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1. Introduction and results. Let d > 2 always denote a fixed integer. If p(z) is a polynomial with
complex coefficients satisfying p(0) = 1, then the infinite product

(1) F(z) = [[ p(z")
j=0

is analytic in D := {z € C: |z| < 1} and satisfies the simple Mahler type functional equation

(2) w(z) = p(2)w(=7).

The solutions of such functional equations are either rational or transcendental. If a rational function
a(z)/b(z) with coprime non-zero polynomials a(z) and b(z) satisfies (2), then

a(2)b(z?) = p(2)b(2)a(z?).

Since a(z) and b(z) are coprime, it follows that a(z9) | a(z) giving a(z) = ¢ € C*. Thus p(z) =
b(z%)/b(z). On the other hand, if p(z) is of this form, then F(z) = 1/b(z) is a rational function. Further,
if b(2) | b(2?), then all zeros of b(z) lie on the unit circle. An important class of infinite products of
cyclotomic polynomials is considered in [6] and [3]. In particular, [3, Theorem 1.1] states that F'(z) with
p(z) = Py(z), the £th cyclotomic polynomial (with the convention ®(z) := 1—z2), is hypertranscendental
if and only if d is either composite or a prime not dividing ¢. Recall that a function f(z) is said to be
hypertranscendental, if f(z) and all derivatives f()(z) (£ > 1) are algebraically independent over C(z).
In [3], we also studied algebraic independence of infinite products with different ®,(z).

In our present work, we are interested in infinite products (1), where p(z) has at least one zero not
lying on the unit circle, or equivalently, with p~1(0) ¢ dD. As mentioned above, F(z) is a transcendental
function in this case, and our first result yields a condition for its hypertranscendence.

To suitably formulate this result, we note that the hypothesis p~1(0) ¢ 0D allows the following
alternative: If p~1(0) N D # 0, then let w denote an element from this set of minimal absolute value, or
if p~1(0) ND = (), then let Q denote an element from p~1(0) of maximal absolute value. Clearly |w| < 1
or | > 1.

THEOREM 1.1. Let p € Clz] satisfy p(0) = 1 and p~*(0) ¢ ID. If |w| <1 (or || > 1) and, for each
integer j > 1, not all solutions of ¥ = w (or of z¥ = Q) are zeros of the product p(z¥ ") - ... p(z),
then the function F(2) in (1) is hypertranscendental.

Under the conditions on p(z) in Theorem 1.1, let {ay,...,a,} :=p~1(0)\ D, and denote by n(a,)
and N (o) the number of oy, such that |a.| = |ag| and |a,| = |ag|? for some integer j > 1, respectively.
Assume that |aq| < -+ <y, | <1 <oy, +1] < -+ <Jay|. Then N(aq) < v —n(aq), if |aa| < 1, and
N(ay) <v—1v1 —n(a,), if |y, | > 1. Keeping the notations for w and € as introduced before Theorem
1.1, this result implies the following.

COROLLARY 1.2. If |w| < 1 and N(w) < d, or if |Q > 1 and N(Q) < d, then the function F(z) is
hypertranscendental.



In particular, if |w| < 1 and |w| # |a|? for any pair of integers (j,k) with 7 > 1 and 1 < k < 1,
then N(w) = 0 and Corollary 1.2 applies. We also have N(w) < 1 or N(Q) < 1, if v = 2. If all «; are
real, then the following more explicit result holds.

COROLLARY 1.3. In the case {a1,...,a,} C R, the function F(z) is hypertranscendental if either
d>3,ord=2and —a; ¢ {oa,...,a,} foreachi=1,...,v.

The proof of Theorem 1.1 is based on a hypertranscendence criterion for degree 1 Mahler functions by
Ke. Nishioka [8]. There is also a criterion of Kubota [7] for the consideration of the algebraic independence
of products

(3) Fi(z) = [[m(") (i=1,....n)
j=0

with different polynomials p;(z) satisfying the properties of p(z) in Theorem 1.1. Apparently, the que-
stion on the algebraic independence of different functions and their derivatives have so far only been
rarely investigated in the literature. In this connection, we would like to point out recent remarkable
progress in the consideration of algebraic independence of some higher degree Mahler functions and
their derivatives, see [1] and [5].

Our main purpose here is to study algebraic independence of the functions F;(z) and their first
derivatives satisfying a system of Mahler type functional equations

(4) Fi(2) = pi(2)Fi(2%), F{(2) = pj(2)F3(2") + d2"""ps(2) F (=)
with p;(0) = 1 and p; *(0) ¢ OD for i = 1,...,n. To state our result, we denote
2\ #(a)
v;(2) = H (1 - a)
acgp; 1(0)\oD

where p(a) is the zero multiplicity of « in p;(2).

THEOREM 1.4. Assume that the polynomials p;(2) satisfy pi(0) = 1 and p; *(0) ¢ D fori=1,...,n,
and that no two of the corresponding polynomials v;(z) have a common zero. Moreover, suppose for
any zero a of [[;—, vi(z) and for each integer j > 1, that not all solutions of ¥ = «a are zeros of
T, vi(z¥ ") - .. vi(2). Then the functions Fy(z), Fl(2), ..., Fu(2), F.(2) are algebraically indepen-
dent over C(z).

As an immediate consequence of Theorem 1.4, we present the following result on the functions

R (O R S s G N
vl = Fi<z>‘j§ IC I

satisfying
/
dz% " w; (2% = w;(z _pi(z) i=1,...,n).
() = wis) - 3 )
COROLLARY 1.5. Under the assumptions of Theorem 1.4 the functions wi(z),...,w,(2) are alge-
braically independent over C(z).
To give some more corollaries to Theorem 1.4, we now define []! ;v;(z) =: p(z) and use the

notations introduced before Corollary 1.2. Then N(a;) < min{vy — 4,11 — n(ay)} if |o;] < 1, and



N(a;) <min{i — vy,v —v1 —n(a;)} if |a;] > 1. By Theorem 1.4, we now have the following results.

COROLLARY 1.6. If max{N(«;)} < d, then the functions Fi(z), Fi{(2),...,F.(2), F)

7 (2) are algebrai-
cally independent over C(z).

COROLLARY 1.7. Ifv(z) = 14+ 2/a with a € C*\ 0D and if v;(z) := v(p;z) with distinct p1,...,pn €
0D, then the functions Fy(z), F{(2), ..., Fn(2), F),(2) are algebraically independent over C(z).

Ifv(z) = e(z—a1)(z—az) with a constant ¢ # 0 and a1, ay € C*\ID, then N := max{N(a1), N(a2)}
<1 for the polynomial p(z) = v(z).

COROLLARY 1.8. Let v(2) = ¢(z — a1)(z — ag) be as above, and define v;(2) := v(p;2z) with distinct
P1y---spn €ID.IfN =0, or N =1 and n < d, then the functions Fy(2), F{(2),...,Fn(2), F}(2) are
algebraically independent over C(z).

For example, if we choose v(z) = 1 + z — 22, then above N = 0 and Corollary 1.8 applies. For the
very special case d =2 and p; = 1, p; = —1 see also [4, Theorem 1.1].

Let now v;(2) =1+ 2/a; (i = 1,...,n) with distinct ay,...,a, € C* satisfying |a1| < --- < ay, | <
1 < lap,+1] < -+ < |an|. Assume that, for each integer j > 1,|a;| # lax|? (1 <i < k < ny) and
lai|¥ # |ax] (ny +1 <i <k <n).

COROLLARY 1.9. Let the polynomials v;(z) = 1+ z/a; (i =1,...,n) be as above. Then the functions
Fi(2), F{(2),...,F.(2), Fl(2) are algebraically independent over C(z).

The following analogue of Corollary 1.3 shows that all of the above restrictions are not needed if all
a; are real.

COROLLARY 1.10. In the case {aq,...,a,} C R, the functions Fy(z), Fi(2),..., Fn(2), F),(z) are al-

n

gebraically independent over C(2) if eitherd > 3, ord =2 and —«; ¢ {an,...,a,} foreachi=1,...,v.

In our next result, we consider algebraic independence of the functions (3) and the functions studied
in [3], namely infinite products of cyclotomic polynomials

(5) Fi(z) == H q)g(zdj) with integers £ > 1 prime to d.
=0

THEOREM 1.11. Assume that the polynomials p;(z) satisfy the assumptions of Theorem 1.4. Then
the functions (3) and (5) are algebraically independent over C(z).

As an example for this theorem, we give the algebraic independence of the functions F;(z) (i =
1,...,n) with d = 2 and p;(z) = v(p;z), where v(z) = 1 + z — 2% and p; are as above, and F;(z) with
odd integers £. Here Fi(z) is the generating power series of the Thue-Morse sequence on {—1,1} and
F3(z) is the generating power series of the Stern diatomic sequence, and so this result generalizes [4,
Theorem 1.1] and partly also [3, Theorem 1.3].

2. Proof of Theorem 1.1 and of Corollary 1.3. By using the hypertranscendence criterion of Ke.
Nishioka [8], it is proved in [2] that, to establish Theorem 1.1, it is enough to show that the functional
equation

(6) w(z) — duw(z?) = 2



has no solution w(z) € C(z). Assume now that (6) has a rational solution w(z). Further, let us assume
that |w| < 1 (the case |©2] > 1 is similar). Since the right-hand side of (6) has a pole at w, w(z) must
have poles o with 0 < |a| < 1. Let ag be such a pole with minimal absolute value. If |ag| < |w|, then
we get a contradiction, since |ad| < |ag|. Also |w?| < |wl|, and therefore w is a pole of w(z). By our
assumption, there exists a solution a; of z¢ = w, which is not a pole of the right-hand side of (6). Thus,
aq is a pole of w(z). By (6),

w(s) - (e = Py GV,

p(2) p(z?)
Using our assumptions again, we see that there exists a solution s of 24 = w, which is a pole of w(z).
Continuing in this way, we get a final contradiction proving Theorem 1.1. O

To prove Corollary 1.2, we just note that the conditions of this corollary imply the assumptions of
Theorem 1.1.

Proof of Corollary 1.3. Let us assume {a1,...,a,} C R, and consider the solutions of z# = a €
{aq,...,a,}. In particular, we may choose a = w or o = §2. There exists a root with an argument 27 /d’
if >0, or 7/d’ if a < 0. If d > 3, then none of the roots of 24" = a; (0<k <j,1<i<v)hassuch
an argument. Therefore, the condition of Theorem 1.1 is satisfied if d > 3.

The equation 22" = a has 27 solutions all having absolute value 2</|E For all kK =0,...,5 — 1,

the solutions of 22° = a; can have this absolute value only if loil = *7{/|al. By our hypothe—

sis, either a; = *\/|a] or —a; = *7{/]a] is possible. This means that among the solutions of

2" = a; (i = 1,...,v) there are at most 2% solutions of 22’ = a. Thus, this last equation has at
j—1

least one root which is not a zero of p(2% ") - ... p(z) proving Corollary 1.3. O

3. Proof of Theorem 1.4. To prepare this proof, we first note that
(7 Ui(2)Fy(27) = d="""pi(2) F3(2),  Ui(2)F{ (%) = =p(2)Fy(2) + pi(2) F{(2)
for i = 1,...,n, where U;(z) := dz?~!p?(2). Let now P # 0 be a polynomial

n
P(valvyla e axnvyn) = men(z) H:szyfz7
m, i=1

where m,, := ({1, k1,...,0n, kn), and let M denote the maximal value of |m,,| :=¥€; + k1 +---+ £, + kK,
with py, ( ) £ 0. If P(z, Fi(2), F{(2),...,Fn(2), Fl.(2)) = 0, then (7) implies that also the polynomial

Q(27$1»y17~~7$n»yn) = Zan(zaxlvylv"'a‘rnvyn)v

m,

where
(8)  Qm, (221,51, Tn,Yn) = ﬁ{Uz MbR (2" Upi(2)2a) " (—pi(2)zi + pil2)ya) ™ }
i=1
satisfies Q(z, F1(2), F{(2),...,Fn(2), Fl(2)) =
We first use induction on n to establish the following lemma.

LEMMA 3.1. If V(2) and T(z) are non-zero polynomials such that T'(z) is a factor of the polynomial
V(2)Q(z,21,Y1, - s Tn, Yn), then

T(2) | V(2)pm, (=) H Ui(2)™



holds for all m,,.

Proof. In the case n =1,

M nq
01,k ni—k
P(z -Tlayl E pm1 -75113/11 = E E pnlfkl,kl( -7511 1y11,

n1:0k1=0
and
Q(z,21,1) = Z anl ks (DU ()M (d2 4 py (2)m0)™ TR (—ph (2)@ + pa(2)y1)™
n1=0 k1 =0
M ni
= Z Z Ty —ky ey (2) 27 klylflv
n1:0k1:0
where

(9 tnki b (2) = Ua ()M S <j1>pn1m<zd><dzd—1)m—ﬁpl(z)”l—ﬁ*’“<—p’1<z>>ﬂ—k1.

k
ji1=k1 !

Since T'(z) | V(2)Q(z,x1,y1), we have T(2) | V(2)gn,—ky .k, (2) for 0 < ky < nq < M. For a given nq, we
obtain from (9),
Go,n1 (2) = Ur(2)M " po,ny ()1 (2)™,
hence
T(2) | V(2)pom, (1) U1 ()M ™ pa(2)™.
Further,

G1na—1(2) = U1 (2)M 7" {p1 g —1 () dz" " p1 ()™ + n1po, (21 (2)™ (=D (2))}

and therefore
T(2) | V(2)p1n, -1 (zH)Us(2)™M 7" dz" py (2)™

By continuing to apply formula (9) in the same way, we obtain

T(2) | V()i —i (UL ()M (dz ) pa(2)™
for j =0,1,...,n;. This gives the validity of Lemma 3.1 for n = 1.
Assume now that Lemma 3.1 holds, if n (> 2) is replaced by n — 1. If deg, , P = L, (< M), then
we may write

Ly

fin
Pz, 21,41, -+, Tny Yn) = Z Z ( Z P,y gim—Fon Hgg Y, )x/tn oy

Hn=0k,=0 m,
and correspondingly

Q(Zaxlayla---axnayn) = Z Z qunfkn,kn(z7xlay17~-~7-'L‘n717yn71)Un(Z)M_un
fin=0 k&, —0

X (dz" pn(2)@n )T (=l (2) 20 + po(2)yn)



where g, —k, ko (2,21, Y15 -, Tn—1,Yn—1) is a Q-polynomial arising from the sum

§ :pm” 1:Hn — kn kn H:E yz :

This yields

Hn Hn

Ly
Z Un( M fin Z ( Z ( >Q,U«njmjn(z7$1;y17~-~7xnlvynl)

=0 kn=0 jn=kn

X (d Iy (2 (o (2)) A iR

Q(Za-rhyh e axn7yn)

Since T'(z) is a factor of V(2)Q(z,Z1,y1, .-, Tn,Yn), it is also a factor of the product
V(2)Up(2)M

Hn .
j 1\t - e
X( Z <k/,n>qﬂn—jn»jn(zazlayh'"azn—hyn—l)(d’zd 1>Hn ann(z)#n Jn+kn(7p;z(z))jn kn)
n

Jn=kn
for all uy, k,. If k, = pn, we get
T<Z) | V(Z)Un(Z)M_“"QO,u,L(Z, ZT1,Y15--+3Tn—1, ynfl)pn('z)unV

The case k, = p, — 1 leads to

T(z) | V(Z)Un(z)M_“" (CI1,M—1(Z, T, YLy ey T1s yn_l)dzd_lpn(z)“"

0 (520,915 Tt )P (2 (1 (2)))
implying
T(z) | V(Z)Un(z)Miun(IL;Lnfl(Zaxlayl,'-';xnfl,ynfl)d'zdilpn(z)unJrl'
By continuing analogously, we obtain for j =0,1,...,
T(2) | V(UM G i (20210, o1, Y1) (A2 ) pp (2) 7

Thus, we have proved the divisibility relation

T(2) | V(2)Un(2)™ Gk ke (221,91, - 1, Y1) For 0 < ky < gy < L.

By applying our induction hypothesis to the Q-polynomials g, —, &, (2, Z1,Y1, .-, Tn—1,Yn—1), We ob-
tain the validity of Lemma 3.1. 0

For the following considerations, we recall [4, Lemma 2.2] of which we include here a short proof for
the reader’s convenience.

LEMMA 3.2. Let R € C(z) have zeros or poles in 0 < |z| <1 orin 1 < |z| < 400, where w and ) are
zeros or poles of minimal and of maximal absolute value, respectwely If lw| < 1 (or |Q] > 1), assume

that, for each integer j > 1, not all solutions of z* = w (or of 2% = = Q) are zeros or poles of the product
R(= - 1) ...~ R(2). Then the functional equation
(10) r(z) = r(z")R(2)

has no rational solution r # 0.



Proof. Suppose, on the contrary, that (10) has a rational solution r(z) # 0. Clearly, this r(z) has no
zero or pole in |z| < |w| (or in |z| > |Q|). Since |w?| < |w| (or |Q2¢] > |Q|) we know that w? (or Q%) is
not a zero or pole of r(z), whence w (or Q) is a zero or pole of r(z), by (10) and a hypothesis on R.

On iterating (10), we conclude that r satisfies

r(z) = r(z*R(z* ) ... R(2)

for any j = 1,2,.... For any such j, we consider all d’ solutions of 2% = w (or of 2 = ), among
which at least one is not a zero or pole of R(zdrl) -...- R(2). Thus, on every circle |z| = |w|"/% (or
|z| = |Q|Y/%"), we have a zero or a pole of r contradicting the rationality of r. O

The central role in the proof of Theorem 1.4 will be played by the following lemma.

LEMMA 3.3. Assume that p1(2),...,pn(z) satisfy the assumptions of Theorem 1.4. If P is irreducible
and depends on at least one of the x;,y;, then an identity

(11) T(Z)P(Za 1,91, - 7Inayn) = Q(Zaxlayla .o axnayn)

with a polynomial T(2) is impossible.

Proof. Assume that (11) holds with some polynomial T'(z) (we shall see T'(z) # 0 from (15) below).
Then T | @, and therefore Lemma 3.1 yields

n

T(2) | pm, () [J Vi)

i=1

for all m,,, where M (> 1) was introduced after (7). Since P is irreducible, this gives the important

RAAZ7%)
information

(12 7() | [[ Vi)™,

For the rest of the proof, we write P in the shape

M n M
P(Zaxl7y17"'7xn7yn)zz Z pm,L(Z)folyfl ::ZPj(z7x17y17"'7xn,yn)a
=1 7=0

I=0m, |=j

as after (7). Then correspondingly

M M
Q(zvxluylw .. 7xn7yn) = Z Z an(z7$1»y17 CIa 7xn7yn> = ZQj(Z7x1uy17‘ .. 7x'nayn)7
5 =
and here Qp, (2,71,Y1,- -+, Tn,Yn) is defined as in (8). By (11),
(13) T(z)PJ(Z7I15y177xnayn):Qj(Z7I17y1a7In7yn) (.]:OaaM)

To study the leading terms, we write

M n M
PM(z,xl,yl,...,xn,yn):Z Z Z pmn(z)Hzf"yfi ::ZPM,k(z,m,yh---wmyn)
i=1

k=0 |m,, _,|=M—k tnthn=k k=0



and

M
Qu (220,15 Ty Un) = O Quik(2, 21,51, -, T, Un)
k=0
with
QM,k(Za‘rl7y1>"'7xn7yn) = Z Z an(zaxl7y17'“7xn7yn)-

m |:M—kén+kn:k

|—n—1

Let K, be the maximal value of k£ such that at least one D, (2) # 0 in Ppj. Then Py = 0 and
Qum k=0 for all & > K,,, and moreover

Kn M_Kn

PM,KH(valaylw-wmnayn) = Z Z Z Z pmn_lyKn*knykn(Z)
k

n=0 k=0 |m, ,|=M—K,—k&ln_1+kn_1=Fk

n—1 M-K,
Liy ki Kn—kn, kn . §
X(Hxibyii)xn Y = PM,KW,k(Zamlaylv"'7xn7y'n,)-
1=1 k=0

Let now K,,; be the maximal k such that at least one py, | x,—k,.k,(2) #0in Py x, . Then

K, Kn-1
Prpky Koy (51, Y0 T ) = D ) ) P, g K1 —kn—1kn—1,Kn—kp ke (2)
kn=0kn_1=0|m, _,|=M—-K,—K,_1

n—2
n—2
i ki Kn-1—kn—1_kn-1_K,—k, k
X(H Ty e, Yn—1 Tp" Yn"-
=1

By continuing in this way, we construct a non-zero polynomial

' Ki—ki, k;
Prt K b6 (281, Y1 o T Yn) = D oo D DRk Kok (2) | [ 28T

where Ky + ...+ K, = M and, by (13),

(14) T(Z)PM,K,L,.H,Kl (zairlvyl? cee 7$nvyn) = QM,K,I,...,Kl (Zuxhyla s 7xn7yn) =

K, n

Z i DK —Fk1,k1yee K —kn ki (2% H (Ui(Z)MfKi (A2 pi(2)2) K Fi (—pl(2) s +p1(z)yz)k)

kn=0 k=0 i=1
Let now 1%1 denote the maximal value of kq such that pr, iy &y ... K, —kn .k, (2) 7 0 for some ks, ..., kp,
and let then ks be the maximal value ko such that PR, iy oy Koy s K — ko kn(z) # 0 for some

ks, ...,kn. By continuing analogously, we fix also 1%3, .+, kp. This construction means, in particular,
that pKlf,}hicl’W’Knil7,;%1},;”717an,%,€”(z) =0 for all k,, > k,. By (14),

(U ()M H (@) e Ry (2))

=

d
(15) T(Z)pKl_’;717];17---7Kn_’%n7]27n (Z) - pKl_k17k1;-~7Kn_];n7kn (Z )

=1

holds implying T'(z) # 0. By (12), we know that possible zeros of T'(z) having absolute value # 0,1
are the zeros of []!_, v;(z), which we denote by o, (n = 1,...,N). If some «,’s are zeros or poles
of (T, vi(2)*=54)/T(z), let w denote such «, with minimal absolute value and  with maximal
absolute value. Then |w| < 1 or || > 1, and, by the assumptions of Lemma 3.3, we get a contradiction
from Lemma 3.2. Thus

(16) T(z) = co(2) H vi(2)2MH,



where ¢o(z) (as also ¢1(z), ca(2), . .. later) is a non-zero polynomial with possible zeros of absolute value
0 or 1. Further, by (15),

(17) CO(Z)pKl—1;1,7%1,-~~>Kn—f€n,i€n (Z) = pKl—fCthlw-»Kn—l%nJ%n(Zd)cl(z)'
If k, > 1, then, by comparing the coefficients of ([]' z ki yf yrk f“"*lyﬁ"* on both sides of
(14) and denotlng pi(2) = wi(2)vi(z) (i=1,...,n), we get

T()Prc, by oy By o2 o ot 1Ry —1(2)

n
d 2M—K;
= Py oo Eon s w11 (2De2(2) [ T 0i(2)
=1
n—1
PR K Hvz VT o ()M (g (2)0m (2) + wn ()0 (2))-

This equation implies pp ;& o o (a?) = 0 if a is a zero of v,(z). But then, by (17),
PRy by oy Fo— o e (adj) = 0 for all j > 1, a contradiction. Thus l%n = 0. In particular, in the case

n = 1, the polynomial Py (z,z1,y1) reduces to paro(2)x, and, by the irreducibility of P, there must
be some j < M with P; # 0.
Assume that P; # 0 with some j < M, and denote by J the maximal j with this property. We then

write Py as Py above and use Kf,..., K} ki,..., k}, in similar roles as K, ... ,Kn,l%l,. .., ky, before.
Then, similarly to (15),

n
T(2)pr; ki b K~k by (2) = PR ki ki K;sk:;,k:,(zd)H(Ui(Z)M’Ki (dzt"1) K Hipi (2) " )
=1

Since K7 +---+ K} = J < M, (16) and Lemma 3.2 give a contradiction as above. Thus P; = 0 for all
J < M. In particular, this proves Lemma 3.3 in the case n = 1.

For the rest of the proof, we make the inductive assumption that Lemma 3.3 holds, if n (> 2) is
replaced by n — 1. To complete our proof, we next show that

(18) P(z,21,Y1,- -+ @n,Yn) = Pr i, i, (2, 1,91, -« s Ty Yn)-

Let us assume that there exists some k < K, such that at least one D, () in Pprp is non-zero,
and denote by K, (< K,,) the maximal k with this property. We then define K7, ..., K, and K1y kin
similarly to K1,...,K, and ki, ..., k, above. Analogously to (15) we have

n
T()DR, Ty T oo (2) = PRy oy oo o (20 (2) [ [0 ()25
=1
But then (16) gives
n ~
(19) CO()DR, Ty Ty oo o (2) = PRy oy R 5 (2 (2) [ [ 0i(2) 755
=1

Since K,, > IN(n, this leads to a contradiction, by Lemma 3.2. Therefore

P(valaylv"'vx’nuyn) = PM,KTL(Zaxhyla"'7xn7yn)~

If there exists some k < K,_; such that at least one py, (z) in Py Ko is non-zero, then let
Kn 1 (< Kp—1) denote the maximal such k. Again we define new Kl, . K 1 (< Kp—q), K =K,



and El, . ,En in a similar way as K1, ..., K, and ki, ..., k, above. This leads once more to (19), which
gives a contradiction, by Lemma 3.2, since K,,_1 > K,,_1. Thus

P(Z7x17y1a e 7xn7yn) = PM,K,L,K,L,1(27$15 Yi,---,Tn, yn)
By continuing in this way, we obtain equation (18).

IfpK17k1,k1,...,ankn,kn(Z) =0 for all (k‘l, ey kn) with 0 < Kk < ];‘1,0 <k <K; (1 <5< n), kn, > 1,
then P has a factor zX»  so K,, = 0 by the irreducibility of P, and

Kn_1 n—1

K;—k;, ki

P(Z7x17y17"'7xn7yn) = E § PKy—ki,ki,....Kn—1—kn—1,kn—1,0, 0( ) sz B 7
kno1=0  k1=0 i=1

The induction hypothesis gives now a contradiction. Thus, there must exist a non-zero polynomial
DKy —k kr,eos K —kn kon (2) With ky, > 1. Let k1 be the maximal k1 with this property, and after that, let ko

be the maximal ko with ppe ¢ = 0 0 (z) #0,k, > 1. We continue to define Eg, ey kn

in this Way' Then pKl_’];hElw--aKn_’];n»%n (Z) # O, kn Z 1’ and pKl _”;177517---;Kn—1_Enfly’];n—hKn_kn7kn (Z) - O
for all k,, > k,,. Similarly to (15),

n
yM—Ki d—1\K;—k; K;
T(2)P e, oy Jorsoos oo o 2) = PRy T ot Ko —Ton o H( (dz777) pi(2) )
i=1

By (16),
(20) CO(Z)]jl(l _El 7E17-“7K71,_En7’];n (Z) - pKl _EhElv“-vKn_En»%n (Zd)c5 (Z).

If k,, > 1, then we compare the coefficients of (I, sz ki yf L 'L’%"L+1y§"L’l on both sides of (14)
and obtain

T(Z)pKl —F1,k1 e K1 —Fn—1,kn—1,Kpn—kn+1,kn—1 (Z) -

d 2M—K;
Py s T o Ty o1 Ko —Fon o1 1 (27)C6(2) | | vi(2) +

.:]3

=1

PRy T s Ko 1ot o1 Ko Hv I (2) M50 (g, (2)vn (2) - (2)07,(2)).

This implies pp 7 7 S S O i (a?) = 0 for all zeros a of v,(z) and, as above, this
9 b n n—1vn—1, nyfvn

leads to a contradlctlon by (20).

Ki—k; K

To consider the case k, = 1, we compare the coefficient of (HZ 1z yf )z;;™ on both sides of

(14). Each term
n
Ki—ki ki
pKl*liﬁ,»»-,Kn71*kn717kn71,Kn,O(Z)H Ly i
i=1
with (k1,...,k,—1) satisfying El <k <k and EZ <k;<K,;fori=2,...,n—1 gives a contribution

PKi—k1 k1, Kn—1—kn_1 ,kn—thO(Zd)c&ki (Z)

n— ~
x (T ooV =B w2 Jon(2) + (2ol ()Pt Ry Yo ()2 Ko K

10



to the @-polynomial. Therefore

T(Z)pKI*ELEI, Kn1—Fn—1,kn_ 1,Kn,0(z> =

kn Kn—1
Z Z Z PK1—ki k1, K1 —kn—1,kn— 1,Kn,0( d)cs,ki(z) x
ki=k1 ka=ks kn—1=kn_1
n—1 _ _
(T w32 2M R (2o (2) + () (2)) 5 Yo (225 4
=1
PRy T Ty K1 —Fom 1 Fom—1, K 711 HUz 2M K n(Z)QM_Kn_l(u;z(Z)Un(Z)""un(z)v;(z))-

By using (16), we have PRy Ty Tt Ko =Tt o1 K —1 1(ofl) = 0 for all zeros « of v,(2), and a con-

tradiction follows from (20), where now k,, = 1. This finally proves Lemma 3.3. O

Proof of Theorem 1.4. The functions F;(z) and Fj(z) are algebraically independent by Theorem 1.1.
Assume now that Theorem 1.4 holds if n (> 2) is replaced by n—1, whence the functions F;(z), F/(z) (i =
1,...,n — 1) are algebraically independent. If these functions and F,(z) were algebraically dependent,
then there exists an irreducible polynomial P(z, x1,Y1,...,Tn—1,Yn—1,Tn) # 0 such that

P(z,Fi(2), F{(2),..., Fn_1(2), F,_1(2), Fu(2)) = 0.

n

By our induction hypothesis, we have deg, P > 1. From the above proof we see that the cor-
responding polynomial @) # 0, and this  must be divisible by P, since otherwise the re-
sultant of P and @ with respect to z, gives an algebraic dependence relation of F;(z), F/(z) (i =
1,...,n—1). Thus, there exists a polynomial T'(z) # 0 such that T(2)P(z, 21, Y1, - Tn—1,Yn—1,Tn) =
Q(z, 21,91, Tn—1,Yn—1,Ln), but this is impossible, by (a special case of) Lemma 3.3. This proves
the algebraic independence of F;(z), F/(z) (i =1,...,n — 1) and F,(2).

If the 2n functions F;(z), F/(z) (i = 1,...,n) were algebraically dependent, then there would be an

(3

irreducible polynomial P(z,z1,y1,...,%n, Yn) 7 0 such that
P(z,F1(2), Fi(2), ..., Fu(2), F,(2)) = 0,
and necessarily deg,, P > 1. Now Lemma 3.3 gives a contradiction as above proving Theorem 1.4. [J

4. Proof of Theorem 1.11. Our proof relies on the subsequent criterion of Kubota |7, Proposition 3|
(see also [9, Theorem 3.5]) to be quoted here in a very particular version, which suffices for our purposes.

LEMMA 4.1. Suppose that the series fi1,. .., fr € C[[z]]\{0} converge on D and satisfy the functional

equations
FED =bi(2)fi(z)  (i=1,...,k)
with all b; € C(2)\ {0} fulfilling the condition that, for no (ey,...,ex) € ZF\{0}, the functional equation

has a solution r € C(z) \ {0}. Then the functions fi,..., fi are algebraically independent over C(z).

Proof of Theorem 1.11. We apply Lemma 4.1 with &k = n + m, fi(2) = F;(z) (¢ = 1,...,n) and
frvu(2) = Fo, (2) (u=1,...,m) satistying ged(d, £,) = 1. Now b;(2) = 1/pi(2) (i = 1,...,n), bpyu(z) =
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1/®¢,(2) (u=1,...,m), and we must show, for any (e1,...,ex) € Z* \ {0}, that the equation

(21) r(z) = rE) ([ )] @e.2))
i=1 u=1
has no non-trivial rational solution r.
To consider first the case e; = -+ = e, = 0, we iterate (21) j times and obtain
. m j—1 N eny
r(z) = r(z%) H (H Dy (24 )) .
u=1 =0

Letting j — oo and noting r(0) # 0, oo, this formula leads to r(z) = r(0) [1"_, F¢, (z)¢"*+, a contradic-
tion, since the functions Fy, (z) are algebraically independent over C(z), by [3, Theorem 1.3].
To consider the second subcase (eq,...,e,) # 0 of (e1,...,ex), we apply Lemma 3.2 with

n

R(z) = ([T pi(2)" W] ] @e. (2) )

=1

being the factor appearing in the right-hand side of (21). By the assumption in Theorem 1.11, Lemma
3.2 says that (21) does not have a rational solution r(z) # 0. Then the validity of Theorem 1.11 follows
from Lemma 4.1. O
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