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1. Introduction and results. Let d ≥ 2 always denote a fixed integer. If p(z) is a polynomial with
complex coefficients satisfying p(0) = 1, then the infinite product

(1) F (z) =

∞∏
j=0

p(zd
j

)

is analytic in D := {z ∈ C: |z| < 1} and satisfies the simple Mahler type functional equation

(2) w(z) = p(z)w(zd).

The solutions of such functional equations are either rational or transcendental. If a rational function
a(z)/b(z) with coprime non-zero polynomials a(z) and b(z) satisfies (2), then

a(z)b(zd) = p(z)b(z)a(zd).

Since a(z) and b(z) are coprime, it follows that a(zd) | a(z) giving a(z) = c ∈ C×. Thus p(z) =
b(zd)/b(z). On the other hand, if p(z) is of this form, then F (z) = 1/b(z) is a rational function. Further,
if b(z) | b(zd), then all zeros of b(z) lie on the unit circle. An important class of infinite products of
cyclotomic polynomials is considered in [6] and [3]. In particular, [3, Theorem 1.1] states that F (z) with
p(z) = Φ`(z), the `th cyclotomic polynomial (with the convention Φ1(z) := 1−z), is hypertranscendental
if and only if d is either composite or a prime not dividing `. Recall that a function f(z) is said to be
hypertranscendental, if f(z) and all derivatives f (`)(z) (` ≥ 1) are algebraically independent over C(z).
In [3], we also studied algebraic independence of infinite products with different Φ`(z).

In our present work, we are interested in infinite products (1), where p(z) has at least one zero not
lying on the unit circle, or equivalently, with p−1(0) 6⊂ ∂D. As mentioned above, F (z) is a transcendental
function in this case, and our first result yields a condition for its hypertranscendence.

To suitably formulate this result, we note that the hypothesis p−1(0) 6⊂ ∂D allows the following
alternative: If p−1(0) ∩D 6= ∅, then let ω denote an element from this set of minimal absolute value, or
if p−1(0)∩D = ∅, then let Ω denote an element from p−1(0) of maximal absolute value. Clearly |ω| < 1
or |Ω| > 1.

Theorem 1.1. Let p ∈ C[z] satisfy p(0) = 1 and p−1(0) 6⊂ ∂D. If |ω| < 1 (or |Ω| > 1) and, for each

integer j ≥ 1, not all solutions of zd
j

= ω (or of zd
j

= Ω) are zeros of the product p(zd
j−1

) · . . . · p(z),
then the function F (z) in (1) is hypertranscendental.

Under the conditions on p(z) in Theorem 1.1, let {α1, . . . , αν} := p−1(0) \ ∂D, and denote by n(ακ)

and N(ακ) the number of αk such that |ακ| = |αk| and |ακ| = |αk|d
j

for some integer j ≥ 1, respectively.
Assume that |α1| ≤ · · · ≤ |αν1 | < 1 < |αν1+1| ≤ · · · ≤ |αν |. Then N(α1) ≤ ν1 − n(α1), if |α1| < 1, and
N(αν) ≤ ν − ν1 − n(αν), if |αν | > 1. Keeping the notations for ω and Ω as introduced before Theorem
1.1, this result implies the following.

Corollary 1.2. If |ω| < 1 and N(ω) < d, or if |Ω| > 1 and N(Ω) < d, then the function F (z) is
hypertranscendental.
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In particular, if |ω| < 1 and |ω| 6= |αk|d
j

for any pair of integers (j, k) with j ≥ 1 and 1 ≤ k ≤ ν1,
then N(ω) = 0 and Corollary 1.2 applies. We also have N(ω) ≤ 1 or N(Ω) ≤ 1, if ν = 2. If all αi are
real, then the following more explicit result holds.

Corollary 1.3. In the case {α1, . . . , αν} ⊂ R, the function F (z) is hypertranscendental if either
d ≥ 3, or d = 2 and −αi /∈ {α1, . . . , αν} for each i = 1, . . . , ν.

The proof of Theorem 1.1 is based on a hypertranscendence criterion for degree 1 Mahler functions by
Ke. Nishioka [8]. There is also a criterion of Kubota [7] for the consideration of the algebraic independence
of products

(3) Fi(z) =

∞∏
j=0

pi(z
dj ) (i = 1, . . . , n)

with different polynomials pi(z) satisfying the properties of p(z) in Theorem 1.1. Apparently, the que-
stion on the algebraic independence of different functions and their derivatives have so far only been
rarely investigated in the literature. In this connection, we would like to point out recent remarkable
progress in the consideration of algebraic independence of some higher degree Mahler functions and
their derivatives, see [1] and [5].

Our main purpose here is to study algebraic independence of the functions Fi(z) and their first
derivatives satisfying a system of Mahler type functional equations

(4) Fi(z) = pi(z)Fi(z
d), F ′i (z) = p′i(z)Fi(z

d) + dzd−1pi(z)F
′
i (z

d)

with pi(0) = 1 and p−1i (0) 6⊂ ∂D for i = 1, . . . , n. To state our result, we denote

vi(z) :=
∏

α∈p−1
i (0)\∂D

(
1− z

α

)µ(α)
where µ(α) is the zero multiplicity of α in pi(z).

Theorem 1.4. Assume that the polynomials pi(z) satisfy pi(0) = 1 and p−1i (0) 6⊂ ∂D for i = 1, . . . , n,
and that no two of the corresponding polynomials vi(z) have a common zero. Moreover, suppose for

any zero α of
∏n
i=1 vi(z) and for each integer j ≥ 1, that not all solutions of zd

j

= α are zeros of∏n
i=1 vi(z

dj−1

) · . . . · vi(z). Then the functions F1(z), F ′1(z), . . . , Fn(z), F ′n(z) are algebraically indepen-
dent over C(z).

As an immediate consequence of Theorem 1.4, we present the following result on the functions

wi(z) :=
F ′i (z)

Fi(z)
=

∞∑
j=0

djzd
j−1p′i(z

dj )

pi(zd
j )

(i = 1, . . . , n)

satisfying

dzd−1wi(z
d) = wi(z)−

p′i(z)

pi(z)
(i = 1, . . . , n).

Corollary 1.5. Under the assumptions of Theorem 1.4 the functions w1(z), . . . , wn(z) are alge-
braically independent over C(z).

To give some more corollaries to Theorem 1.4, we now define
∏n
i=1 vi(z) =: p(z) and use the

notations introduced before Corollary 1.2. Then N(αi) ≤ min{ν1 − i, ν1 − n(αi)} if |αi| < 1, and
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N(αi) ≤ min{i− ν1, ν − ν1 − n(αi)} if |αi| > 1. By Theorem 1.4, we now have the following results.

Corollary 1.6. If max{N(αi)} < d, then the functions F1(z), F ′1(z), . . . , Fn(z), F ′n(z) are algebrai-
cally independent over C(z).

Corollary 1.7. If v(z) = 1 + z/a with a ∈ C× \∂D and if vi(z) := v(ρiz) with distinct ρ1, . . . , ρn ∈
∂D, then the functions F1(z), F ′1(z), . . . , Fn(z), F ′n(z) are algebraically independent over C(z).

If v(z) = c(z−α1)(z−α2) with a constant c 6= 0 and α1, α2 ∈ C×\∂D, then N := max{N(α1), N(α2)}
≤ 1 for the polynomial p(z) = v(z).

Corollary 1.8. Let v(z) = c(z − α1)(z − α2) be as above, and define vi(z) := v(ρiz) with distinct
ρ1, . . . , ρn ∈ ∂D. If N = 0, or N = 1 and n < d, then the functions F1(z), F ′1(z), . . . , Fn(z), F ′n(z) are
algebraically independent over C(z).

For example, if we choose v(z) = 1 + z − z2, then above N = 0 and Corollary 1.8 applies. For the
very special case d = 2 and ρ1 = 1, ρ2 = −1 see also [4, Theorem 1.1].

Let now vi(z) = 1 + z/ai (i = 1, . . . , n) with distinct a1, . . . , an ∈ C× satisfying |a1| ≤ · · · ≤ |an1 | <
1 < |an1+1| ≤ · · · ≤ |an|. Assume that, for each integer j ≥ 1, |ai| 6= |ak|d

j

(1 ≤ i < k ≤ n1) and

|ai|d
j 6= |ak| (n1 + 1 ≤ i < k ≤ n).

Corollary 1.9. Let the polynomials vi(z) = 1 + z/ai (i = 1, . . . , n) be as above. Then the functions
F1(z), F ′1(z), . . . , Fn(z), F ′n(z) are algebraically independent over C(z).

The following analogue of Corollary 1.3 shows that all of the above restrictions are not needed if all
ai are real.

Corollary 1.10. In the case {α1, . . . , αν} ⊂ R, the functions F1(z), F ′1(z), . . . , Fn(z), F ′n(z) are al-
gebraically independent over C(z) if either d ≥ 3, or d = 2 and −αi /∈ {α1, . . . , αν} for each i = 1, . . . , ν.

In our next result, we consider algebraic independence of the functions (3) and the functions studied
in [3], namely infinite products of cyclotomic polynomials

(5) F`(z) :=

∞∏
j=0

Φ`(z
dj ) with integers ` ≥ 1 prime to d.

Theorem 1.11. Assume that the polynomials pi(z) satisfy the assumptions of Theorem 1.4. Then
the functions (3) and (5) are algebraically independent over C(z).

As an example for this theorem, we give the algebraic independence of the functions Fi(z) (i =
1, . . . , n) with d = 2 and pi(z) = v(ρiz), where v(z) = 1 + z − z2 and ρi are as above, and F`(z) with
odd integers `. Here F1(z) is the generating power series of the Thue-Morse sequence on {−1, 1} and
F3(z) is the generating power series of the Stern diatomic sequence, and so this result generalizes [4,
Theorem 1.1] and partly also [3, Theorem 1.3].

2. Proof of Theorem 1.1 and of Corollary 1.3. By using the hypertranscendence criterion of Ke.
Nishioka [8], it is proved in [2] that, to establish Theorem 1.1, it is enough to show that the functional
equation

(6) w(z)− dw(zd) =
zp′(z)

p(z)
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has no solution w(z) ∈ C(z). Assume now that (6) has a rational solution w(z). Further, let us assume
that |ω| < 1 (the case |Ω| > 1 is similar). Since the right-hand side of (6) has a pole at ω, w(z) must
have poles α with 0 < |α| < 1. Let α0 be such a pole with minimal absolute value. If |α0| < |ω|, then
we get a contradiction, since |αd0| < |α0|. Also |ωd| < |ω|, and therefore ω is a pole of w(z). By our
assumption, there exists a solution α1 of zd = ω, which is not a pole of the right-hand side of (6). Thus,
α1 is a pole of w(z). By (6),

w(z)− d2w(zd
2

) =
zp′(z)

p(z)
+
dzdp′(zd)

p(zd)
.

Using our assumptions again, we see that there exists a solution α2 of zd
2

= ω, which is a pole of w(z).
Continuing in this way, we get a final contradiction proving Theorem 1.1. �

To prove Corollary 1.2, we just note that the conditions of this corollary imply the assumptions of
Theorem 1.1.

Proof of Corollary 1.3. Let us assume {α1, . . . , αν} ⊂ R, and consider the solutions of zd
j

= α ∈
{α1, . . . , αν}. In particular, we may choose α = ω or α = Ω. There exists a root with an argument 2π/dj

if α > 0, or π/dj if α < 0. If d ≥ 3, then none of the roots of zd
k

= αi (0 ≤ k < j, 1 ≤ i ≤ ν) has such
an argument. Therefore, the condition of Theorem 1.1 is satisfied if d ≥ 3.

The equation z2
j

= α has 2j solutions all having absolute value 2j
√
|α|. For all k = 0, . . . , j − 1,

the solutions of z2
k

= αi can have this absolute value only if |αi| = 2j−k
√
|α|. By our hypothe-

sis, either αi = 2j−k
√
|α| or −αi = 2j−k

√
|α| is possible. This means that among the solutions of

z2
k

= αi (i = 1, . . . , ν) there are at most 2k solutions of z2
j

= α. Thus, this last equation has at

least one root which is not a zero of p(z2
j−1

) · . . . · p(z) proving Corollary 1.3. �

3. Proof of Theorem 1.4. To prepare this proof, we first note that

(7) Ui(z)Fi(z
d) = dzd−1pi(z)Fi(z), Ui(z)F

′
i (z

d) = −p′i(z)Fi(z) + pi(z)F
′
i (z)

for i = 1, . . . , n, where Ui(z) := dzd−1p2i (z). Let now P 6= 0 be a polynomial

P (z, x1, y1, . . . , xn, yn) =
∑
mn

pmn
(z)

n∏
i=1

x`ii y
ki
i ,

where mn := (`1, k1, . . . , `n, kn), and let M denote the maximal value of |mn| := `1 + k1 + · · ·+ `n + kn
with pmn

(z) 6= 0. If P (z, F1(z), F ′1(z), . . . , Fn(z), F ′n(z)) = 0, then (7) implies that also the polynomial

Q(z, x1, y1, . . . , xn, yn) =
∑
mn

Qmn
(z, x1, y1, . . . , xn, yn),

where

(8) Qmn
(z, x1, y1, . . . , xn, yn) = pmn

(zd)

n∏
i=1

{Ui(z)M−`i−ki(dzd−1pi(z)xi)`i(−p′i(z)xi + pi(z)yi)
ki}

satisfies Q(z, F1(z), F ′1(z), . . . , Fn(z), F ′n(z)) = 0.

We first use induction on n to establish the following lemma.

Lemma 3.1. If V (z) and T (z) are non-zero polynomials such that T (z) is a factor of the polynomial
V (z)Q(z, x1, y1, . . . , xn, yn), then

T (z) | V (z)pmn
(zd)

n∏
i=1

Ui(z)
M
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holds for all mn.

Proof. In the case n = 1,

P (z, x1, y1) =
∑
m1

pm1
(z)x`11 y

k1
1 =

M∑
n1=0

n1∑
k1=0

pn1−k1,k1(z)xn1−k1
1 yk11 ,

and

Q(z, x1, y1) =

M∑
n1=0

n1∑
k1=0

pn1−k1,k1(zd)U1(z)M−n1(dzd−1p1(z)x1)n1−k1(−p′1(z)x1 + p1(z)y1)k1

=

M∑
n1=0

n1∑
k1=0

qn1−k1,k1(z)xn1−k1
1 yk11 ,

where

(9) qn1−k1,k1(z) := U1(z)M−n1

n1∑
j1=k1

(
j1
k1

)
pn1−j1,j1(zd)(dzd−1)n1−j1p1(z)n1−j1+k1(−p′1(z))j1−k1 .

Since T (z) | V (z)Q(z, x1, y1), we have T (z) | V (z)qn1−k1,k1(z) for 0 ≤ k1 ≤ n1 ≤M. For a given n1, we
obtain from (9),

q0,n1
(z) = U1(z)M−n1p0,n1

(zd)p1(z)n1 ,

hence
T (z) | V (z)p0,n1

(zd)U1(z)M−n1p1(z)n1 .

Further,

q1,n1−1(z) = U1(z)M−n1{p1,n1−1(zd)dzd−1p1(z)n1 + n1p0,n1(zd)p1(z)n1−1(−p′1(z))},

and therefore
T (z) | V (z)p1,n1−1(zd)U1(z)M−n1dzd−1p1(z)n1+1.

By continuing to apply formula (9) in the same way, we obtain

T (z) | V (z)pj,n1−j(z
d)U1(z)M−n1(dzd−1)jp1(z)n1+j

for j = 0, 1, . . . , n1. This gives the validity of Lemma 3.1 for n = 1.

Assume now that Lemma 3.1 holds, if n (≥ 2) is replaced by n− 1. If degxn,yn P = Ln (≤M), then
we may write

P (z, x1, y1, . . . , xn, yn) =

Ln∑
µn=0

µn∑
kn=0

( ∑
mn−1

pmn−1,µn−kn,kn(z)

n−1∏
i=1

x`ii y
ki
i

)
xµn−kn
n yknn ,

and correspondingly

Q(z, x1, y1, . . . , xn, yn) =

Ln∑
µn=0

µn∑
kn=0

qµn−kn,kn(z, x1, y1, . . . , xn−1, yn−1)Un(z)M−µn

× (dzd−1pn(z)xn)µn−kn(−p′n(z)xn + pn(z)yn)kn ,
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where qµn−kn,kn(z, x1, y1, . . . , xn−1, yn−1) is a Q-polynomial arising from the sum

∑
mn−1

pmn−1,µn−kn,kn(z)

n−1∏
i=1

x`ii y
ki
i .

This yields

Q(z, x1, y1, . . . , xn, yn) =

Ln∑
µn=0

Un(z)M−µn

µn∑
kn=0

( µn∑
jn=kn

(
jn
kn

)
qµn−jn,jn(z, x1, y1, . . . , xn−1, yn−1)

× (dzd−1)µn−jnpn(z)µn−jn+kn(−p′n(z))jn−kn
)
xµn−kn
n yknn .

Since T (z) is a factor of V (z)Q(z, x1, y1, . . . , xn, yn), it is also a factor of the product

V (z)Un(z)M−µn

×
( µn∑
jn=kn

(
jn
kn

)
qµn−jn,jn(z, x1, y1, . . . , xn−1, yn−1)(dzd−1)µn−jnpn(z)µn−jn+kn(−p′n(z))jn−kn

)
for all µn, kn. If kn = µn, we get

T (z) | V (z)Un(z)M−µnq0,µn
(z, x1, y1, . . . , xn−1, yn−1)pn(z)µn .

The case kn = µn − 1 leads to

T (z) | V (z)Un(z)M−µn

(
q1,µn−1(z, x1, y1, . . . , xn−1, yn−1)dzd−1pn(z)µn

+ µnq0,µn
(z, x1, y1, . . . , xn−1, yn−1)pn(z)µn−1(−p′n(z))

)
implying

T (z) | V (z)Un(z)M−µnq1,µn−1(z, x1, y1, . . . , xn−1, yn−1)dzd−1pn(z)µn+1.

By continuing analogously, we obtain for j = 0, 1, . . . , µn

T (z) | V (z)Un(z)M−µnqj,µn−j(z, x1, y1, . . . , xn−1, yn−1)(dzd−1)jpn(z)µn+j .

Thus, we have proved the divisibility relation

T (z) | V (z)Un(z)Mqµn−kn,kn(z, x1, y1, . . . , xn−1, yn−1) for 0 ≤ kn ≤ µn ≤ Ln.

By applying our induction hypothesis to the Q-polynomials qµn−kn,kn(z, x1, y1, . . . , xn−1, yn−1), we ob-
tain the validity of Lemma 3.1. �

For the following considerations, we recall [4, Lemma 2.2] of which we include here a short proof for
the reader’s convenience.

Lemma 3.2. Let R ∈ C(z) have zeros or poles in 0 < |z| < 1 or in 1 < |z| < +∞, where ω and Ω are
zeros or poles of minimal and of maximal absolute value, respectively. If |ω| < 1 (or |Ω| > 1), assume

that, for each integer j ≥ 1, not all solutions of zd
j

= ω (or of zd
j

= Ω) are zeros or poles of the product

R(zd
j−1

) · . . . ·R(z). Then the functional equation

(10) r(z) = r(zd)R(z)

has no rational solution r 6= 0.
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Proof. Suppose, on the contrary, that (10) has a rational solution r(z) 6= 0. Clearly, this r(z) has no
zero or pole in |z| < |ω| (or in |z| > |Ω|). Since |ωd| < |ω| (or |Ωd| > |Ω|) we know that ωd (or Ωd) is
not a zero or pole of r(z), whence ω (or Ω) is a zero or pole of r(z), by (10) and a hypothesis on R.

On iterating (10), we conclude that r satisfies

r(z) = r(zd
j

)R(zd
j−1

) · . . . ·R(z)

for any j = 1, 2, . . .. For any such j, we consider all dj solutions of zd
j

= ω (or of zd
j

= Ω), among

which at least one is not a zero or pole of R(zd
j−1

) · . . . · R(z). Thus, on every circle |z| = |ω|1/dj (or

|z| = |Ω|1/dj ), we have a zero or a pole of r contradicting the rationality of r. �

The central role in the proof of Theorem 1.4 will be played by the following lemma.

Lemma 3.3. Assume that p1(z), . . . , pn(z) satisfy the assumptions of Theorem 1.4. If P is irreducible
and depends on at least one of the xi, yi, then an identity

(11) T (z)P (z, x1, y1, . . . , xn, yn) = Q(z, x1, y1, . . . , xn, yn)

with a polynomial T (z) is impossible.

Proof. Assume that (11) holds with some polynomial T (z) (we shall see T (z) 6= 0 from (15) below).
Then T | Q, and therefore Lemma 3.1 yields

T (z) | pmn
(zd)

n∏
i=1

Ui(z)
M

for all mn, where M (≥ 1) was introduced after (7). Since P is irreducible, this gives the important
information

(12) T (z) |
n∏
i=1

Ui(z)
M .

For the rest of the proof, we write P in the shape

P (z, x1, y1, . . . , xn, yn) =

M∑
j=0

∑
|mn|=j

pmn
(z)

n∏
i=1

x`ii y
ki
i =:

M∑
j=0

Pj(z, x1, y1, . . . , xn, yn),

as after (7). Then correspondingly

Q(z, x1, y1, . . . , xn, yn) =

M∑
j=0

∑
|mn|=j

Qmn
(z, x1, y1, . . . , xn, yn) =:

M∑
j=0

Qj(z, x1, y1, . . . , xn, yn),

and here Qmn
(z, x1, y1, . . . , xn, yn) is defined as in (8). By (11),

(13) T (z)Pj(z, x1, y1, . . . , xn, yn) = Qj(z, x1, y1, . . . , xn, yn) (j = 0, . . . ,M).

To study the leading terms, we write

PM (z, x1, y1, . . . , xn, yn) =

M∑
k=0

∑
|mn−1|=M−k

∑
`n+kn=k

pmn
(z)

n∏
i=1

x`ii y
ki
i =:

M∑
k=0

PM,k(z, x1, y1, . . . , xn, yn)
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and

QM (z, x1, y1, . . . , xn, yn) =

M∑
k=0

QM,k(z, x1, y1, . . . , xn, yn)

with
QM,k(z, x1, y1, . . . , xn, yn) :=

∑
|mn−1|=M−k

∑
`n+kn=k

Qmn
(z, x1, y1, . . . , xn, yn).

Let Kn be the maximal value of k such that at least one pmn
(z) 6= 0 in PM,k. Then PM,k = 0 and

QM,k = 0 for all k > Kn, and moreover

PM,Kn
(z, x1, y1, . . . , xn, yn) =

Kn∑
kn=0

M−Kn∑
k=0

∑
|mn−2|=M−Kn−k

∑
`n−1+kn−1=k

pmn−1,Kn−kn,kn(z)

×(

n−1∏
i=1

x`ii y
ki
i )xKn−kn

n yknn =:

M−Kn∑
k=0

PM,Kn,k(z, x1, y1, . . . , xn, yn).

Let now Kn−1 be the maximal k such that at least one pmn−1,Kn−kn,kn(z) 6= 0 in PM,Kn,k. Then

PM,Kn,Kn−1(z, x1, y1, . . . , xn, yn) =

Kn∑
kn=0

Kn−1∑
kn−1=0

∑
|mn−2|=M−Kn−Kn−1

pmn−2,Kn−1−kn−1,kn−1,Kn−kn,kn(z)

×(

n−2∏
i=1

x`ii y
ki
i )x

Kn−1−kn−1

n−1 y
kn−1

n−1 x
Kn−kn
n yknn .

By continuing in this way, we construct a non-zero polynomial

PM,Kn,...,K1(z, x1, y1, . . . , xn, yn) =

Kn∑
kn=0

. . .

K1∑
k1=0

pK1−k1,k1,...,Kn−kn,kn(z)

n∏
i=1

xKi−ki
i ykii ,

where K1 + . . .+Kn = M and, by (13),

(14) T (z)PM,Kn,...,K1
(z, x1, y1, . . . , xn, yn) = QM,Kn,...,K1

(z, x1, y1, . . . , xn, yn) :=

Kn∑
kn=0

. . .

K1∑
k1=0

pK1−k1,k1,...,Kn−kn,kn(zd)
n∏
i=1

(
Ui(z)

M−Ki(dzd−1pi(z)xi)
Ki−ki(−p′i(z)xi + pi(z)yi)

ki
)
.

Let now k̂1 denote the maximal value of k1 such that pK1−k1,k1,...,Kn−kn,kn(z) 6= 0 for some k2, . . . , kn,

and let then k̂2 be the maximal value k2 such that pK1−k̂1,k̂1,K2−k2,k2,...,Kn−kn,kn(z) 6= 0 for some

k3, . . . , kn. By continuing analogously, we fix also k̂3, . . . , k̂n. This construction means, in particular,
that pK1−k̂1,k̂1,...,Kn−1−k̂n−1,k̂n−1,Kn−kn,kn(z) = 0 for all kn > k̂n. By (14),

(15) T (z)pK1−k̂1,k̂1,...,Kn−k̂n,k̂n(z) = pK1−k̂1,k̂1,...,Kn−k̂n,k̂n(zd)

n∏
i=1

(Ui(z)
M−Ki(dzd−1)Ki−k̂ipi(z)

Ki)

holds implying T (z) 6= 0. By (12), we know that possible zeros of T (z) having absolute value 6= 0, 1
are the zeros of

∏n
i=1 vi(z), which we denote by αµ (µ = 1, . . . , N). If some αµ’s are zeros or poles

of (
∏n
i=1 vi(z)

2M−Ki)/T (z), let ω denote such αµ with minimal absolute value and Ω with maximal
absolute value. Then |ω| < 1 or |Ω| > 1, and, by the assumptions of Lemma 3.3, we get a contradiction
from Lemma 3.2. Thus

(16) T (z) = c0(z)

n∏
i=1

vi(z)
2M−Ki ,
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where c0(z) (as also c1(z), c2(z), . . . later) is a non-zero polynomial with possible zeros of absolute value
0 or 1. Further, by (15),

(17) c0(z)pK1−k̂1,k̂1,...,Kn−k̂n,k̂n(z) = pK1−k̂1,k̂1,...,Kn−k̂n,k̂n(zd)c1(z).

If k̂n ≥ 1, then, by comparing the coefficients of (
∏n−1
i=1 x

Ki−k̂i
i yk̂ii )xKn−k̂n+1

n yk̂n−1n on both sides of
(14) and denoting pi(z) = ui(z)vi(z) (i = 1, . . . , n), we get

T (z)pK1−k̂1,k̂1,...,Kn−1−k̂n−1,k̂n−1,Kn−k̂n+1,k̂n−1(z)

= pK1−k̂1,k̂1,...,Kn−1−k̂n−1,k̂n−1,Kn−k̂n+1,k̂n−1(zd)c2(z)

n∏
i=1

vi(z)
2M−Ki

+ pK1−k̂1,k̂1,...,Kn−k̂n,k̂n(zd)c3(z)(

n−1∏
i=1

vi(z)
2M−Ki)vn(z)2M−Kn−1(u′n(z)vn(z) + un(z)v′n(z)).

This equation implies pK1−k̂1,k̂1,...,Kn−k̂n,k̂n(αd) = 0 if α is a zero of vn(z). But then, by (17),

pK1−k̂1,k̂1,...,Kn−k̂n,k̂n(αd
j

) = 0 for all j ≥ 1, a contradiction. Thus k̂n = 0. In particular, in the case

n = 1, the polynomial PM (z, x1, y1) reduces to pM,0(z)xM1 , and, by the irreducibility of P , there must
be some j < M with Pj 6= 0.

Assume that Pj 6= 0 with some j < M , and denote by J the maximal j with this property. We then

write PJ as PM above and use K∗1 , . . . ,K
∗
n, k
∗
1 ,. . . , k∗n in similar roles as K1, . . . ,Kn, k̂1,. . . , k̂n before.

Then, similarly to (15),

T (z)pK∗
1−k∗1 ,k∗1 ,...,K∗

n−k∗n,k∗n(z) = pK∗
1−k∗1 ,k∗1 ,...,K∗

n−k∗n,k∗n(zd)

n∏
i=1

(
Ui(z)

M−K∗
i (dzd−1)K

∗
i −k

∗
i pi(z)

K∗
i

)
.

Since K∗1 + · · ·+K∗n = J < M , (16) and Lemma 3.2 give a contradiction as above. Thus Pj = 0 for all
j < M . In particular, this proves Lemma 3.3 in the case n = 1.

For the rest of the proof, we make the inductive assumption that Lemma 3.3 holds, if n (≥ 2) is
replaced by n− 1. To complete our proof, we next show that

(18) P (z, x1, y1, . . . , xn, yn) = PM,Kn,...,K1(z, x1, y1, . . . , xn, yn).

Let us assume that there exists some k < Kn such that at least one pmn
(z) in PM,k is non-zero,

and denote by K̃n(< Kn) the maximal k with this property. We then define K̃1, . . . , K̃n and k̃1, . . . , k̃n
similarly to K1, . . . ,Kn and k̂1, . . . , k̂n above. Analogously to (15) we have

T (z)pK̃1−k̃1,k̃1,...,K̃n−k̃n,k̃n(z) = pK̃1−k̃1,k̃1,...,K̃n−k̃n,k̃n(zd)c4(z)

n∏
i=1

vi(z)
2M−K̃i .

But then (16) gives

(19) c0(z)pK̃1−k̃1,k̃1,...,K̃n−k̃n,k̃n(z) = pK̃1−k̃1,k̃1,...,K̃n−k̃n,k̃n(zd)c4(z)

n∏
i=1

vi(z)
Ki−K̃i .

Since Kn > K̃n, this leads to a contradiction, by Lemma 3.2. Therefore

P (z, x1, y1, . . . , xn, yn) = PM,Kn
(z, x1, y1, . . . , xn, yn).

If there exists some k < Kn−1 such that at least one pmn
(z) in PM,Kn,k is non-zero, then let

K̃n−1 (< Kn−1) denote the maximal such k. Again we define new K̃1, . . . , K̃n−1 (< Kn−1), K̃n = Kn
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and k̃1, . . . , k̃n in a similar way as K1, . . . ,Kn and k̂1, . . . , k̂n above. This leads once more to (19), which

gives a contradiction, by Lemma 3.2, since Kn−1 > K̃n−1. Thus

P (z, x1, y1, . . . , xn, yn) = PM,Kn,Kn−1
(z, x1, y1, . . . , xn, yn).

By continuing in this way, we obtain equation (18).

If pK1−k1,k1,...,Kn−kn,kn(z) = 0 for all (k1, . . . , kn) with 0 ≤ k1 ≤ k̂1, 0 ≤ ki ≤ Ki (1 < i < n), kn ≥ 1,
then P has a factor xKn

n , so Kn = 0 by the irreducibility of P , and

P (z, x1, y1, . . . , xn, yn) =

Kn−1∑
kn−1=0

. . .

K1∑
k1=0

pK1−k1,k1,...,Kn−1−kn−1,kn−1,0,0(z)

n−1∏
i=1

xKi−ki
i ykii .

The induction hypothesis gives now a contradiction. Thus, there must exist a non-zero polynomial
pK1−k1,k1,...,Kn−kn,kn(z) with kn ≥ 1. Let k̃1 be the maximal k1 with this property, and after that, let k̃2
be the maximal k2 with pK1−k̃1,k̃1,K2−k2,k2,...,Kn−kn,kn(z) 6= 0, kn ≥ 1. We continue to define k̃3, . . . , k̃n

in this way. Then pK1−k̃1,k̃1,...,Kn−k̃n,k̃n(z) 6= 0, k̃n ≥ 1, and pK1−k̃1,k̃1,...,Kn−1−k̃n−1,k̃n−1,Kn−kn,kn(z) = 0

for all kn > k̃n. Similarly to (15),

T (z)pK1−k̃1,k̃1,...,Kn−k̃n,k̃n(z) = pK1−k̃1,k̃1,...,Kn−k̃n,k̃n(zd)

n∏
i=1

(
Ui(z)

M−Ki(dzd−1)Ki−k̃ipi(z)
Ki

)
.

By (16),

(20) c0(z)pK1−k̃1,k̃1,...,Kn−k̃n,k̃n(z) = pK1−k̃1,k̃1,...,Kn−k̃n,k̃n(zd)c5(z).

If k̃n > 1, then we compare the coefficients of (
∏n−1
i=1 x

Ki−k̃i
i yk̃ii )xKn−k̃n+1

n yk̃n−1n on both sides of (14)
and obtain

T (z)pK1−k̃1,k̃1,...,Kn−1−k̃n−1,k̃n−1,Kn−k̃n+1,k̃n−1(z) =

pK1−k̃1,k̃1,...,Kn−1−k̃n−1,k̃n−1,Kn−k̃n+1,k̃n−1(zd)c6(z)

n∏
i=1

vi(z)
2M−Ki +

pK1−k̃1,k̃1,...,Kn−1−k̃n−1,k̃n−1,Kn−k̃n,k̃n(zd)c7(z)(

n−1∏
i=1

vi(z)
2M−Ki)vn(z)2M−Kn−1(u′n(z)vn(z)+un(z)v′n(z)).

This implies pK1−k̃1,k̃1,...,Kn−1−k̃n−1,k̃n−1,Kn−k̃n,k̃n(αd) = 0 for all zeros α of vn(z) and, as above, this

leads to a contradiction, by (20).

To consider the case k̃n = 1, we compare the coefficient of (
∏n−1
i=1 x

Ki−k̃i
i yk̃ii )xKn

n on both sides of
(14). Each term

pK1−k1,k1,...,Kn−1−kn−1,kn−1,Kn,0(z)

n∏
i=1

xKi−ki
i ykii

with (k1, . . . , kn−1) satisfying k̃1 ≤ k1 ≤ k̂1 and k̃i ≤ ki ≤ Ki for i = 2, . . . , n− 1 gives a contribution

pK1−k1,k1,...,Kn−1−kn−1,kn−1,Kn,0(zd)c8,ki(z)

×
( n−1∏
i=1

vi(z)
2M−Ki−ki+k̃i(u′i(z)vi(z) + ui(z)v

′
i(z))

ki−k̃ixKi−k̃i
i yk̃ii

)
vn(z)2M−KnxKn

n
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to the Q-polynomial. Therefore

T (z)pK1−k̃1,k̃1,...,Kn−1−k̃n−1,k̃n−1,Kn,0
(z) =

k̂n∑
k1=k̃1

K2∑
k2=k̃2

. . .

Kn−1∑
kn−1=k̃n−1

pK1−k1,k1,...,Kn−1−kn−1,kn−1,Kn,0(zd)c8,ki(z)×

(

n−1∏
i=1

vi(z)
2M−Ki−ki+k̃i(u′i(z)vi(z) + ui(z)v

′
i(z))

ki−k̃i)vn(z)2M−Kn +

pK1−k̃1,k̃1,...,Kn−1−k̃n−1,k̃n−1,Kn−1,1(zd)c9(z)(

n−1∏
i=1

vi(z)
2M−Ki)vn(z)2M−Kn−1(u′n(z)vn(z) + un(z)v′n(z)).

By using (16), we have pK1−k̃1,k̃1,...,Kn−1−k̃n−1,k̃n−1,Kn−1,1(αd) = 0 for all zeros α of vn(z), and a con-

tradiction follows from (20), where now k̃n = 1. This finally proves Lemma 3.3. �

Proof of Theorem 1.4. The functions F1(z) and F ′1(z) are algebraically independent by Theorem 1.1.
Assume now that Theorem 1.4 holds if n (≥ 2) is replaced by n−1, whence the functions Fi(z), F

′
i (z) (i =

1, . . . , n − 1) are algebraically independent. If these functions and Fn(z) were algebraically dependent,
then there exists an irreducible polynomial P (z, x1, y1, . . . , xn−1, yn−1, xn) 6= 0 such that

P (z, F1(z), F ′1(z), . . . , Fn−1(z), F ′n−1(z), Fn(z)) = 0.

By our induction hypothesis, we have degxn
P ≥ 1. From the above proof we see that the cor-

responding polynomial Q 6= 0, and this Q must be divisible by P , since otherwise the re-
sultant of P and Q with respect to xn gives an algebraic dependence relation of Fi(z), F

′
i (z) (i =

1, . . . , n− 1). Thus, there exists a polynomial T (z) 6= 0 such that T (z)P (z, x1, y1, . . . , xn−1, yn−1, xn) =
Q(z, x1, y1, . . . , xn−1, yn−1, xn), but this is impossible, by (a special case of) Lemma 3.3. This proves
the algebraic independence of Fi(z), F

′
i (z) (i = 1, . . . , n− 1) and Fn(z).

If the 2n functions Fi(z), F
′
i (z) (i = 1, . . . , n) were algebraically dependent, then there would be an

irreducible polynomial P (z, x1, y1, . . . , xn, yn) 6= 0 such that

P (z, F1(z), F ′1(z), . . . , Fn(z), F ′n(z)) = 0,

and necessarily degynP ≥ 1. Now Lemma 3.3 gives a contradiction as above proving Theorem 1.4. �

4. Proof of Theorem 1.11. Our proof relies on the subsequent criterion of Kubota [7, Proposition 3]
(see also [9, Theorem 3.5]) to be quoted here in a very particular version, which suffices for our purposes.

Lemma 4.1. Suppose that the series f1, . . . , fk ∈ C[[z]]\{0} converge on D and satisfy the functional
equations

fi(z
d) = bi(z)fi(z) (i = 1, . . . , k)

with all bi ∈ C(z)\{0} fulfilling the condition that, for no (e1, . . . , ek) ∈ Zk \{0}, the functional equation

r(zd) = r(z)

k∏
i=1

bi(z)
ei

has a solution r ∈ C(z) \ {0}. Then the functions f1, . . . , fk are algebraically independent over C(z).

Proof of Theorem 1.11. We apply Lemma 4.1 with k = n + m, fi(z) = Fi(z) (i = 1, . . . , n) and
fn+u(z) = F`u(z) (u = 1, . . . ,m) satisfying gcd(d, `u) = 1. Now bi(z) = 1/pi(z) (i = 1, . . . , n), bn+u(z) =
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1/Φ`u(z) (u = 1, . . . ,m), and we must show, for any (e1, . . . , ek) ∈ Zk \ {0}, that the equation

(21) r(z) = r(zd)(

n∏
i=1

pi(z)
ei)(

m∏
u=1

Φ`u(z)en+u)

has no non-trivial rational solution r.
To consider first the case e1 = · · · = en = 0, we iterate (21) j times and obtain

r(z) = r(zd
j

)

m∏
u=1

( j−1∏
i=0

Φ`u(zd
i

)
)en+u

.

Letting j →∞ and noting r(0) 6= 0,∞, this formula leads to r(z) = r(0)
∏m
u=1 F`u(z)en+u , a contradic-

tion, since the functions F`u(z) are algebraically independent over C(z), by [3, Theorem 1.3].
To consider the second subcase (e1, . . . , en) 6= 0 of (e1, . . . , ek), we apply Lemma 3.2 with

R(z) := (

n∏
i=1

pi(z)
ei)(

m∏
u=1

Φ`u(z)en+u)

being the factor appearing in the right-hand side of (21). By the assumption in Theorem 1.11, Lemma
3.2 says that (21) does not have a rational solution r(z) 6= 0. Then the validity of Theorem 1.11 follows
from Lemma 4.1. �
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