD. However, studies with HIF2α in ALD are, to the best of our knowledge, not yet available and only a few studies with respect to HIF1α in ALD are published.

In one study hepatocyte-specific deletion of HIF1α protected mice from liver damage and lipid accumulation when fed an ethanol containing diet (habituation to a Lieber-DeCarli liquid diet with 5% ethanol (v/v) over a period of 2 weeks, then maintained on the 5% diet for 4 weeks). Vice versa, hepatocyte-specific overexpression of degradation-resistant HIF1α resulted in hepatomegaly and steatosis upon ethanol feeding [66]. By contrast, another study using the same animal model and almost identical study protocol (Lieber-DeCarli liquid diet with increasing concentrations of ethanol from 1%-4% within the first week, followed by 6% for a further 4 weeks) showed that hepatocyte-specific knockout of HIF1α aggravated steatosis [67]. Mechanistically, this appeared to be an indirect regulatory effect involving regulation of lipogenic genes such as FASN or acyl-CoA carboxylase (ACC) via the transcription factor SREBP-1c and its repressor differentiated embryo chondrocyte 1 (DEC1) [67]. All in all, more studies are needed to understand the role of HIFs and HIF-P4Hs in ALD.
Hypoxia, HIFs and HIF-P4H in liver fibrosis/cirrhosis/HCC

The pathogenic process from NAFLD/ALD to fibrosis, cirrhosis and HCC is rather complex and involves beside the hepatocytes non-parenchymal cells. For example, hepatocellular damage results in activation of Kupffer and hepatic stellate cells. Drinking alcohol also increases gut permeability and links the Kupffer cells to the intestinal microbiome that can trigger inflammatory responses via toll-like receptor 4 in Kupffer cells and hepatocytes [68]. Consequently, this leads to further recruitment of macrophages, cytokine release and mainly stellate cell-mediated extracellular matrix deposition [69].

Upon fibrosis, the changed tissue architecture causes resistance to blood flow and hypoxia [70]. In fact, this coincides with expression of HIF targets in human liver [71] and HIF1α stabilization in mouse models [72, 73]. While to date the participation of HIF2α in liver fibrosis was not really investigated, some reports show that hypoxia mainly via HIF1α can regulate genes important for collagen synthesis and angiogenesis in stellate cells [74]. With respect to the associated inflammation, the chemokine receptor CXCR4 and its ligand, stromal cell-derived factor-1 (SDF-1), which both are required for infiltration of inflammatory cells, are HIF-target genes [75]. Indeed, deletion of HIF1α or HIF1β in cells of the myeloid lineage reduced bile duct ligation-induced fibrosis in mice [76].

Another mechanism contributing to fibrosis is epithelial-mesenchymal transition (EMT). HIF1α and HIF2α were shown to regulate EMT in HCC cells [77] via the Snail family [78, 79]. Reports from the kidney show that HIF1-dependent mechanisms contribute to fibrogenesis by inducing expression of Snail1 [80] and another HIF target Twist [81, 82], hence implying that a similar mechanism could also work in liver, however, direct evidence needs to be obtained.

Although the HIF-dependent regulation of Snail appears to be a driver of EMT and to promote fibrosis and HCC, it may also represent an important feedback mechanism for NAFLD-associated insulin resistance. A recent report showed that hepatocyte-specific deletion of Snail1 enhanced insulin-stimulated lipogenesis in hepatocytes and aggravated NAFLD in mice, which was opposed by liver-specific Snail1 overexpression. Specifically, Snail repressed FASN promoter activity epigenetically via recruitment of HDAC1/2 and deacetylation of H3K9 and H3K27. Thus, this raises in contrast to the rather lipogenic effects of HIFs, the possibility that Snail1 induction by HIFs could partially counteract NAFLD in obesity [83].

The findings that EMT can be regulated by HIFs goes in line with higher HIF1α and HIF2α levels in HCC than in non-tumor-surrounding tissues [84]. These findings are important since HCC is the second leading cause of cancer-related death worldwide [85] and HIF1α was positively correlated with higher HCC grade and reduced survival [86, 87].
NAFLD/NASH, ALD, T2D, abuse of drugs and congenital disorders contribute to cirrhosis and HCC in only about 20% of the cases. About 80% HCC cases are based on chronic hepatitis B and C infections [88]. Interestingly, the hepatitis virus B X-protein was able to enhance HIF1α levels in cell cultures and correlated positively with the expression of HIF1α in HCC material from hepatitis B virus infected patients [89]. Moreover, hepatitis C virus glycoproteins promoted EMT and hepatoma cell migration via HIF1α-dependent upregulation of Snail and Twist [90].

The possible involvement of the HIF system in HCC is also indirectly reflected by the currently used therapies or phase III clinical trials against HCC. Drugs, such as sorafenib, regorafenib, lenvatinib, cabozantinib and ramucirumab, target tyrosine kinase receptor family members binding vascular endothelial growth factor, placental-derived growth factor, stem cell factor and stem cell-derived factor, which are virtually directly or indirectly regulated by hypoxia/HIFs [91, 92]. Although this picture is not entirely complete since various other important players feed into the pathogenesis of HCC, these findings suggest a supportive role of hypoxia and HIF1α in disease progression, whereas the role of HIF2α appears to be conflicting. Two studies indicated that HIF2α promotes HCC [86, 93] and another study reported that HIF2α inhibits HCC progression [94].

When HCC induced with diethylnitrosamine was studied in HIF-P4H-2 haplodeficient (Hif-p4h-2+/-) mice, these mice had more aggravated HCC growth potentially due to Notch activation [95]. Importantly, the effects of HIF-P4H-2 haplodeficiency appeared to be a rather late event and manifested during tumor nodule formation and not early on during neoplastic transformation [96]. Interestingly, the Hif-p4h-2+/- mice appeared to be less prone for metastasis. Although not shown for HCC, those mice generate less metastasis than wild-type upon transplantation of Hif-p4h-2+/- tumor cells. These effects are due to an improved vessel architecture within the tumor mediated mainly via HIF2α [97]. Moreover, metastasis was also reduced when the Hif-p4h-2 haplodeficiency was introduced to a genetic breast cancer model (PyMT mice). Mechanistically, metastasis reduction was the result of a decreased activation of cancer associated fibroblasts, and a HIF-independent reduction of TGF-β1 release and matrix production [98]. In line, when testing the systemically administered HIF-P4H pan-inhibitor ethyl-3,4-dihydroxybenzoate in a preclinical setting of extended partial hepectomy to remove colorectal liver metastases, it was found to augment liver regeneration [99].

Conflicting data with respect to HIF-P4H-2 expression and HCC in human samples were reported. One study associated high HIF-P4H-2 expression with larger and higher stage tumors and poorer prognosis [100], whereas another one reported an association of lower hepatic HIF-P4H-2 levels with cancerous tissue and a longer patient survival upon elevated HIF-P4H-2 levels [101]. Interestingly, HIF-P4H-3 expression seems to be a favorable prognostic marker for patients with HCC [102] since its downregulation in HCC was associated with more aggressive tumor behavior.
and poor prognosis [103]. Altogether, the mechanisms involved in the progression of fatty liver diseases to fibrosis/cirrhosis/HCC are many and involve not only the HIF system but also the cross-talk with various other signaling pathways. This likely represents an underlying cause for contradictory appearing data on the roles of HIFs and HIF-P4Hs and call for more studies to draw conclusions.
Concluding remarks

Various lines of evidence indicate that hypoxia, inhibition of HIF-P4Hs and stabilization of HIFs are causally linked to various aspects of metabolism (Fig. 4). Hence, disrupting that causal chain via HIF-P4H inhibition could be an efficacious therapeutic option to treat the global epidemic of obesity, metabolic syndrome, T2D and fatty liver diseases. However, at the moment it is uncertain whether the current HIF-P4H inhibitors, which have been optimized to induce erythropoiesis, can be of ultimate benefit due to the pleiotropic and context dependent activities of the different HIFs in particular, as well as lacking information on specific diseases, e.g. ALD. From the data reviewed here, it appears that HIF-P4H inhibition could be beneficial with respect to obesity, metabolic syndrome and hyperlipidemia and under conditions similar to T2D (Fig. 4). Regarding NAFLD, a dose-dependent HIF-P4H inhibitory window, primarily targeting HIF2α, and avoiding aggravation of steatosis and inflammation could mediate advantage. Thus, additional molecular studies are necessary to address whether the observed steatosis upon combined genetic HIF-P4H-1-3 deficiency is solely dependent on the dosage of HIF2α, and to which extent other, HIF-independent effects contribute to metabolism regulation. On the other hand, HIF2α inhibition, for example with the novel specific inhibitor PT2385 in clinical trials for renal carcinoma [56], may offer potential in fatty liver diseases. The knowledge gained will substantiate the common and different involvement of HIF-P4Hs and HIFs in the regulation of metabolism. At the end, the one or the other inhibitor, dependent on the dose, duration and features, like HIF-P4H isoenzyme, HIFα parologue or cell type selectivity, could be a therapeutic option to treat e.g. NAFLD.

Considering this, a prerequisite for the use of HIF-P4H inhibitors in general, and in particular in liver disease, should be that it would not aggravate pre-existing liver diseases. Although in majority of reports HIF-P4H inhibition is associated with protection against inflammation [3, 4], the recent findings from mice where the HIF-P4H inhibitor molidustat aggravated inflammation [61] suggests that long-term use of currently available HIF-P4H inhibitors in situations such as NASH requires caution and may be contraindicated. On the other hand, all HIF-P4H inhibitors currently in clinical trials appear to be well tolerated, but only one has been tested in an open-label study with eight subjects having moderate hepatic impairment (liver cirrhosis Child-Pugh score 7-9) and eight subjects with normal hepatic function. When these patients received a single oral dose of 100 mg roxadustat under fasting conditions they did not show differences of clinical significance in pharmacokinetics and pharmacodynamics [104].

Moreover, the recent identification of non-HIFα HIF-P4H substrates (Fig. 2) suggest existence of several cross-talk options which may be of special interest in HCC given the potential opposing
actions of HIF1α and HIF2α in cancer progression [105]. Because of its poor prognosis, limited
treatment options and high risks of tumor recurrence and metastases [88], it is important to better
understand the contribution of HIFs and the HIF-P4H system in the pathogenesis of HCC and its
preceeding entities fibrosis and cirrhosis. In particular, it would be extremely important to understand
at which stage and under which conditions either HIF or HIF-P4H inhibitory effects with or without
HIF stabilization would be of value for the treatment of fibrosis/cirrhosis or even HCC (see
Outstanding Questions). Considering this, HIF-P4H inhibitors that exploit differences in binding of
HIFs and non-HIF substrates would be of interest, but at current, it is unknown how difficult it will
be to develop those in a clinically acceptable manner.
We apologize to all researchers who excellently contributed to the field and whose work could not be cited due to space limitations.

6) Rahtu-Korpela, L. et al. (2014) HIF prolyl 4-hydroxylase-2 inhibition improves glucose and lipid metabolism and protects against obesity and metabolic dysfunction. Diabetes 63, 3324-3333

12) Voss, J.D. et al. (2013) Association of elevation, urbanization and ambient temperature with obesity prevalence in the United States. Int. J. Obes. (Lond) 37, 1407-1412

22) Luo, B. et al. (2018) Hepatic PHD2/HIF-1alpha axis is involved in postexercise systemic energy homeostasis. Faseb j. f201701139R

26) Lin, Q. et al. (2013) Activation of hypoxia-inducible factor-2 in adipocytes results in pathological cardiac hypertrophy. J. Am. Heart Assoc. 2, e000548

32) Haase, V.H. (2017) HIF-prolyl hydroxylases as therapeutic targets in erythropoiesis and iron metabolism. Hemodial Int. 21 Suppl 1, S110-S124

45) Furuta, E. et al. (2008) Fatty acid synthase gene is up-regulated by hypoxia via activation of Akt and sterol regulatory element binding protein-1 Cancer Res. 68, 1003-1011

46) Kietzmann, T. et al. (2001) Perivenous expression of the mRNA of the three hypoxia-inducible factor alpha-subunits, HIF1alpha, HIF2alpha and HIF3alpha, in rat liver. Biochem. J. 354, 531-537

47) Kim, W.Y. et al. (2006) Failure to prolyl hydroxylate hypoxia-inducible factor alpha phenocopies VHL inactivation in vivo. Embo j. 25, 4650-4662

49) Huang, D. et al. (2014) HIF-1-Mediated Suppression of Acyl-CoA Dehydrogenases and Fatty Acid Oxidation Is Critical for Cancer Progression Cell. Rep. 8, 1930-1942

50) Morello, E. et al. (2018) Hypoxia-inducible factor 2a drives nonalcoholic fatty liver progression by triggering hepatocyte release of histidine-rich glycoprotein. Hepatology 67, 2196-2214

51) Wei, K. et al. (2013) A liver Hif-2alpha-Irs2 pathway sensitizes hepatic insulin signaling and is modulated by Vegf inhibition Nat. Med. 19, 1331-1337

56) Xie, C. et al. (2017) Activation of intestinal hypoxia-inducible factor 2alpha during obesity contributes to hepatic steatosis. Nat. Med. 23, 1298-1308

58) Duan, L.J. et al. (2014) Hematological, hepatic, and retinal phenotypes in mice deficient for prolyl hydroxylase domain proteins in the liver Am. J. Pathol. 184, 1240-1250

66) Nath, B. et al. (2011) Hepatocyte-specific hypoxia-inducible factor-1α is a determinant of lipid accumulation and liver injury in alcohol-induced steatosis in mice. Hepatology 53, 1526-1537

67) Nishiyama, Y. et al. (2012) HIF-1α induction suppresses excessive lipid accumulation in alcoholic fatty liver in mice. J. Hepatol. 56, 441-447

68) Greuter, T. et al. (2017) Therapeutic opportunities for alcoholic steatohepatitis and nonalcoholic steatohepatitis: exploiting similarities and differences in pathogenesis. JCI Insight 2, 10.1172/jci.insight.95354

73) Roychowdhury, S. et al. (2014) Moderate, chronic ethanol feeding exacerbates carbon tetrachloride–induced hepatic fibrosis via hepatocyte-specific hypoxia-inducible factor 1α. Pharmacology Research and Perspectives 2, e00061

74) Copple, B.L. et al. (2011) Hypoxia-inducible factor-1α regulates the expression of genes in hypoxic hepatic stellate cells important for collagen deposition and angiogenesis. Liver Int. 31, 230-244

77) Liu, Y. et al. (2014) HIFs enhance the migratory and neoplastic capacities of hepatocellular carcinoma cells by promoting EMT. Tumour Biol. 35, 8103-8114

82) Sun, S. et al. (2009) Hypoxia-inducible factor-1α induces Twist expression in tubular epithelial cells subjected to hypoxia, leading to epithelial-to-mesenchymal transition. Kidney Int. 75, 1278-1287

84) Li, S. et al. (2011) Expression characteristics of hypoxia-inducible factor-1α and its clinical values in diagnosis and prognosis of hepatocellular carcinoma. Hepatitis Mon. 11, 36-43

90) Wilson, G.K. et al. (2012) A dual role for hypoxia inducible factor-1α in the hepatitis C virus lifecycle and hepatoma migration. J. Hepatol. 56, 803-809

91) Semenza, G.L. (2014) Oxygen sensing, hypoxia-inducible factors, and disease pathophysiology. Annu. Rev. Pathol. 9, 47-71

96) Bogaerts, E. et al. (2016) Effect of prolyl hydroxylase domain 2 haplodeficiency on liver progenitor cell characteristics in early mouse hepatocarcinogenesis. Excli j. 15, 687-698

100) Zhen, L. et al. (2014) Tumor PHD2 expression is correlated with clinical features and prognosis of patients with HCC receiving liver resection. Medicine 93, e179

103) Ma, M. et al. (2017) Prolyl hydroxylase domain protein 3 and asparaginyl hydroxylase factor inhibiting HIF-1 levels are predictive of tumoral behavior and prognosis in hepatocellular carcinoma. Oncotarget 8, 12983-13002

111) Zheng, X. et al. (2014) Prolyl hydroxylation by EglN2 destabilizes FOXO3a by blocking its interaction with the USP9x deubiquitinase. Genes Dev. 28, 1429-1444

118) Tsukada, K. et al. (2013) Hypoxia-inducible factor-1 is a determinant of lobular structure and oxygen consumption in the liver. Microcirculation 20, 385-393

123) Chiche, J. et al. (2009) Hypoxia-inducible carbonic anhydrase IX and XII promote tumor cell growth by counteracting acidosis through the regulation of the intracellular pH. Cancer Res. 69, 358-368

125) Fukuda, R. et al. (2007) HIF-1 regulates cytochrome oxidase subunits to optimize efficiency of respiration in hypoxic cells. Cell 129, 111-122

126) Zhang, H. et al. (2008) Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J. Biol. Chem. 283, 10892-10903

Highlights

Inhibition of HIF-P4Hs, which act as molecular oxygen sensors, is the so far best understood mechanism to regulate the oxygen sensing pathway.

Several HIF-P4H inhibitors are currently in phase 3 randomized clinical trials for treatment of renal anemia with no reported serious side effects until now.

Recent data from preclinical, clinical and epidemiological studies support that besides anemia activation of the hypoxia response via HIF-P4H inhibition is a powerful tool to regulate metabolism and may be beneficial for conditions such as obesity, metabolic syndrome, T2D, NAFLD/NASH or liver fibrosis.
Outstanding Questions

Can HIF-P4H inhibitors be used in treatment of diseases beyond renal anemia in metabolic disorders, such as obesity, metabolic syndrome, NAFLD, ALD, T2D or atherosclerosis?

HIF stabilization is associated with cancers. Is chronic HIF-P4H inhibition that results in long-term HIF stabilization safe?

Which HIF-P4H isoenzyme and/or tissue should be targeted to treat metabolic diseases?

Are there HIF-independent HIF-P4H substrates that mediate effects on metabolism and which could be targeted by even more selective HIF-P4H inhibitors?

Can HIFα isoform agonists be used instead of HIF-P4H inhibitors to receive the same or more selective effects?

Can HIF-P4H inhibition be achieved by other means than chemical antagonists, such as exposure to high altitude or lowering of tissue oxygenation for example by manipulation of hemoglobin levels?
The cellular oxygen sensors HIF-P4Hs can be inhibited by oral administration of small molecules which can stabilize HIF and initiate the hypoxia response under normoxia.

HIF-P4H inhibitors (such as roxadustat, vadadustat, molidustat and daprodustat (Table 1)) have advanced up to phase III clinical trials for treatment of renal anemia because they upregulate erythropoietin expression.

Preclinical data suggest that HIF-P4H inhibition may have beneficial effects in treatment of obesity and metabolic dysfunction.

In clinical trials for anemia HIF-P4H inhibitors have been reported to reduce serum total cholesterol levels and improve HDL/LDL ratio.

More clinical trials assessing the potential of HIF-P4H inhibitors in metabolic disorders are required.
Glossary

Alcoholic liver disease (ALD): develops based on alcohol overconsumption, and is characterized by steatosis, alcoholic and chronic hepatitis as well as in chronic cases often with liver fibrosis or cirrhosis.

Angiogenesis: the formation of new blood vessels from pre-existing vessels.

Autophagy: an intracellular degradation process that takes place via the delivery of cytoplasmic entities to the lysosomes, where macromolecules are lysed and their components recycled.

Chronic kidney disease (CKD): impairs gradually kidney function and erythropoietin production and results in renal anemia. Caused by type 1 or type 2 diabetes (T2D), high blood pressure, infection or polycystic kidney disease.

Epithelial-mesenchymal transition (EMT): a process by which epithelial cells lose their adhesion and cell polarity and gain migratory and invasive properties.

Erythropoietin (EPO): hormone secreted by the kidney promoting erythropoiesis in bone marrow.

End stage renal disease (ESRD): advanced state of CKD.

Hepatocellular carcinoma (HCC): the most common type of primary liver cancer in adults and the most common cause of death in people with cirrhosis.

Hepcidin: Peptide hormone produced by liver that inhibits iron transport. Upregulated in inflammatory conditions.

Hypoxia: a condition in which the body or a region of the body is deprived of adequate oxygen supply at the tissue level. Can result e.g. from anemia or ischemia.

Hypoxia-response element (HRE): genomic sequence 5’-RCGTG-3’ which HIF binds to in the regulatory region of target genes.

Metabolic syndrome: clustering of conditions including obesity, hyperglycemia or insulin resistance, hypertriglyceridemia, hypertension and low HDL levels. Increases risk for cardiovascular diseases, T2D and NAFLD.

Myelodysplastic syndrome (MDS): group of disorders in which immature blood cells in the bone marrow do not mature properly.

Non-alcoholic fatty liver disease (NAFLD): includes a range of conditions from benign steatosis to NASH. Although mainly affecting hepatocytes, other cells such as stellate cells, CD4+ and CD8+ T cells or NK-T cells, contribute to NAFLD.

Non-alcoholic steatohepatitis (NASH): characterized by steatosis with concomitant infiltration of liver tissue with inflammatory leukocytes as well as fibrosis. One third of NASH patients will progress into cirrhosis, which constitutes a basis for development of HCC.

Type 2 Diabetes (T2D): chronic and progressive condition caused by impaired insulin response resulting in hyperglycemia.

White adipose tissue (WAT): major energy storing tissue in human body composed of adipocytes.
Figures and figure legends

Figure 1. Oxygen sensing via acute responses and altered gene expression

(A) Lack of oxygen initiates adaptive responses involving short-term and long-term modifications without and with changes in gene expression, respectively. Structural changes driven by modified gene expression allow long-term adaptation to altered oxygenation. The processes can be interlinked when short-term responses include changed channel or enzyme activities which regulate transcription factors. (B) Long-term responses to hypoxia in metazoan cells are primarily regulated by HIFs. HIFs are αβ-heterodimeric transcription factors which bind to hypoxia response elements (HREs) in regulatory regions of genes. The HIF system regulates >300 genes to balance oxygen supply and demand (for HIF target genes see [106]). The three α-subunits, HIF1α-3α (green), are labile under
normoxia, whereas the β-subunit (HIF1β/ARNT) (rose) is stable. When oxygen is available, three HIF-P4H isoenzymes (PHDs/EglNs) (orange) hydroxylate one or two proline residues (4-Hyp) in HIFα subunits, which marks them for ubiquitinylation by the von Hippel-Lindau (pVHL) protein (yellow) and proteasomal degradation. The catalytic activity of HIF-P4Hs is highly dependent on oxygen and hypoxia destabilizes HIFα [107]. HIF-P4H-2 (PHD2/EglN1) is the most abundant isoenzyme and the major one regulating HIFα stability. In kidney, inactivation of HIF-P4H-2 was sufficient to induce EPO expression while in brain pericytes and hepatocytes it required simultaneous inactivation of HIF-P4Hs 2 and 3 or all HIF-P4Hs, respectively [57, 108]. FIH (magenta), which shares the same reaction mechanism and cofactors with HIF-P4Hs but is less dependent on oxygen, hydroxylates an asparagine residue in HIF1α/2α. The hydroxyasparagine (Asn-OH) prevents binding of transcriptional coactivators, like CBP/p300 (petrol), and therefore inhibits HIF target genes expression.
Figure 2. Regulators of HIF-P4H catalytic activity

HIF-P4Hs 1-3 belong to 2-oxoglutarate-dependent dioxygenases (2-OGDDs) with ~70 members in humans that share the same reaction mechanism but act on different substrates (proteins, DNA, RNA, and fatty acids). They require Fe$^{2+}$, 2-oxoglutarate (2-OG) and O$_2$ as cofactors and hydroxylate proline residues to 4-hydroxyproline (4-Hyp). One atom of oxygen becomes incorporated into the substrate while 2-OG decarboxylates to succinate and CO$_2$. HIF-P4Hs also require a reducing factor, such as vitamin C, L-cysteine, reduced glutathione (GSH) or DTT [109]. Several naturally or pathologically occurring 2-OG analogues, such as fumarate, succinate or S-2-hydroxyglutarate (S-2HG), have been shown to inhibit HIF-P4H catalytic activity competitively. The oncometabolite R-2HG, generated by cancer-associated isocitrate dehydrogenase variants, did not inhibit HIF-P4Hs but could instead act as an alternative cofactor for 2-OG to promote catalysis [110]. Chemical 2-OG analogue inhibitors, such as the preclinical pan 2-OGDD inhibitor dimethyl oxalylglycine (DMOG) and the renal anemia therapeutic roxadustat, have been developed. In effect, it is the ratio of the 2-OG analogue to 2-OG which appears to determine the effect on catalytic activity. Other divalent metals (e.g. Zn$^{2+}$) and iron chelators (such as desferrioxamine (DFO)) can also inhibit HIF-P4H catalysis as can reactive oxygen species (ROS). In addition to HIFαs, other non-HIFα substrates have emerged for HIF-P4Hs. Among those are the HIF-P4H-1 substrates FOXO3α [111], I-kappaB kinase [112], the HIF-P4H-2 substrates N-myc downstream-regulated gene 3 (NDRG3) [113], AKT1/2 [114] and the HIF-P4H-3 substrates β2-adrenergic receptor [115], pyruvate kinase M2 [116] and acetyl-CoA carboxylase [117]. Chemical analogues are indicated by italics.
While HIF2α seems to have a dominant role in lipid metabolism, HIF1α appears to have a stronger impact on structural maintenance, mitochondrial function and carbohydrate metabolism [118]. Indeed, HIF1α regulates numerous genes involved in glucose uptake (GLUT1, 3) and glycolysis (HK1, 2, GADPH, PFKL, ENO1, PGK1) [91, 119]. This seems to be even more evident under challenging conditions, such as liver regeneration [120]. Among the HIF1α target genes, lactate dehydrogenase A (LDHA) directs glycolytic flux to lactate production and pyruvate dehydrogenase kinases 1 and 3 (PDK1, 3) block pyruvate entry into the mitochondrial tricarboxylic acid (TCA) cycle [121, 122]. Monocarboxylate transporter 4 (MCT4) and carbonic anhydrase IX (CA9), both additional HIF1α target genes, export lactate for reuse in gluconeogenesis and contribute to balancing acid-base homeostasis, respectively [123]. With respect to mitochondrial function it is important to note that HIF1α induces expression of the electron transport chain (ETC) complex I protein NADH dehydrogenase [ubiquinone] 1 alpha subcomplex, 4-like 2 (NDUFA4L2) [124] and promotes a switch from the cytochrome c oxidase COX4-1 subunit to COX4-2 in electron transport complex IV by upregulating expression of LON, a mitochondrial protease that is required for COX4-1 degradation [125]. Consequently, this inhibits complex I activity and increases efficiency of complex IV leading to reduced oxygen consumption and decreased production of detrimental ROS. Similar to HIF2α, HIF1α also contributes to selective autophagy via enhanced expression of BNIP3 [126] and miR210 [127]. HIF1α promotes mitophagy and blocks Fe/S cluster assembly which additionally prevents ROS production and cell death. Red, HIF target genes.
Figure 4. Functions and processes reported to be mediated by HIF-P4H inhibition in key metabolic tissues. Inhibition of HIF-P4H isoenzymes has been reported to influence body weight, glucose and lipid metabolism, inflammation, immunology and cellular differentiation and regeneration in skeletal muscle, liver and white adipose tissue (WAT), as indicated. The variables measurable from blood are indicated under circulation.
Figure 5. The oxygen gradient in liver and metabolic zonation. (A) Classic liver lobule with a central vein (CV), portal triads (PT) containing branches from the portal vein (blue dot), hepatic artery (red dot) and bile duct (green dot). The blood coming from the portal vein and hepatic artery flows as a mixture through the sinusoids to the central vein. Due to metabolism and elimination the composition of blood changes, and among others an oxygen gradient ranging from about 60 to 65 mmHg (84-91 µmol/l) (dark blue) in the periportal (pp) blood to about 30 to 35 mmHg (42-49 µmol/l) (light blue) in the perivenous (pv) blood is formed. The intracellular pO₂ is again ~15 mmHg lower, i.e. 45-50 mmHg in the perportal and 15-20 mmHg in the perivenous cells, respectively (for review see [43]). Although being subdivided, three principal zones can be distinguished: the periportal zone (1), the intermediary zone (2) and the perivenous/pericentral/centrilobular zone (3). (B) Distribution of major metabolic pathways. pp, periportal; pv, perivenous; AA, amino acids; Cho, cholesterol synthesis; Ggn, glycogen; Lac, lactate; GS, glutamine synthesis. For more details see [43] and references therein.
<table>
<thead>
<tr>
<th>Substance (other names)</th>
<th>Company</th>
<th>Clinical trial (most advanced phase completed)</th>
<th>Indications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roxadustat (FG-4592, ASP1517)</td>
<td>FibroGen/Astellas Pharma/Astra Zeneca</td>
<td>III</td>
<td>CKD, ESRD, anemia, MDS</td>
</tr>
<tr>
<td>Daprodustat (GSK1278863, GSK1278863A)</td>
<td>GlaxoSmithKline</td>
<td>III</td>
<td>Anemia, tendon injuries, surgical procedures, peripheral vascular disease, wound healing, diabetic foot, kidney disease</td>
</tr>
<tr>
<td>Vadadustat (AKB-6548, MT6548)</td>
<td>Akebia Therapeutics, Mitsubishi Tanabe Pharma Corporation</td>
<td>II</td>
<td>CKD, anemia</td>
</tr>
<tr>
<td>Molidustat (BAY85-3934)</td>
<td>Bayer</td>
<td>II</td>
<td>Anemia, chronic renal insufficiency, kidney diseases</td>
</tr>
<tr>
<td>FG-2216</td>
<td>FibroGen</td>
<td>II</td>
<td>Renal anemia</td>
</tr>
<tr>
<td>Desidustat (ZYN1)</td>
<td>Cadila Healthcare</td>
<td>I</td>
<td>CKD</td>
</tr>
<tr>
<td>DS-1093a</td>
<td>Daiichi Sankyo</td>
<td>I</td>
<td>CKD, anemia, renal anemia</td>
</tr>
<tr>
<td>JTZ-951</td>
<td>Akros Pharma</td>
<td>I</td>
<td>CKD</td>
</tr>
</tbody>
</table>