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Abstract—We consider a multi-pair amplify-and-forward relay
network where the energy-constrained relays adopting time-
switching protocol harvest energy from the radio frequency
signals transmitted by the users for assisting user data trans-
mission. Both one-way and two-way relaying techniques are
investigated. Aiming at energy efficiency (EE) fairness among
the user pairs, we construct an energy consumption model
incorporating rate-dependent signal processing power, the depen-
dence on output power level of power amplifiers’ efficiency, and
nonlinear energy harvesting (EH) circuits. Then we formulate
the max-min EE fairness problems in which the data rates,
users’ transmit power, relays’ processing coefficient, and EH time
are jointly optimized under the constraints on the quality of
service and users’ maximum transmit power. To achieve efficient
suboptimal solutions to these nonconvex problems, we devise
monotonic descent algorithms based on the inner approximation
(IA) framework, which solve a second-order-cone program in
each iteration. To further simplify the designs, we propose an
approach combining IA and zero-forcing beamforming, which
eliminates inter-pair interference and reduces the numbers of
variables and required iterations. Finally, extensive numerical
results are presented to validate the proposed approaches. More
specifically, the results demonstrate that ignoring the realistic
aspects of power consumption might degrade the performance
remarkably, and jointly designing parameters involved could
significantly enhance the energy efficiency.

Index Terms—Multi-pair relay networks, energy efficiency,
nonlinear energy harvesting, non-ideal power amplifier, dis-
tributed beamforming, inner approximation.

I. INTRODUCTION

Relay-assisted cooperative communications can improve

spectral and energy efficiency, and, more importantly, extend

the range of coverage [1], [2]. As such, relay-assisted co-

operative communications has been standardized in current

mobile networks, e.g., 3GPP Long-Term Evolution (LTE) [3].

In addition, it is expected to be a major means to implement
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device-to-device communications in the upcoming mobile

networks [4]. Various relay strategies have been proposed in-

cluding amplify-and-forward (AF), decode-and-forward (DF),

and compress-and-forward [5]. Among them, AF has attracted

significant interest due to its simplicity and low latency [2].

Relaying can be either one-way or two-way. The former

refers to one-directional transmission from one network node

to another, which is applied to the scenario that only one

node has data transmitted to another such as the downlink

transmission from an access point to a mobile phone. The latter

comprises a system in which both nodes send messages to each

other, introduced for improving spectral efficiency [2]. Two-

way relaying was developed based on the self-interference

cancellation employed at the destinations to extract the desired

signals [6].

Early works on relay systems focused on single user pair,

and for improving spectral efficiency, a more general relay sys-

tem including multiple pairs of users was proposed [7]. Here,

the relays simultaneously assist the transmission of multiple

user pairs forming an interference channel. Linear precoding at

the relays can be used to manage the radio resource and control

the interference [8]. In resource constrained networks such as

wireless sensor networks, the nodes are low-cost, i.e., each

one is equipped with a single-antenna. The benefits of MIMO

techniques can be exploited if a pool of relays collaboratively

operate to perform the so called distributed relay beamforming

[9].

In a relay-based system where low-cost relays are equipped

with limited batteries, i.e. do not have sustainable power

supplies, such as sensors or mobile devices, one of the main

implementation challenges is to recharge the limited batteries

for keeping the network alive [10]. To this end, simultane-

ous wireless information and power transfer technique is a

promising solution [10]–[13]. The technique allows the relays

to harvest energy from the radio-frequency (RF) signals, and

thus the batteries can be wirelessly empowered.

Energy efficiency (EE) has become an important perfor-

mance measure in wireless networks [14]. By definition, the

consumed energy plays a vital role on EE objectives. Thus,

the accuracy of the power consumption model is crucial for

designing practical systems. For example, signal processing

power and the efficiency of power amplifiers (PAs) are com-

monly assumed to be fixed [15]–[18]. However, signal pro-

cessing power is often rate-dependent [19] and PAs’ efficiency

depends on output power level [20]. It has been demonstrated

that such aspects may have significant impacts on the network

level EE performances [21], [22].
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Related Works

Multi-pair one-way and two-way relaying have been in-

vestigated in many prior works. [7] considered a one-way

relay network with the aim of minimizing the total transmit

power at relays. Therein, distributed relay beamforming was

designed using the semidefinite relaxation (SDR). This work

was generalized in [23] where transmit power at users and the

distributed relay beamforming were designed for minimizing

the total transmit power at users and relays. The constrained

concave convex procedure was used to tackle the nonconvex

problem. Similarly, in [24], the users’ power and relay beam-

forming were jointly designed for maximizing the secrecy rate.

On the other hand, [6] focused on two-way relaying where

the inter-pair interference is eliminated via zero-forcing (ZF)

relay beamforming. [8] considered a system where a two-

way relay is equipped with multiple antennas. The processing

matrix at the relay is designed based on ZF and minimum

mean-square-error criteria for achieving fairness among users

and maximizing system signal-to-noise ratio. [25] aimed at

achieving the max-min rate fairness among users. Therein,

the relay’s processing matrix was designed by using the SDR

and ZF. In general, design problems for multiuser AF relay

networks are nonconvex. Consequently, the related works have

mainly focused on suboptimal low-complexity designs.

Cooperative systems with EH relays have received consid-

erable attention. In particular, [12] proposed time-switching

and power-splitting protocols for single user pair networks

where a relay harvests energy from the user’s RF signal.

To further improve the network performance, the authors

proposed dynamic EH time in [26]. A more general system

with multiple user pairs was considered in [11]. Assuming

user pairs use orthogonal channels, the work analyzed the

impacts of different power allocation strategies on the net-

work performance. [10] considered a network where both

users and the relay harvest energy and focused on user and

relay power allocation for throughput maximization under the

EH constraints. [27] considered multiple-input multiple-output

(MIMO) AF system where a relay simultaneously harvests

energy transmitted from a destination and receives information

from a source. A system with a single user pair and an EH

two-way relay was studied in [28]. A more general system

with multiple EH relays and a single user pair was recently

studied in [29] for one-way relaying, and in [30] for two-

way relaying. While [29] optimized the EH relays’ power

splitting ratio in order to maximize the transmit data rate,

the work in [30] jointly designed EH time allocation and

distributed relay beamforming for three objectives including

sum-rate maximization, total power consumption minimization

at relays, and EH time minimization.

EE for relay-assisted cooperative communications has re-

cently been studied. [15] considered a one-way MIMO AF

system with one user pair and one relay. The work jointly

optimized the user and relay precoding matrices for different

channel state information assumptions. EE maximization for

the similar system model, but with a two-way relay, was stud-

ied in [17]. More recently, [18] solved the EE maximization

for a two-way relay network with multiple user pairs and

multiple relays by jointly designing user transmit power and

relay matrices. [31] considered a multiple user pair one-way

MIMO DF system. [32] focused on a network with one user

pair and one EH two-way relay, and devised power allocation

for maximizing EE performance. In the aforementioned works,

signal processing power and PAs’ efficiency were assumed

to be constant. In a few recent publications [33], [34], the

impacts of non-ideal PA efficiency and rate-dependent signal

processing power on the EE performance were studied for

two-way systems with one relay and one user pair. The EE

problems for the network with multiple user pairs and multiple

EH relays have remained relatively open in the literature.

Contributions

Motivated by the above discussion and literature review, in

this work, we study the one-way and two-way multiuser AF

relay networks where the low-cost relays receive energy from

the users for assisting data transmission. The goal is to manage

the EE fairness between the user pairs, which is inspired from

the fact that the users in a pair might have to consume a lot

of their own energy to charge the relays, while the transmit

data rate of the pair is small. Towards a relatively realistic

energy consumption model, we take into account the data-rate

signal processing power, the dependence of PAs’ efficiency

on the output power level, and consider a practical model of

EH circuit introduced in [35]. Consequently, the parameters

including transmit data rate, users’ transmit power, relays’

processing coefficient, and EH time, are mutually dependent,

and should be jointly designed. Hence, we formulate the

problems of max-min EE fairness for both one-way and two-

way relay systems in which the mentioned parameters are

optimization variables.1 These problems inherit the numerical

difficulties encountered in multiuser AF relay networks, and

thus, are nonconvex. We then develop the low-complexity

iterative algorithms based on the efficient descent optimization

framework, namely, inner approximation (IA) [37], [38].2 The

convergence proofs for the algorithms are also provided. For

efficient practical implementations, we transform the convex

approximate problems into the second-order-cone programs

(SOCPs), which is done based on a concave lower bound

of the logarithmic function. In addition, for lower complexity

designs, we develop solutions based on the combination of IA

and ZF beamforming which have smaller problem sizes, and

thus require fewer numbers of iterations to converge. Finally,

we provide extensive numerical results which confirm that our

proposed approaches are efficient in terms of the EE fairness.

Specifically, the main results indicate that realistic aspects of

power consumption should be taken into consideration in the

EE designs, and much better performance can be yielded by

jointly optimizing parameters involved.

1We formulate the problems based on the EE definition, in which the
objective functions contain fractional functions. Another approach for achiev-
ing EE in wireless communications is to minimize the power consumption.
However, as shown in many works (e.g. [36]), EE performances obtained by
this approach are far from optimal.

2Another common suboptimal technique used for overcoming intractable
fractional EE problems is developed based on parametric fractional program-
ming, e.g. [39]. However, this technique may not be guaranteed to converge
[40, Section 4.1].
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Organization: The rest of the paper is organized as follows.

Section II describes the system models and formulates the

problems. Section III presents the iterative algorithms devel-

oped based on IA. The designs based on the combination of

IA and ZF are provided in Section IV. Section V discusses the

computational complexity of the proposed solutions. Numeri-

cal results and discussion are provided in Section VI. Finally,

Section VII concludes the paper.

Notation: Bold lower and upper case letters represent vec-

tors and matrices, respectively. ‖·‖2 represents the ℓ2 norm.

|·| represents the absolute value. Rm×n and Cm×n represent

the space of real and complex matrices of dimensions given in

superscript, respectively. In denotes the n×n identity matrix.

CN (0, cI) denotes a complex Gaussian random vector with

zero mean and variance matrix cI. ℜ(·) represents real part

of the argument. AH and AT are Hermitian and normal trans-

pose of A, respectively. diag(a) represents diagonal matrix

constructed from element of a. Notation ⊙ stands for Schur-

Hadamard (element-wise) multiplication of two matrices. el ,

[0, . . . , 0
︸ ︷︷ ︸

l−1

, 1, 0, . . . , 0]. [a]+denotes max(0, a). 〈a,b〉 , aTb

when a and b are real vectors, and 〈a,b〉 , 2ℜ(aHb) when

a and b are complex vectors. Other notations are defined at

their first appearance.

II. SYSTEM MODEL AND PROBLEM STATEMENT

In this section, we first describe the system model of

multi-pair relaying. Then the transmission protocol and energy

consumption model of one-way relaying are presented, fol-

lowing by those of two-way relaying. Finally, the EE fairness

problems are formulated.

We consider a multi-pair relay system consisting of a set

of K user pairs, denoted by K , {1, . . . ,K}, and a set of L
nonregenerative relays, denoted by L , {1, . . . , L}, as shown

in Figure 1. Let us denote by U1k and U2k the two users of

pair k,3 and by Rl the relay l. Suppose that there is no direct

link between U1k and U2k for any k ∈ K, and a user intends

to communicate within its own pair with the help of the relays.

All nodes operate in a half-duplex mode and are low-cost, i.e.,

each of the nodes is equipped with a single-antenna.

The channels are supposed to be flat block-fading with block

time T , and without loss of generality, let T = 1 for notational

simplicity. Let fikl denote the complex channel coefficient

between Uik and Rl, and fik , [fik1, ..., fikL]
T. The channel

reciprocity holds for all links. Following [7], [23], [24] we

suppose that perfect channel state information (CSI) is known

at a central node, where system optimization is performed.

We further assume that the transmit user nodes are non

energy-constrained while the relays are energy-constrained.

Therefore, for assisting the data transmission, the relays follow

the time-switching protocol to harvest energy from the RF

signal transmitted from the users [12].4 In particular, a trans-

3Because we consider also two-way relaying, both nodes of each commu-
nicating user pair play the role of source and destination. Therefore, we index
them as 1 and 2. In the one-way relay channel, 1 is the source and 2 is the
destination, while in the two-way relaying both send and receive.

4Compared to power-splitting protocol, time-switching protocol requires
simpler hardware implementation (i.e., simple switchers) [13], thus it is more
suitable for low-cost nodes.

U11

U1k

U21

U1K U2K

R1

RL

U2k

f11

Fig. 1. A diagram of multiple user pair AF relay systems with K pairs of
users and L relays.

mission block is divided into two portions: the first portion

of duration τ , τ ∈ (0, 1), is a fraction of block time used

for charging the relays, referred to as EH phase. The second

portion is for the two-hop AF communications, referred to as

information transmission (IT) phase. In this work, we consider

both one-way and two-way relay systems. Communication

protocol for each of the systems is detailed below.

A. One-Way Relay System

In a one-way relay system, only one user in each pair

transmits data to the other. Without loss of generality and

for notational convenience, let us assume that U1k is the

transmitter and U2k is the receiver, for all k ∈ K.

1) EH Phase (One-Way): During EH phase, the relays

harvest energy from the RF signal transmitted by the trans-

mitters.5 Particularly, the RF power at the input of the EH

circuit of Rl is [12]

P RF,OW
l (p) ,

∑

k∈K
p1k|f1kl|2 (1)

where pik, (i = {1, 2}) is the transmit power at Uik and

p , [p11, ..., p1K ]T. The EH power circuit converts P RF,OW
l (p)

to DC power used during the IT phase. Here, we consider a

realistic RF-DC power converter, whose conversion efficiency

is not a constant, introduced in [35]. Specifically, the harvested

energy at Rl is

EEH,OW
l (τ,p) =

τP̄DC
l

1− βl

( 1

1 + exp
(
−cl(P

RF,OW
l (p)− dl)

)−βl

)

(2)

where P̄DC
l is the maximum power that can be harvested, cl

and dl are parameters depending on the circuit specifications,

and βl = (1 + exp(cldl))
−1.

2) IT Phase (One-Way): During IT phase, the remaining

(1− τ) fraction of block time is divided into two equal-length

time slots. In the first time slot, the transmitters send data to

5This scheme is for the scenario where it is inconvenient for the receivers
transmitting energy to the relays. For example, the receivers are mobile phones
with low batteries, and to transmit energy to the relays could make the batteries
run out quickly.
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the relays. Let x1k denote the normalized complex symbol

transmitted by U1k. The received signal at Rl is

ỹOW
l =

∑

k∈K

√
p1kf1klx1k + ñl (3)

where ñl is the additive white Gaussian noise (AWGN), i.e.,

ñ ∼ CN (0, σ̃2IL) with ñ , [ñ1, ..., ñL]
T. In the second time

slot, the relays transmit the processed signal to the receivers.

We denote by wl ∈ C the complex weight coefficient used at

Rl, and let w , [w1, ..., wL]
T ∈ CL×1. The received signal at

U2k is

yOW
2k =

∑

l∈L
f2klwlỹ

OW
l + n2k

=
√
p1kf

T
2kWf1kx1k

︸ ︷︷ ︸

desired signal

+
∑

j∈K\{k}

√
p1jf

T
2kWf1jx1j

︸ ︷︷ ︸

interference

+ fT
2kWñ+ n2k
︸ ︷︷ ︸

noise

(4)

where W , diag(w), and n2k denotes the additive noise with

n2k ∼ CN (0, σ2). The signal-to-interference-plus-noise ratio

(SINR) at U2k is

γOW
2k (w,p) =

p1k|fT
2kWf1k|2

∑

j∈K\{k}
p1j |fT

2kWf1j |2 + σ̃2||fT
2kW||22 + σ2

=
p1kw

HHkkw
∑

j∈K\{k}
p1jwHHkjw+wHG2kw + σ2

(5)

where hkj , (f2k ⊙ f1j)
T, Hkj , hH

kjhkj , and Gik ,

σ̃2diag
(
fH
ik ⊙ fT

ik). Let rik be the real transmit data rate at

Uik , i.e., the effective information rate is 1−τ
2 rik . For feasible

transmission, the constraint

r1k ≤ log(1 + γOW
2k (w,p)), ∀k ∈ K (6)

should hold. The purpose of introducing {r1k}Kk=1 is to

determine the rate-dependent signal processing energy, which

is discussed in detail next.

3) Energy Consumption Model (One-Way): We consider

herein a relatively realistic energy consumption model which

takes into account the dependence of PAs’ efficiency on the

output power level [20], [41] as well as the dependence of

signal processing operators on the transmit data rate [19]. In

addition, for saving energy, a node can be idle (i.e., sleep

mode) if it is neither receiving nor transmitting [16], [33]. In

this spirit, let us first focus on the energy consumed by the

users of pair k. Let P idle
ik denote the consumed power of Uik in

idle mode, which is assumed to be constant [16], [33]. Then,

the energy consumed in this mode is

Eidle
k (τ) =

1− τ

2
P idle
1k +

1 + τ

2
P idle
2k . (7)

On the other hand, for the clarity of description, we divide the

power consumed in the active mode into three components:

power consumed by the operating circuits, the amplifiers and

signal processing. The first part includes the power consumed,

e.g., by filters, mixers, etc, denoted by P act,cir
ik for Uik . It is

modeled as a constant [42]. For the power consumed on the

amplifiers, we consider a realistic model whose efficiency is

given by [20, Eq. (2)]

ǫ̃ik = ǫik

√
pik
P̄ik

(8)

where ǫik ∈ (0, 1) is the maximum PA’s efficiency and P̄ik

is the maximum transmit power of Uik . From (8), the power

consumed on the PA is

P amp

ik =
pik
ǫ̃ik

= εik
√
pik (9)

where εik =
√

P̄ik/ǫik. Finally, the power for signal pro-

cessing is modeled as a linear function of data rate given by

P sp

1k = (ρen
1k + ρde

2k)r1k where ρen
1k and ρde

2k represent power for

encoder at U1k and decoder at U2k , respectively. Their units

are in W/(Gnats/s). In summary, the total energy consumed by

pair k during a block time is

EOW
k (τ,p, r) = Eidle

k (τ) +
1 + τ

2
(P amp

1k + P act,cir
1k )

+
1− τ

2
(P sp

1k + P act,cir
2k )

=
1− τ

2
(ρsp

1kr1k + P ′
k) +

1 + τ

2
(ε1k

√
p1k + P ′′

k )

(10)

where ρsp

1k = ρen
1k + ρde

2k, P ′
k = P idle

1k + P act,cir
2k , and P ′′

k =
P idle
2k + P act,cir

1k , which are constant; r , [r11, ..., r1K ]T.

We now describe the energy consumed by the relays. The

radiated power at Rl is P rad
l (p,w) , w∗

l

(
∑

k∈Kp1k|f1kl|2 +
σ̃2
)

wl = wHAlw +
∑

k∈K p1kw
HB1klw where Al ,

σ̃2diag(el) and B1kl , |f1kl|2diag(el). Then, the total energy

consumed at Rl is given by

ER,OW
l (τ,p,w) ,

1− τ

2

√

P̄ R
l P

rad
l (p,w)

ǫR
l

+ ER,const
l (11)

where ǫR
l ∈ (0, 1) is the maximum PA’s efficiency and P̄ R

l is

the maximum transmit power of Rl. In (11), the first term is

the energy consumed by the PA, and ER,const
l is the consumed

energy for activating the basic functions which is constant

[42]. Since the relays do not encode or decode data, the rate-

dependent signal processing energy does not exist. Clearly,

for successfully assisting the data transmission, the energy

consumption cannot exceed harvesting or

ER,OW
l (τ,p,w) ≤ EEH,OW

l (τ,p), ∀l ∈ L. (12)

B. Two-Way Relay System

In a two-way system, the relays assist the bi-directional

communication of all pairs, i.e., both of the two users of each

pair transmit and receive data.

1) EH Phase (Two-Way): The relays receive energy from

the both two users of each pair. Hence, the RF power at the

input of EH circuit of Rl is

P RF,TW
l (p̃) ,

∑

k∈K

2∑

i=1

pik|fikl|2 (13)
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where p̃ , [p11, p21, ..., p1K , p2K ]T. Accordingly, the har-

vested energy at Rl is

EEH,TW
l (τ, p̃) =

τP̄DC
l

1− βl

( 1

1 + exp
(
−cl(P

RF,TW
l (p̃)− dl)

)−βl

)

.

(14)

2) IT Phase (Two-Way): In the first time slot of IT phase,

all the users transmit their signals to the relays using the same

frequency band. Particularly, the received signal at Rl is

ỹTW
l =

∑

k∈K

2∑

i=1

√
pikfiklxik + ñl. (15)

During the second time slot, the relays broadcast the processed

signals to all the users. The received signal at Uik is expressed

as

yrec
ik =

∑

l∈L
fiklwlỹ

TW
l + nik

=
∑

j∈K

2∑

î=1

√
pîjf

T
ikWf̂ijxîj + fT

ikWñ+ nik. (16)

As with most of the related works (see [6], [8], [18], [25] and

the references therein), we suppose that the self-interference

can be completely canceled at the users (with the known CSI).

Then the signal for decoding at Uik reduces to

yTW
ik =

√
pīkf

T
ikWf̄ikxīk

︸ ︷︷ ︸

desired signal

+
∑

j∈K\{k}

2∑

î=1

√
pîjf

T
ikWf̂ijxîj

︸ ︷︷ ︸

interference

+ fT
ikWñ+ nik
︸ ︷︷ ︸

noise

(17)

where ī = {1, 2} \ {i}. Thus the SINR at Uik can be written

as

γTW
ik (w, p̃) =

pīk|fT
ikWf̄ik|2

∑

j∈K\{k}

2∑

î=1

pîj |fT
ikWf̂ij |2 + σ̃2||fT

ikW||22 + σ2

=
pīkw

HHkkw

∑

j∈K\{k}

2∑

î=1

pîjw
HH̃ikîjw +wHGikw + σ2

(18)

where h̃ikîj , (fik ⊙ f̂ij)
T and H̃ikîj , h̃H

ikîj
h̃ikîj . We

note that H̃ikīk = H̃īkik = Hkk. Similar to the one-way

system, we need the following set of constraints for successful

transmissions

rik ≤ log(1 + γTW
īk (w, p̃)), ∀k ∈ K, i = {1, 2}. (19)

3) Energy Consumption Model (Two-Way): Different from

the one-way relay system, the users in the two-way relay

system are always active since each of them either transmits

or receives during block time. In addition, the energy for the

power amplifiers accounts on the both users of a pair, and the

rate-dependent signal processing energy for pair k is calculated

based on the rate transmitted from U1k and U2k. Thus the

energy consumed by pair k can be expressed as

ETW
k (τ, p̃, r̃) , 1

( 2∑

i=1

P act,cir
ik

)

︸ ︷︷ ︸

energy for circuits

+
1 + τ

2

( 2∑

i=1

P amp

ik

)

︸ ︷︷ ︸

energy for PAs

+
1− τ

2

( 2∑

i=1

P sp

ik

)

︸ ︷︷ ︸

energy for signal processing

= ETW,cir
k +

1+ τ

2

( 2∑

i=1

εik
√
pik

)

+
1− τ

2

( 2∑

i=1

ρsp

ikrik

)

(20)

where ETW,cir
k = 1(

∑2
i=1 P

act,cir
ik ) is a constant, ρsp

ik = ρen
ik+ρde

īk
,

and r̃ , [r11, r21, ..., r1K , r2K ]T.

For two-way relay Rl, the radiated power is

P rad,TW
l (p̃,w) , w∗

l

(
∑

k∈K
∑2

i=1 pik|fikl|2 + σ̃2
)

wl =

wHAlw +
∑

k∈K
∑2

i=1 pikw
HBiklw. Then, the total

consumed energy at Rl is

ER,TW
l (τ, p̃,w) ,

1− τ

2

√

P̄ R
l P

rad,TW
l (w, p̃)

ǫR
l

+ER,const
l . (21)

Again, the following set of constraints on the harvested and

consumed energy is required for successful relaying

ER,TW
l (τ, p̃,w) ≤ EEH,TW

l (τ, p̃), ∀l ∈ L. (22)

C. Energy Efficiency Fairness Problems

We focus on the max-min EE. Here, the shared relays use

energy contributed by the users for assisting data transmission,

when each user exchanges information with the one in the

same pair only. Hence, it is relevant to maintain the EE fairness

(EEF) between the user pairs.

1) EEF for One-Way Relay System: With the model spec-

ified in Section II-A and by definition, the individual EE of

pair k is given by

fEE,OW
k (τ,p, r) ,

1−τ
2 r1k

EOW
k (τ,p, r)

, k ∈ K (23)

Thereby the problem of max-min EEF can be mathematically

formulated as

maximize
p,w,r,τ

min
1≤k≤K

fEE,OW
k (τ,p, r) (24a)

subject to
1− τ

2
r1k ≥ Q1k, ∀k ∈ K (24b)

EEF-OW ,







0 < p1k ≤ P̄1k, ∀k ∈ K (24c)

P rad
l (p,w) ≤ P̄ R

l , ∀l ∈ L (24d)

(6), (12). (24e)

Constraint (24b) guarantees the quality of service (QoS) for

each user pair, where Q1k > 0 is a predefined threshold.

(24c) and (24d) represent the transmit power constraints at

the transmitters and the relays, respectively.
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2) EEF for Two-Way Relay System: Similarly, we obtain

the problem of max-min EEF for the two-way system as

maximize
p̃,w,r̃,τ

min
1≤k≤K

1−τ
2

∑2
i=1 rik

ETW
k (τ, p̃, r̃)

︸ ︷︷ ︸

,fEE,TW
k

(τ,p̃,r̃)

(25a)

subject to
1− τ

2
rik ≥ Qik, ∀k ∈ K, i = {1, 2}

(25b)

EEF-TW ,







0 < pik ≤ P̄ik, ∀k ∈ K, i = {1, 2}
(25c)

P rad,TW
l (p̃,w) ≤ P̄ R

l , ∀l ∈ L
(25d)

(19), (22). (25e)

In this work, we assume that the feasible sets of EEF-

OW and EEF-TW are nonempty. The objectives in EEF-OW

and EEF-TW are nonsmooth nonconvex—the numerators of

the fractions are linear, but the denominators are nonconvex.

Also, the feasible sets are nonconvex. Hence the problems

are intractable and it is impossible to transform the problems

into the equivalent convex ones. Like many studies on wireless

communication designs [18], [24], [27], [30], we aim at finding

approximate, but efficient, solutions to these problems.

III. THE PROPOSED ALGORITHMS FOR SOLVING EEF-OW

AND EEF-TW

In this section, we propose algorithms for solving EEF-OW

and EEF-TW based on the inner approximation (IA) frame-

work [37], [38], which is an efficient approach widely used for

dealing with nonconvex programs. First, the general principles

of the IA and the useful approximation functions are provided.

Then, the IA-based algorithms solving EEF-OW and EEF-TW

are presented, followed by the convergence discussion. Finally,

the approach arriving at the SOCP approximations is provided.

A. Useful Approximate Formulations

For exposition purpose, we first provide some approximate

formulations which are used to devise proposed solutions.

Generally the basic idea of IA is to successively approximate a

nonconvex set to inner convex ones. Specifically, let h(x) ≤ 0
be a nonconvex constraint where h(x) : Cn → R and

h(x) is continuously differentiable. An inner approximation

is obtained by replacing h(x) by a convex upper bound

h̃(x; g(x′)), i.e., h(x) ≤ h̃(x; g(x′)), where g(x) : Cn → Cm

is a parameter vector and x′ is some feasible point. Function

h̃(x; g(x′)) must satisfy the following conditions

h(x) = h̃(x; g(x)), ∇x∗h(x) = ∇x∗ h̃(x; g(x)) (26)

where ∇x∗h() denotes the gradient of h() with respect to the

complex conjugate of x. If x is a real vector, then ∇x∗h()
is simply replaced by ∇xh(). The approximations presented

next follow these principles.

1) Approximation for Bilinear Function: Consider noncon-

vex constraint x1x2 ≤ y where (x1, x2, y) ∈ R
3
++. An

approximation of bilinear function x1x2 is given by [37, Lem.

3.5]

x1x2 ≤ hbi(x1, x2;λ) , 0.5
(

λx2
1 +

x2
2

λ

)

(27)

where λ =
x′
2

x′
1

. We remark that the bilinear function can be

rewritten as difference-of-convex ones, e.g., x1x2 = 0.25(x1+
x2)

2 − 0.25(x1 − x2)
2 = 0.5(x1 + x2)

2 − 0.5(x2
1 + x2

2) =
0.5(x2

1 + x2
2)− 0.5(x1 − x2)

2. Then the approximates can be

obtained by using the first order Taylor series approximation

of the nonconvex parts. Herein, we use (27) for problems

EEF-OW and EEF-TW, since we numerically observe that

with (27), the iterative procedures require fewer number of

iterations for convergence (see Fig. 3(a) for the numerical

example).

2) Approximation for Fractional-Linear Function: Con-

sider nonconvex constraint x1

x2
≤ y where (x1, x2, y) ∈ R3

++.

In light of (27), an approximation of fractional-linear function
x1

x2
can be obtained as

x1

x2
≤ hfrac(x1, x2;λ) , 0.5

(

λx2
1 +

1

λx2
2

)

(28)

where λ = 1
x′
1x

′
2

. We note that constraint hfrac(x1, x2;λ) ≤
y can be expressed by the following two second-order cone

(SOC) ones

0.5
(

λx2
1 +

z2

λ

)

≤ y, 1 ≤ x2z. (29)

3) Approximation for Quadratic-over-Linear Function:

Consider concave function h(x, z;A) , −xHAx
z where x ∈

Cn, z ∈ R++, and A � 0. We can use the first order Taylor

series to obtain a convex upper bound of h(x, z;A) given as

hqol(x, z;x′, z′;A) , h(x′, z′;A)

+
〈
[∇x∗h(x′, z′;A),∇zh(x

′, z′;A)]T, [x− x′, z − z′]T
〉

=
(x′)HAx′

(z′)2
z − 2ℜ((x′)HAx)

z′
. (30)

4) Approximation for Logarithmic Function: Consider log-

arithmic function h(x) , log(x) where x ∈ R++. An

approximated function of h(x) is given by

h(x) ≤ hlog(x;x′) , log(x′)− 1 +
x

x′ . (31)

5) Approximation for Power Function: Consider power

function h(x;m) , −xm where x ∈ R++. Here, we only

focus on the cases m < 0 or m > 1 where h(x;m) is concave.

Its convex approximation is given by

h(x;m) ≤ hpo(x;x′;m) , (m−1)(x′)m−m(x′)m−1x. (32)

B. Solution for EEF-OW

Directly applying IA to (24) is difficult, since the nonconvex

parts here are not explicitly exposed. As a necessary step,

we translate (24) into an equivalent, but more tractable,

formulation. We first introduce variable η > 0 and arrive at

the epigraph form of (24) given as

minimize
p,w,r,τ,η

η (33a)
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subject to fEE,OW
k (τ,p, r) ≥ η−1, ∀k ∈ K (33b)

(6), (12), (24b), (24c), (24d). (33c)

Here the nonconvex parts include (6), (12), (24d), and (33b).

1) Changes of Variables: We now make some changes of

variables. Specifically, we will denote qik = 1
pik

, ∀k ∈ K, i =
{1, 2}, and turn the nonconvex products of linear and quadratic

functions, e.g., p1kw
HHkkw, into the quadratic-over-linear

functions. We also define τ̃ = 1+τ
1−τ , i.e., τ = τ̃−1

τ̃+1 . It is

important to note that these changes of variables still preserve

the convexity in (24b) and (24c) as well as turn nonconvex

constraint (24d) into a convex one. In addition, they make (6),

(12), and (33b) become more convenient to handle, as shown

next.

2) Transformation of (6): By introducing new variables

{vk}Kk=1 and {sk}Kk=1, we can equivalently represent (6) by

the following set of constraints

r1k ≤ log(1 + vk), ∀k ∈ K (34)

∑

j∈K\{k}

wHHkjw

q1j
+wHG2kw + σ2 ≤ sk, ∀k ∈ K (35)

skvk ≤ wHHkkw

q1k
, ∀k ∈ K. (36)

Here, only (36) is nonconvex which contains bilinear and

quadratic-over-linear functions.

3) Transformation of (12): We first rewrite (12) with the

change variables as

ε̃l

√

wHAlw +
∑

k∈K

wHB1klw

q1k

≤ β̂l(τ̃ − 1)

1 + αl exp
(
−cl

∑

k∈K
|f1kl|2
q1k

) − β̄lτ̃ + β̌l, ∀l ∈ L

where ε̃l =
√

P̄ R
l /ǫ

R
l , β̂l =

P̄DC
l

1−βl
, β̄l = βlβ̂l + ER,const

l ,

β̌l = β̄l − 2ER,const
l and αl = exp(cldl). Also, to reveal the

hidden convexity in the constraint, we introduce new variables

{ul}Ll=1 and {tl}Ll=1, and equivalently rewrite (12) as

∑

k∈K

wHB1klw

q1k
≤ u2

l , ∀l ∈ L (37)

log(τ̃ − tl − 1)− log(αltl) +
∑

k∈K

cl|f1kl|2
q1k

≥ 0, ∀l ∈ L

(38)

ε̃l

√

wHAlw+ u2
l ≤ β̂ltl − β̄lτ̃ + β̌l, ∀l ∈ L. (39)

The nonconvex parts are in (37) and (38) including the power

and the logarithmic functions.

4) Transformation of (33b): Constraint (33b) is rewritten

as

ρsp

1k +
P ′
k

r1k
+

τ̃

r1k

( ε1k√
q1k

+ P ′′
k

)

≤ η, ∀k ∈ K, (40)

which is equivalently represented as

τ̃

r1k
≤ z2k, ∀k ∈ K (41)

ρsp

1k +
P ′
k

r1k
+ ε1k

z2k√
q1k

+ P ′′
k z

2
k ≤ η, ∀k ∈ K (42)

where {zk}Kk=1 are newly introduced variables. We remark that

function z2k/
√
q1k is convex (see Appendix B for the proof),

and so is (42). Also, (41) can be rewritten as 1
r1k

≤ z2
k

τ̃ where

the nonconvex part is quadratic-over-linear.

With the above transformations, (33) can be reformulated

as

minimize
q,w,r,τ̃,η
v,s,u,t,z

η (43a)

subject to r1k ≥ (1 + τ̃ )Q1k, ∀k ∈ K (43b)

q1k ≥ 1/P̄1k, ∀k ∈ K (43c)

wHAlw +
∑

k∈K

wHB1klw

q1k
≤ P̄ R

l , ∀l ∈ L (43d)

(34), (35), (36), (37), (38), (39), (41), (42) (43e)

where q , [q1k, ..., q1K ]T, v , [v1, ..., vK ]T, s , [s1, ..., sK ]T,

u , [u1, ..., uL]
T, t , [t1, ..., tL]

T, and z , [z1, ..., zK ]T;

(43b), (43c), and (43d) are respectively the versions of (24b),

(24c), and (24d) after change of variables. The equivalence

here is in the sense of optimality (see the proof in Appendix

A).

We are now ready to use IA for solving (43). Specifically,

by applying the approximate formulations provided in Section

III-A to the nonconvex parts in (43), we obtain the following

convex approximation of (43) solved at iteration n+ 1

minimize
ψ

η (44a)

subject to

hbi(sk, vk;
v
(n)
k

s
(n)
k

) + hqol(w, q1k;w
(n), q

(n)
1k ;Hkk) ≤ 0, ∀k ∈ K

(44b)

∑

k∈K

wHB1klw

q1k
+ hpo(ul;u

(n)
l ; 2) ≤ 0, ∀l ∈ L (44c)

log(τ̃ − tl − 1) ≥ hlog(αltl;αlt
(n)
l )

+
∑

k∈K
cl|f1kl|2hpo(q1k; q

(n)
1k ;−1),∀l ∈ L (44d)

1

r1k
+ hqol(zk, τ̃ ; z

(n)
k , τ̃ (n); 1) ≤ 0,∀k ∈ K (44e)

(34), (35), (39), (42), (43b), (43c), (43d) (44f)

where ψ , [qT,wT, rT, τ̃ , η,vT, sT,uT, tT, zT]T and ψ(n) is

some feasible point of (43).

5) Finding Initial Feasible Points: A feasible point of (43)

is required for starting the IA procedure, which is difficult

to find due to the QoS constraints. Here we provide an

efficient heuristic method inspired by [43], [44, Section 3.2] to

overcome this issue. The idea is to allow the QoS constraints

to be violated, and the violation is penalized. Particularly, let

us consider the following modification of (43)

minimize
ψ∈S

η + b
∑

k∈K
[(1 + τ̃)Q1k − r1k]

+ (45)
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Algorithm 1 The Proposed Method Solving EEF-OW

1: Initialization: Set n := 0, n′ := 0, and randomly generate

a feasible point ψ(0) of (45).

2: repeat {Finding a feasible point of (43)}

3: Solve minimize
ψ∈S(ψ(n′))

η+b
∑

k∈K[(1+τ̃ )Q1k−r1k]
+, denote

the optimal by ψ∗
fe.

4: Update n′ := n′ + 1, ψ(n′) := ψ∗
fe.

5: until
∑

k∈K[(1 + τ̃∗)Q1k − r∗1k]
+ = 0.

6: Set ψ(0) := ψ(n′).

7: repeat {Solving (43)}

8: Obtain the optimal point of (44), denoted by ψ∗.

9: Update n := n+ 1, ψ(n) := ψ∗.

10: until convergence or predefined number of iterations.

11: Output (solution for EEF-OW): τ := τ̃ (n)−1
τ̃ (n)+1

, w := w(n),

p1k := 1/q
(n)
1k for all k ∈ K.

where b > 0 is a penalty parameter; S ,

{ψ|(34)–(42), (43c), (43d)}. Finding feasible points of (45)

is easy as follows. We first randomly generate τ (0) ∈ (0, 1),

0 < p
(0)
1k ≤ P̄1k, and w(0) ∈ CL×1, then (if necessary)

scale w(0) so that (12) and (24d) are satisfied. Based on

(τ (0), p
(0)
1k ,w

(0)), r(0),v(0), s(0),u(0), t(0), and z(0) are

determined by setting (34), (35), (36), (37), (39), and (41)

to be equality. With ψ(0), we can start an iterative IA

procedure for solving (45). Intuitively, the penalty term in

(45) would force {(1 + τ̃)Qk − r1k} to decrease. Once

(1 + τ̃ )Qk − r1k ≤ 0 for all k, i.e., the penalty term is zero,

producing a feasible point of (43).

In summary, we outline the proposed method for solv-

ing EEF-OW in Algorithm 1. In line 3, S(ψ(n)) ,

{ψ|(34), (35), (39), (42), (43c), (43d), (44b)–(44e)} is an ap-

proximate convex set of S corresponding to ψ(n).

C. Solution for EEF-TW

The procedure for finding a solution of EEF-TW is similar

to the one presented in the previous subsection. So, for the

sake of brevity, only the main steps are presented. We first

arrive at the epigraph form of EEF-TW given by

minimize
p̃,w,r̃,τ,η̃

η̃ (46a)

subject to fEE,TW
k (τ, p̃, r̃) ≥ η̃−1, ∀k ∈ K (46b)

(19), (22), (25b), (25c), (25d). (46c)

We focus on the nonconvex convexity induced by (19), (22),

(25d), and (46b). Again, by using the change of variables

in Section III-B1 and introducing additional variables, we

transform (46) into the following equivalent problem

minimize
q̃,w,r̃,τ̃ ,η̃
ṽ,s̃,u,t,z

η̃ (47a)

subject to

rik ≥ (1 + τ̃ )Qik, ∀k ∈ K, i = {1, 2} (47b)

qik ≥ 1/P̄ik, ∀k ∈ K, i = {1, 2} (47c)

wHAlw +
∑

k∈K

2∑

i=1

wHBiklw

qik
≤ P̄ R

l , ∀l ∈ L (47d)

rik ≤ log(1 + vīk), ∀k ∈ K, i = {1, 2} (47e)

∑

j∈K\{k}

2∑

î=1

wHH̃ikîjw

qîj
+wHGikw+ σ2 ≤ sik,

∀k ∈ K, i = {1, 2} (47f)

sikvik ≤ wHHkkw

qīk
, ∀k ∈ K, i = {1, 2} (47g)

∑

k∈K

2∑

i=1

wHBiklw

qik
≤ u2

l , ∀l ∈ L (47h)

log(τ̃ − tl − 1)− log(αltl) + cl
∑

k∈K

2∑

i=1

|fikl|2
qik

≥ 0, ∀l ∈ L

(47i)

ε̃l

√

wHAlw + u2
l ≤ β̂ltl − β̄lτ̃ + β̌l, ∀l ∈ L (47j)

τ̃
∑2

i=1 rik
≤ z2k, ∀k ∈ K (47k)

( 1
∑2

i=1 rik
+ z2k

)

ETW,cir
k +

( 2∑

i=1

εik
z2k√
qik

)

+

∑2
i=1 ρ

sp

ikrik
∑2

i=1 rik
≤ η̃, ∀k ∈ K (47l)

where ṽ , [v11, v21, ..., v1K , v2K ]T, s̃ ,

[s11, s21, ..., s1K , s2K ]T. Similar to EEF-OW, the equivalence

here is in the sense of optimality. In (47), the nonconvex

parts include (47g), (47h), (47i), (47k), (47l), which can also

be approximated using the approximate functions provided

in Section III-A. By doing so, we arrive at the convex

approximation problem given as

minimize
ψ̃

η̃ (48a)

subject to

hbi
(

sik, vik; v
(n)
ik /s

(n)
ik

)

+ hqol(w, qīk;w
(n), q

(n)

īk
;Hkk) ≤ 0,

∀k ∈ K, i = {1, 2} (48b)

∑

k∈K

2∑

i=1

wHBiklw

qik
+ hpo(ul;u

(n)
l ; 2) ≤ 0, ∀l ∈ L (48c)

log(τ̃ − tl − 1) ≥ hlog(αltl;αlt
(n)
l )

+
∑

k∈K

2∑

i=1

cl|fikl|2hpo(qik; q
(n)
ik ;−1), ∀l ∈ L

(48d)

1
∑2

i=1 rik
+ hqol(zk, τ̃ ; z

(n)
k , τ̃ (n); 1) ≤ 0, ∀k ∈ K (48e)

hfrac
( 2∑

i=1

ρ
sp

ikrik,

2∑

i=1

rik;
1

(
∑2

i=1 ρ
sp

ikr
(n)
ik )(

∑2
i=1 r

(n)
ik )

)

+
( 1
∑2

i=1 rik
+ z2k

)

ETW,cir
k +

( 2∑

i=1

εik
z2k√
qik

)

≤ η̃, ∀k ∈ K

(48f)

(47b), (47c), (47d), (47e), (47f), (47j) (48g)
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where ψ̃ , [q̃T,wT, r̃T, τ̃ , η̃, ṽT, s̃T,uT, tT, z]T and ψ̃(n) is a

feasible point of (47). Finally, for finding initial feasible points

of (47), we use a similar technique as that in Section III-B5.

The proposed procedure for solving EEF-TW is

outlined in Algorithm 2. In line 3, S̃(ψ̃(n)) ,

{ψ̃|(47b), (47c), (47d), (47e), (47f), (47j), (48b)–(48f)} is

an inner convex approximation of S̃ at ψ̃(n).

Algorithm 2 The Proposed Method Solving EEF-TW

1: Initialization: Set n := 0, n′ := 0, and randomly generate

a point ψ̃(0) ∈ S̃ , {ψ̃|(47c)–(47l)}.

2: repeat {Finding a feasible point of (47)}

3: Solve minimize
ψ̃∈S̃(ψ̃(n))

η̃+ b
∑

k∈K
∑2

i=1[(1+ τ̃ )Qik − rik]
+,

and denote the optimal by ψ̃∗
fe.

4: Update n′ := n′ + 1, ψ̃(n′) := ψ̃∗
fe.

5: until
∑

k∈K
∑2

i=1[(1 + τ̃∗)Qik − r∗ik]
+ = 0.

6: Set ψ̃(0) := ψ̃(n′).

7: repeat {Solving (47)}

8: Obtain the optimal point of (48), denoted by ψ̃∗.

9: Update n := n+ 1, ψ̃(n) := ψ̃∗.

10: until convergence or predefined number of iterations.

11: Output (solution for EEF-TW): τ := τ̃ (n)−1
τ̃ (n)+1

, w := w(n),

pik := 1/q
(n)
ik for all k ∈ K, i = {1, 2}.

D. Convergence of Algorithms 1 and 2

The general convergence analysis of the IA framework has

been provided in [37]. Thus, we only need to examine the

conditions posted there for justifying the convergence of Algo-

rithms 1 and 2. First, we recall that the approximate functions

provided in Section III-A satisfy (26), which corresponds to

[37, Property A]. In addition, the feasible set of (43) and (47)

are compact and nonempty. Thus it is guaranteed that the

objective sequences {η(n)}∞n=0(Algorithm 1) and {η̃(n)}∞n=0

(Algorithm 2) are non-increasing and converge [37, Corollary

2.3].

However, since objectives in (43) and (47) are not strongly

convex, the iterates {ψ(n)}∞n=0 and {ψ̃(n)}∞n=0 might not

converge. This issue can be overcome by using proximal terms,

i.e., replacing objective of (44) and (48) by η+a||ψ−ψ(n)||22
and η̃ + a||ψ̃ − ψ̃(n)||22, respectively, with an arbitrary regu-

larization parameter a > 0 [45]. By doing so, the objective

sequences {η(n)}∞n=0 and {η̃(n)}∞n=0 are strictly decreasing

and ||ψ(n) − ψ(n+1)||2 → 0 , ||ψ̃(n) − ψ̃(n+1)||2 → 0 [37,

Proposition 3.2], which come from the following relations

η(n) − η(n+1) ≥ a||ψ(n+1) −ψ(n)‖22,
η̃(n) − η̃(n+1) ≥ a||ψ̃(n+1) − ψ̃(n)‖22.

E. Conic Formulations for Approximate Subproblems

The approximate subproblems (44) and (48) are cast as

generic convex programs due to the logarithmic functions in-

volved. Theoretically, these problems can be efficiently solved

using a general purpose interior-point solver. However, from

the practical perspective, it is more numerically efficient if

we can arrive at a more standard convex program, e.g., conic

quadratic or semidefinite program [46]. We observe from (44)

and (48) that the objectives and constraints are linear or SOC-

representable, except the constraints containing the logarith-

mic functions. Hence, we are motivated to develop SOC-

presentable approximations for these constraints. Towards the

goal, we present a concave lower bound of the logarithmic

function given as

log x ≥ log x′ + 2− 2
√
x′

√
x

(49)

which holds for all x > 0, x′ > 0. Inequality (49) can be

justified as follows. Let us define g(x;x′) , log x−log x′−2+
2
√
x′√
x

for x > 0, x′ > 0. We can easily prove that g(x;x′) ≥ 0

by checking the first-order derivative of g(x;x′) with respect

to x, i.e.,

∂g(x;x′)

∂x
=

1

x
−

√
x
′

x
√
x
=

1

x

(

1−
√
x
′

√
x

)

,

which clearly indicates that
∂g(x;x′)

∂x ≥ 0 if x ≥ x′, and
∂g(x;x′)

∂x ≤ 0 if x ≤ x′. Accordingly, g(x;x′) achieves the

minimum at x = x′ with g(x = x′;x′) = 0, and thus

g(x;x′) ≥ 0 for all x > 0, x′ > 0 which validates (49). Since

(49) is verified to fulfill the conditions in (26), we can replace

the constraint log x ≥ y by

log x′ + 2− 2
√
x′

√
x

≥ y. (50)

In the IA-based iterative procedure, x′ is the value of x
obtained in the preceding iteration. We note that (50) admits

the SOC-representation, i.e.,

(50) ⇔
{
ξ2 ≤ x,
∥
∥
∥[2

4
√
x′, log x′ + 2− y, ξ]

∥
∥
∥
2
≤ log x′ + 2− y + ξ.

(51)

In the same way, (34) can be approximated by

log(1 + v
(n)
k ) + 2−

2

√

1 + v
(n)
k√

1 + vk
≥ rk, ∀k ∈ K. (52)

IV. DESIGNS BASED ON ZERO-FORCING BEAMFORMING

In multi-pair relay systems, ZF is commonly invoked to

eliminate the inter-pair interference, and thus, reduces the

design complexity [6], [8], [25]. For EEF-OW and EEF-TW,

using ZF beamforming does not lead to convex formulations

due to the complexity involved. However, we can obtain

suboptimal solutions but with much lowered complexity, using

the similar procedures illustrated in Section III. In the rest of

the section, we sequentially present the ZF-based designs for

EEF-OW and EEF-TW.

A. ZF-Based Design for EEF-OW

Let us define H̄k , [hT
k1, ...,h

T
k(k−1),h

T
k(k+1), ...,h

T
kK ] ∈

CL×(K−1) and H̄ , [H̄1, ..., H̄K ]T ∈ CL×K(K−1). The ZF

beamforming principles lead to

hkjw = 0, ∀j 6= k, k ∈ K ⇔ H̄w = 0. (53)
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Clearly, the null-space of H̄ exists if L > K(K − 1). Let

Z ∈ C
L×(L−K(K−1)) be an orthogonal basis of the null-space

of H̄, then we can find w such as w = Zw̄ where w̄ ∈
C(L−K(K−1))×1 [47]. This allows us to rewrite SINR at U2k

as

γOW,ZF
2k (w̄,p) =

p1kw̄
HHZF

kkw̄

w̄HGZF
2kw̄+ σ2

(54)

where HZF
kk , ZHHkkZ and GZF

2k , ZHGkZ. Thus, the design

problem with ZF beamforming is

maximize
p,w̄,r,τ

min
1≤k≤K

fEE,OW
k (τ,p, r) (55a)

subject to

w̄HAZF
l w̄+

∑

k∈K
p1kw̄

HBZF
1klw̄ ≤ P̄ R

l , ∀l ∈ L (55b)

r1k ≤ log(1 + γOW,ZF
2k (w̄,p)), ∀k ∈ K (55c)

1− τ

2
ε̃l

√

w̄HAZF
l w̄ +

∑

k∈K
p1kw̄HBZF

1klw̄+ ER,const
l

≤ EEH,OW
l (τ,p), ∀l ∈ L (55d)

(24b), (24c). (55e)

where AZF
l , ZHAlZ and BZF

1kl , ZHB1klZ.

B. ZF-Based Design for EEF-TW

To obtain ZF beamforming for two-way system,

we first recall that h̃ikîj = h̃îjik and define

Mk , [h̃T
1k1(k+1), h̃

T
2k2(k+1), ..., h̃

T
1k1K , h̃T

2k2K ] and

M̄ , [M1, ...,MK−1, H̄1, ..., H̄K ]T ∈ C2K(K−1)×L.

Then we can write the ZF constraint as

h̃ikîjw = 0, ∀j 6= k, k ∈ K, i, î ∈ {1, 2} ⇔ M̄w = 0. (56)

Let Z̃ ∈ CL×(L−2K(K−1)) be an orthogonal basis of null-

space of M̄, which requires the condition that L > 2K(K−1)
for existence. Again, we can find beamforming vector as w =
Z̃w̄ where w̄ ∈ C

(L−2K(K−1))×1. The SINR at Uik reduces

to

γTW,ZF
ik (w̄, p̃) =

pīkw̄
HH̃ZF

kkw̄

w̄HG̃ZF
ik w̄ + σ2

(57)

where H̃ZF
kk , Z̃HHkkZ̃ and G̃ZF

ik , Z̃HGikZ̃. The EEF design

problem based on ZF beamforming is given by

maximize
p̃,w̄,r̃,τ

min
1≤k≤K

fEE,TW
k (τ, p̃, r̃) (58a)

subject to

w̄HÃZF
l w̄ +

∑

k∈K

2∑

i=1

pikw̄
HB̃ZF

iklw̄ ≤ P̄ R
l , ∀l ∈ L (58b)

rik ≤ log(1 + γTW,ZF
ik (w̄, p̃)), ∀k ∈ K, i = {1, 2} (58c)

1− τ

2
ε̃l

√
√
√
√w̄HÃZF

l w̄ +
∑

k∈K

2∑

i=1

pikw̄HB̃ZF
iklw̄ + ER,const

l

≤ EEH,TW
l (τ, p̃), ∀l ∈ L (58d)

(25b), (25c). (58e)

where ÃZF
l , Z̃HAlZ̃ and B̃ZF

ikl , Z̃HBiklZ̃.

Remark 1. We note that in ZF-based designs, other parameters

(transmit data rate, users’ transmit power, and EH time) are

still jointly designed with the ZF beamforming. Here, prob-

lems (55) and (58) can be solved by the similar IA procedures

described in Sections III. The two problems are optimized

over w̄. Thus, the total numbers of variables in their convex

approximate programs are smaller than those of EEF-OW and

EEF-TW (as discussed in the next section). On the other hand,

since the inter-pair interference is canceled, it is expected that

the numbers of iterations of IA procedures solving (55) and

(58) are smaller compared to those of EEF-OW and EEF-TW.

This will be elaborated by numerical experiments provided

in Subsection VI-C. For the ease of exposition, we refer to

the solutions of (55) and (58) as ‘ZF-based design (OW)’ and

‘ZF-based design (TW)’, respectively.

V. COMPUTATIONAL COMPLEXITY ANALYSIS

We now discuss on the computational complexity of solving

the SOCP approximations (in each of iterations) by a general

interior point method based on the results in [46, Chapter 6].

For Algorithm 1, the SOCP solved at an iteration includes

(10K + 6L + 2) real variables and (10K + 5L) conic con-

straints. Then the worst case of computational complexity in an

iteration of the algorithm is O
(
(10K +5L)0.5(10K + 6L)3

)
.

For Algorithm 2, the SOCP solved at an iteration includes

(19K + 6L + 2) real variables and (16K + 5L) conic con-

straints. Then the worst case of computational complexity in

an iteration of the algorithm is O
(
(16K+5L)0.5(19K+6L)3

)
,

which is higher than that of Algorithm 1 due to the additional

variables coming from the bi-directional transmission.

For ZF-based design (OW), by using ZF beamforming at the

relays, the number of real variables in an SOCP approximation

is (10K+5L+2−2K2) and the number of conic constraints

is (9K + 5L). Hence the worst case complexity estimate is

O
(
(9K+5L)0.5(10K+5L−2K2)3

)
. Similarly, for ZF-based

design (TW), an SOCP approximation includes (19K +5L+
2−2K2) real variables and (14K+5L) conic constraints. So,

the complexity is O
(
(14K + 5L)0.5(19K + 5L− 2K2)3

)
.

From the above complexity estimates, it is expected that

computational complexity in an iteration of ZF-based design

(OW) and ZF-based design (TW) are lower than that of EEF-

OW and EEF-TW, respectively. This point will be numerically

elaborated in Table III.

VI. NUMERICAL RESULTS

In this section, we numerically evaluate the proposed meth-

ods. We consider a relay network as depicted in Fig. 1 in which

the distance between two users of each pair is 10 m. The relays

are randomly placed inside the rectangular region formed by

the users {U1k}Kk=1 and {U2k}Kk=1. The exponent path loss

model is used with path loss exponent 3.5. All channels are

Rayleigh fading. Simulation parameters are taken from Table

I, unless stated otherwise. The maximum transmit power is

set to be the same for all users, i.e., P̄ik = P̄ , ∀i, k, which

varies in the experiments. The number of user pairs is K = 3.

Other parameters will be specified in the experiments. In all
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Table I
SIMULATION PARAMETERS

PARAMETERS VALUE PARAMETERS VALUE

Bandwidth 250 kHz User circuit power P idle
ik

= 0.1mW, P act,cir
ik

= 1 mW

Noise power σ2 = σ̃2 = −90 dBm Relay circuit power P R,const
l

= 1 mW

QoS Qik = 0.5 nats/s/Hz Signal processing power [33] ρen
ik

= ρde
ik

= 50 mW/(Gnats/s)

PA model [33]
P̄ R
l

= 33 dBm,
EH model [35]

P̄DC
l

= 24 mW,

ǫik = ǫR
l

= 0.35 cl = 150, dl = 0.014
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Fig. 2. Impact of conic formulation on the convergence behavior of Algorithm
1. We take K = 2, L = 2 and P̄ = 33 dBm.

simulations, the iterative procedures of Algorithms 1 and 2

stop when either the increase in the objective between two

consecutive iterations is less than 10−5 or the number of

iterations exceeds 200. To solve convex problems, we use the

MOSEK [48] and Fmincon solvers in MATLAB environment.

A. Performances of Algorithm 1 (One-Way Relaying)

In the first set of experiments, we study the impact of

conic formulation of (44) on the computational complexity

of Algorithm 1. Fig. 2 shows the convergence behavior of

Algorithm 1 running with the generic convex program (GCP)

and SOCP. Specifically, Fig. 2(a) plots the convergence of the

objective over two channel realizations, and Fig. 2(b) shows

the cumulative distribution functions (CDFs) of the required

number of iterations to converge. Also, we provide the average

total and per-iteration run time of the algorithm with the two

formulations in Table II. We can see in the figure that with the

SOCP, the algorithm converges with more iterations compared

to the GCP. However, as shown in the table, the per-iteration

Table II
AVERAGE PER-ITERATION AND TOTAL SOLVER RUN TIME (IN SECOND) OF

ALGORITHM 1 ADOPTING GCP AND SOCP. WE TAKE K = 2, L = 2 AND

P̄ = 33 DBM.

Solver Fmincon MOSEK

Algorithm1-GCP
Avg. per-iteration run time 49

N/A
Avg. total run time 2.5e3

Algorithm1-SOCP
Avg. per-iteration run time 4.97 0.003

Avg. total run time 220 0.17
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Fig. 3. Impact of approximation functions (27) and DoC on the convergence
of Algorithm 1. We take K = 3, L = 9 and P̄ = 33 dBm.

run time of the SOCP (solver Fmincon) is much smaller than

that of GCP (solver Fmincon), resulting that the total run time

of the algorithm with the SOCP is ten times smaller than that

with the GCP. In addition, the SOCP allows us to use the

more efficient solver MOSEK. With this, the total run time

significantly reduces.

In Fig. 3, we illustrate the effectiveness of (27) in term of

convergence. Particularly, Fig. 3(a) plots the convergence of

Algorithm 1 using the two approximation functions, (27) and

difference-of-convex (DoC) function, over a random channel
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Fig. 4. Achieved EE versus the transmit power P̄ with K = 3 and L = 9.

realization with two different initial points generated ran-

domly. And Fig. 3(b) shows the CDFs of number of iteration

required for convergence. The results clearly demonstrate that

using DoC formulations of bilinear function for the considered

problems is not efficient since the corresponding iterative

procedure only stops by the maximum number of iteration

criteria. This confirms the use of (27).

Fig. 4 depicts the averaged minimum EE performance of

Algorithm 1 as a function of the maximum user power P̄ .

For comparison purpose, we also provide the performance of

three baseline schemes: in the first scheme, namely ‘Baseline

1-OW’, the transmit power of the users are fixed at P̄ ; in the

second scheme, namely ‘Baseline 2-OW’, EH time is fixed

as τ = 1
3 ; in the third scheme, namely ‘Baseline3 -OW’,

the users’ transmit power and EH time are fixed at P̄ and

τ = 1
3 , respectively. For the three baseline schemes, it may

happen that feasible resource allocation cannot be obtained

for some channel realizations. Thus, we set the performance

of those infeasible channels as zero. The first observation

is that the performance of Algorithm 1 decreases when P̄
increases. This result can be explained as follows. In an

EE problem, the transmit power may be smaller than the

threshold, especially when the threshold is relatively large.

For this case, increasing P̄ brings no benefit to the optimizing

of the transmit power. On the other hand, as shown in (8),

both P̄ and the optimized transmit power influence the PA

efficiency. And increasing P̄ reduces the PA efficiency, leading

to more amount of energy consumed at the PA as can be seen

in (9). Another interesting observation is that the EEs of the

three baseline schemes first increase, and then decrease as P̄
increases. The reason is that the probabilities of infeasibility

of these schemes are high when P̄ is small. When P̄ becomes

larger, the infeasibility probabilities are smaller leading to the

improved performances. When the probabilities of infeasibility

are small enough, further increasing P̄ leads to the degraded

performances due to the decrease of PA efficiency. As ex-

pected, our proposed scheme outperforms the baseline ones.

In Fig. 5, we show the impacts of PA and EH models on the

minimum EE performance. For this purpose, we consider the

following schemes: the first scheme, named as ‘Baseline 4’,

considers linear model of PA efficiency where the efficiency is

fixed at 0.35. The the second scheme, named as ‘Baseline 5’,
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and L = 9.
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Fig. 6. Achieved minimum EE versus rate-dependent power coefficient ρ̄
with K = 3 and L = 9.

adopts the linear EH model with constant conversion efficiency

0.8. The performances of these schemes are obtained as fol-

lows. First, the design parameters are determined by suitably

modifying Algorithm 1 corresponding to the considered mod-

els. From the achieved values, the minimum EE is recalculated

following the PA and EH models considered in Section II. If

there is infeasibility, the corresponding minimum EE is set

as zero. The figure clearly shows that PA and EH models

have significant influence on the performance. Similarly to

Baselines 1, 2 and 3 (in Fig. 3), the performances of Baseline

4 and Baseline 5 are inferior when P̄ is small due to high

probability of infeasibility. The performance degradations of

Baselines 4 and 5 are mainly because of the mismatch between

the baseline schemes and the realistic models. The results

again confirm the validity of our proposed scheme.

To investigate the impacts of rate-dependent signal process-

ing power (RSPP) on the minimum EE performance, we let

the rate-dependent-power coefficients in each pair be different

from that of other pairs by simply setting as ρen
1k = ρde

1k = ωkρ̄
where ωk = k, and plot the performance as a function of ρ̄ in

Fig. 6. Here, the compared scheme, namely ‘Baseline 6’, takes

ρen
ik = ρde

ik = 0, and its performance is obtained similarly as

that of Baseline 4 and Baseline 5 (in Fig. 5). We observe

that RSPP has insignificant influence on the performance

when its coefficients are small. However, when the coefficients

becomes larger, the gap between Algorithm 1 and Baseline 6

is remarkable.

Fig. 7 shows the EE fairness among user pairs versus



13

30 (dBm) 33 (dBm) 36 (dBm)
0

0.5

1

1.5

2
A

v
g
.

p
er

-u
se

r-
p
ai

r
E

E
(n

at
s/

s/
J) User pair-1 User pair-2 User pair-3

(a) Average individual EE of user pairs.

0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Fairness index

C
D

F

P̄ = 30 (dBm)

P̄ = 33 (dBm)

P̄ = 36 (dBm)

(b) CDF of Jain’s fairness index.

Fig. 7. EE fairness among the user pairs achieved by Algorithm 1 with
K = 3, and L = 12.

different values of P̄ . In particular, the average individual

EE of the user pairs is plotted in Fig. 7(a), and the CDFs

of Jain’s fairness index [49]6 are shown in Fig. 7(b). It can be

observed that the achieved EE is relatively balanced among

all user pairs. On the other hand, the algorithm achieves

absolute fairness in more than 90% of channel realizations

in all considered cases of P̄ .

B. Performances of Algorithm 2 (Two-Way Relaying)

In Fig. 8, we evaluate the performances of Algorithm 2

in terms of convergence and minimum EE. Specifically, Fig.

8(a) plots the convergence behavior of the algorithm over a

random channel realization with two different initial points

also generated randomly. Compared to Algorithm 1, Algorithm

2 likely requires more iterations to converge. This can be

intuitively explained by the inter-pair interference in two-way

relaying systems which is more difficult to manage than that in

one-way relaying systems due to the bi-directional transmis-

sion. Fig. 8(b) illustrates the average achieved minimum EE

of Algorithm 2 versus the maximum transmit power P̄ . We

compare Algorithm 2 with the three schemes, Baseline 1-TW,

Baseline 2-TW and Baseline 3-TW which are set up similarly

to Baseline 1-OW, Baseline 2-OW and Baseline 3-OW in Fig.

6According to [49], let us denote [EE∗

1, . . .EE∗

K
] as the individual EEs of

the user pairs, then the fairness index is given as: fairness =

(∑K
k=1 EE∗

k

)2

K
∑K

k=1
(EE∗

k
)2

.

Obviously, when EE∗

1 = . . . = EE∗

K
, fairness = 1 which implies an absolute

fairness.
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Fig. 8. Performances of Algorithm 2 with L = 12.

3. Again, we observe that the proposed scheme outperforms

the others. On the other hand, for Algorithm 2, we can see

that in the region of limited user power, the EE increases when

P̄ increases. This is because the effect of the gain from the

additional power resource is stronger than that of the decrease

because of PA efficiency. When P̄ is large, an increase of P̄
has insufficient influence, and thus the performance reduces

with P̄ .

In Fig. 9, we plot the individual EE performances of all

user pairs (Fig. 9(a)) and the CDFs of fairness index (Fig.

9(b)) versus different value of P̄ . Similar to the observation

in Fig. 7, the proposed EE method for two-way relaying is

able to maintain the good EE fairness among all user pairs.

C. Performance of ZF-Based Designs

In the following set of numerical experiments, we inves-

tigate the performances of ZF-based designs (presented in

Section IV) in terms of the minimum EE and computational

complexity.

Fig. 10 shows the minimum EE performances of the consid-

ered schemes. In particular, Fig. 10(a) plots the performances

of Algorithm 1 and ZF-based design (OW) in the one-way

relaying system, while Fig. 10(b) plots the performances

of Algorithm 2 and ZF-based design (TW) in the two-way

relaying system. We can observe that the performances of

ZF-based schemes are inferior to Algorithms 1 and 2 when

L is small, and comparable, when L is sufficiently large.



14

Table III
SOLVER RUN TIME (IN SECONDS) FOR ALGORITHMS 1, 2, AND THE ZF-BASED SCHEMES WITH K = 3 AND P̄ = 33 DBM.

L = 7 L = 8 L = 9 L = 13 L = 14 L = 15

Per-iteration run time
Algorithm 1 0.039 0.050 0.056 Algorithm 2 0.12 0.14 0.16

ZF-based (OW) 0.019 0.028 0.037 ZF-based (TW) 0.021 0.026 0.030

Total run time
Algorithm 1 2.24 2.53 2.40 Algorithm 2 9.97 10.16 10.36

ZF-based (OW) 0.56 0.82 1.08 ZF-based (TW) 0.96 1.16 1.28
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Fig. 9. EE fairness among the user pairs achieved by Algorithm 2 with K = 3
and L = 12.

The results are because the ZF beamforming needs a certain

number of relays to form the null space.

To investigate the computational complexity of ZF-based

schemes, we plot in Fig. 11 the CDFs of the required number

of iterations for convergence of the considered schemes, and

provide the corresponding solver running time in Table 2. It

can be observed that the ZF-based schemes require smaller

numbers of iterations to converge compared to Algorithms

1 and 2. In addition, the solver requires less time to solve

convex subproblems in ZF-based schemes. Consequently, the

total running time of the ZF-based schemes is remarkably

smaller than that of Algorithms 1 and 2. Combining with the

results in Fig. 10, we can conclude that, when L is large,

efficient solutions can be achieved with low computational cost

by using the ZF-based schemes.

VII. CONCLUSION

We studied a multipair relay system where the relays

harvest energy from user RF signals. We considered an energy

consumption model, which accounts various realistic aspects

such as rate-dependent signal processing power, dynamic

27 30 33 36 39

0.6

1

1.4

1.8

L = 9

L = 7

P̄ (dBm)

A
ch

ie
v
ed

m
in

im
u
m

E
E

(n
at

s/
s/

J) Algorithm 1

ZF-based design (OW)

(a) Average minimum EE of Algorithm 1 and ZF-based scheme
in the one-way relaying system.

27 30 33 36 39

0.6

1

L = 13

L = 15

P̄ (dBm)

A
ch

ie
v
ed

m
in

im
u
m

E
E

(n
at

s/
s/

J) Algorithm 2

ZF-based design (TW)

(b) Average minimum EE of Algorithm 2 and ZF-based scheme
in the two-way relaying system.

Fig. 10. Average minimum EE performances versus P̄ of Algorithms 1, 2,
and ZF-based schemes.

power amplifier efficiency, and nonlinear EH circuits. We have

investigated the problem of max-min EE fairness among user

pairs by jointly designing the transmit data rate, users’ transmit

power, relays’ processing coefficient, and EH time. For both

one-way and two-way relaying, we have derived iterative pro-

cedures based on the IA optimization framework, where each

iteration only deals with an SOCP. The proposed methods are

provably convergent. In addition, for low-complexity designs,

we have proposed an approach based on a combination of ZF

beamforming and IA. The effectiveness of our approaches has

been demonstrated by the numerical results.

APPENDIX

A. Problem Equivalence

We justify the optimal equivalence between (43) and EEF-

OW as follows. Let us denote ψ∗ as the optimal solution of

(43) and define k̂ , argmaxk∈K{η̂k} where η̂k , ρsp

1k +
P ′

k

r∗1k
+ τ̃∗

r∗1k

(
ε1k√
q∗1k

+ P ′′
k

)
. We remark that constraints in (43e)
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hold with equality at the optimum following the epigraph

transformation. Thus it is sufficient to show that: (i) η̂k̂ is

the optimal solution of (43), i.e., η̂k̂ = η∗, and (ii) (34)

and (6) with respect to user pair k̂ hold with equality at

the optimum. In these regards, (43) and EEF-OW obtain the

same optimal values of (w∗, r∗, τ∗,p∗) as can be seen by

constraints in (43e). Thereby, we achieve fEE,OW

k̂
(τ∗,p∗, r∗) =

(

ρsp

1k̂
+

P ′
k̂

r∗
1k̂

+ τ̃∗

r∗
1k̂

( ε1k̂√
q∗
1k̂

+ P ′′
k̂

))−1

= 1
η∗ which implies the

equivalence between (43) and EEF-OW.

We now show (i). It is immediately seen that (40) holds at

the optimum for k̂ and η̂k̂ = η∗. This is because otherwise

η̂k̂ < η∗ which means that η∗ is not the optimum. Next, we

prove (ii). Let us consider problem (43) and suppose, to the

contrary, that (34) does not hold at the optimum for k̂. Then,

we can scale up r∗
1k̂

by a positive-scaling factor λ > 1 such

that r̂1k̂ , λr∗
1k̂

= log(1+v∗
1k̂
). And, we can easily check that

new value r̂1k is still feasible to (43). However, substituting

r̂1k to (43) results in a strictly smaller objective, i.e., ρ
sp

1k̂
+

P ′
k̂

r̂1k̂
+ τ̃

r̂1k̂

( ε1k̂√
q1k̂

+P ′′
k̂

)
= η̂k < η∗. This contradicts to the fact

η̂k = η∗ at the optimum. Similarly, we can argue that (6) with

respect to k̂ holds with equality at the optimum of EEF-OW.

This accomplishes (ii) and completes the proof.

B. Convexity of Function x2/
√
y

We show that the function is strictly convex over x > 0, y >
0 via the second-order condition. The Hessian of the function

is A =
[

2/
√

y −x/y3/2

−x/y3/2 3x2/4y5/2

]

. Then we have

[v1 v2]A[v1 v2]
T =

2v21√
y
− 2xv1v2

y3/2
+

3x2v22
4y5/2

=
2√
y
(v1 −

xv2
2y

)2 +
x2v21
4y5/2

> 0

for all non-zero vector [v1 v2], i.e., A is positive definite.

It is interesting that the constraint x2/
√
y ≤ t can be

equivalently represented by two SOCs as

x2/
√
y ≤ t ⇔

{

‖[2x, t− v]‖2 ≤ t+ v

‖[2y, v − 1]‖2 ≤ v + 1
.
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