
Noname manuscript No.
(will be inserted by the editor)

Parallel Digital Predistortion Design on Mobile GPU and
Embedded Multicore CPU for Mobile Transmitters

Kaipeng Li · Amanullah Ghazi · Chance Tarver · Jani Boutellier ·
Mahmoud Abdelaziz · Lauri Anttila · Markku Juntti · Mikko Valkama ·
Joseph R. Cavallaro

Received: date / Accepted: date

Abstract Digital predistortion (DPD) is a widely

adopted baseband processing technique in current ra-

dio transmitters. While DPD can effectively suppress

unwanted spurious spectrum emissions stemming from

imperfections of analog RF and baseband electronics, it

also introduces extra processing complexity and poses

challenges on efficient and flexible implementations, es-

pecially for mobile cellular transmitters, considering their

limited computing power compared to basestations. In

this paper, we present high data rate implementations

of broadband DPD on modern embedded processors,

such as mobile GPU and multicore CPU, by taking ad-

vantage of emerging parallel computing techniques for

exploiting their computing resources. We further verify

the suppression effect of DPD experimentally on real

radio hardware platforms. Performance evaluation re-

sults of our DPD design demonstrate the high efficacy

of modern general purpose mobile processors on accel-

erating DPD processing for a mobile transmitter.

Keywords Digital Predistortion · Software-defined

Radio · Mobile SoC · CUDA · NEON SIMD

Kaipeng Li, Chance Tarver and Joseph R. Cavallaro
Department of Electrical and Computer Engineering
Rice University, Houston, TX, 77005, USA
E-mail: {kl33,cat12,cavallar}@rice.edu

Amanullah Ghazi, Jani Boutellier and Markku Juntti
Department of Computer Science and Engineering
University of Oulu, Finland

Mahmoud Abdelaziz, Lauri Anttila and Mikko Valkama
Department of Electronics and Communication Engineering
Tampere University of Technology, Finland

1 Introduction

During the development of low cost and efficient radio

transceivers, direct conversion radio architecture, which

relies on up-conversion and down-conversion of com-

plex in-phase and quadrature (I/Q) signals, becomes

popular in recent years [1], while entailing various im-

pairments of the transceiver. Specifically, the imper-

fections of analog RF and digital baseband circuits of

such transceivers can cause issues such as power ampli-

fier (PA) nonlinearities, I/Q imbalance, local oscillator

(LO) leakage, and so on. With the current trend on re-

alizing massive multiple-input multiple-output systems

[2], impairments of each antenna may aggregate and

even lead to severe signal distortion effects.

At transmitter side, to achieve higher power effi-
ciency and better signal coverage, the power amplifier

(PA) is usually driven to its saturation region, where

the nonlinearities are more pronounced, resulting in

intermodulation distortion (IMD) and spurious spec-

trum emissions. I/Q imbalance and LO leakage can

pose extra IMD terms at PA output. Therefore, prob-

lems such as violation of spurious emission limit for

non-contiguous carrier aggregation (CA) transmission

in 3GPP LTE-Advanced [3], or violation of interfer-

ence constraint between secondary user and primary

user in cognitive radio systems [4] will arise if the spuri-

ous components are not well controlled. To solve above

problems, people can simply resort to backing off the

transmit power, which is called Maximum Power Re-

duction (MPR) [5] in the context of 3GPP LTE uplink,

to satisfy the limitation on spurious emission, while sac-

rificing the transmit efficiency and distance.

Digital predistortion (DPD) technique is proposed

and adopted recently as an alternative solution for spu-

rious emission suppression by predistorting the I/Q sam-

ar
X

iv
:1

61
2.

09
00

1v
1

 [
cs

.D
C

]
 2

8
D

ec
 2

01
6

2 Kaipeng Li et al.

ples at baseband before passing through the PA, so that

harmful effects of transmitter impairments at the PA

output can be mitigated [6]. The parameters of a DPD

algorithm will significantly affect the suppression re-

sults, and therefore, they should be well trained and

estimated under certain transmitter circuit specifica-

tions and transmission environments. To deal with dis-

tortion effects of PA nonlinearities, I/Q imbalance and

LO leakage all together, joint PA and I/Q modulator

calibration and DPD parameter estimation are shown

to be a promising approach for achieving effective DPD

suppression without extra RF hardware [7,8].

Applying DPD on practical transmitters demands

efficient and flexible implementations to meet the data

rate requirement of modern wireless communication stan-

dards and to adapt to various transmit scenarios, such

as single LTE carrier or non-contiguous LTE compo-

nent carriers (CC). Although DPD is now a de-facto

solution for modern basestations in cellular radio net-

works, the design and implementation of DPD on mo-

bile transmitters have not been fully explored. With

the increasing computing power of modern embedded

processors, DPD designs for mobile transmitter can be

feasible and expected to deliver high performance.

Over the past decade, mobile computing techniques

and mobile applications have evolved rapidly thanks to

the enhanced computing capability and portability of

mobile system-on-chip (SoC) [9]. Modern mobile SoC

chipset usually integrates various embedded processors,

such as multicore CPU, mobile GPU, and other applica-

tion specific coprocessors. Specifically, general purpose

computing on multicore CPU and GPU [10] has be-

come a new trend for accelerating signal processing and

data analysis applications, such as computer vision [11],

machine learning [12] and wireless communication [13,

14], with the development of parallel programming tools

and models, such as pthreads and OpenMP for multi-

core CPU, or CUDA [15] and OpenCL [16] for mobile

GPU, which provide higher facilitation and flexibility

on exploiting the parallel architecture and numerous

computing resources than conventional hardware such

as FPGAs, DSPs and ASICs.

There are some previous work of DPD implementa-

tions on FPGA [17], and transport trigger architecture

(TTA) [18], which is an application-specific architec-

ture like ASIC. Although those implementations can

achieve good data rate performance and energy effi-

ciency, they lack the design flexibility to easily recon-

figure adaptive DPD parameters. The efforts to ap-

ply new parameters, recompile and resynthesis those

designs are not trivial. In contrast, a DPD design on

general purpose processor, such as CPU or GPU, can

achieve comparable data rate performance if their com-

puting resources are fully exploited, and provide high

design flexibility and portability using high-level par-

allel programming languages, mature coding tools and

short recompilation and rebuilding time. However, few

DPD implementations have been done on such general

purpose processors, especially mobile processors consid-

ering our DPD design targets mobile transmitters. Our

previous work [19], to the best of the authors’ knowl-

edge, is the first CUDA-based DPD implementation on

GPU, and this paper extends from our previous mobile

GPU based DPD implementation with further design

optimization and thus higher data rate, and details an-

other embedded CPU-based design for comparison. [20]

also proposes an alternative implementation on mobile

GPU using OpenCL.

Contributions: In this paper, we are motivated to de-

velop high performance DPD implementations target-

ing mobile transmitters by exploring the emerging par-

allel programming techniques and computing capability

of modern parallel mobile processors. Specifically, on an

ARM multicore CPU, we implement the DPD design

using NEON single-instruction multiple-data (SIMD)

intrinsics [21], while on a mobile GPU, we provide an

alternative DPD implementation based on CUDA. Fur-

thermore, we integrate our DPD implementations on

a novel software-defined mobile transmitter platform

built by Jetson embedded development board [22,23]

and WARP v3 radio board [24], and experimentally

test the DPD suppression effect with real transmitter

radio hardware. We benchmark the data rate perfor-

mance of our two DPD implementations and monitor

the PA outputs with a spectrum analyzer. Our results

show the feasibility and efficiency for driving DPD on

mobile transmitters by modern embedded processors,

generate useful benchmark results on profiling mobile

GPU and CPU, and serve as case studies for future

mobile signal processing applications in the context of

wireless communication and Internet of things.

The paper is organized as follows. Section 2 overviews

the DPD algorithm for implementation. Section 3 de-

scribes the implementation details and optimization strate-

gies of DPD on both mobile GPU and multicore CPU.

Section 4 demonstrates the DPD functionality exper-

imentally on a real mobile transmitter platform. We

show the performance evaluation results in Section 5

and conclude in Section 6.

2 Overview of DPD Algorithms

We focus on a broadband DPD algorithm which per-

forms joint mitigation of power amplifier and I/Q mod-

ulator impairments [7], which is shown to deliver effec-

Parallel Digital Predistortion Design on Mobile GPU and Embedded Multicore CPU for Mobile Transmitters 3

()1ψ

()Pψ

()1H z

()PH z

()1ψ

()Qψ

()1H z

()QH z

Main branch

Conjugate branch
1,1,…

C

nx nz
DPD(·)

APH DPD

(a) APH DPD structure

(1) ()iDPD −

 copy of
()PA

1
G

() ()iDPD

-
()i
ms

()i
my ()i

mz

()i
mz()i

merr

(b) Indirect learning architecture

Fig. 1: DPD architecture

tive suppression effect on unwanted spectrum emissions

according to simulation results. This algorithm includes

two stages: a parameter estimation stage to generate

DPD filter coefficients based on iterative training, and a

predistortion stage for applying finalized DPD on actual

streaming transmit samples. Compared to typical dig-

ital predistorters which require concatenated step-by-

step processing for PA predistortion, LO leakage com-

pensation, and I/Q mismatch predistortion with corre-

sponding parameter estimation separately, the key idea

of this joint mitigation based DPD approach is that it

integrates the filtering operations in both PA predis-

torter and I/Q mismatch predistorter into an equiva-

lent combined filtering operation, and regards the LO

leakage compensation as an additional filter coefficient,

so that the parameter estimation, i.e, the filter coeffi-

cient estimation, of DPD can be performed jointly as

an one-shot estimation.

2.1 DPD Processing Structure

Figure 1(a) shows the internal structure of the predis-

torter, the so-called augmented parallel Hammerstein

(APH) structure. Consider that we have N modulated

I/Q samples x0, x1, · · · , xN−1 to transmit. Instead of di-

rectly passing them through the PA and radio hardware

to the air, we can first send them as the input to the

well-trained predistorter for necessary DPD processing,

so that the predistorted samples z0, z1, · · · , zN−1 at the

DPD output can be finally transmitted with compen-

sation of transmitter impairments. The input-output

relationship of the predistorter on a certain sample zn
and xn (n = 0, 1, · · · , N − 1) can be formulated as:

zn = DPD(xn)

=
∑

p ∈ IP

Lp∑
k = 0

hp,kψp(xn−k)

+
∑

q ∈ IQ

Lq∑
k = 0

h̄q,kψ̄q(xn−k) + c

(1)

According to the DPD structure described in Fig-

ure 1(a) and Equation (1), the APH DPD processing

contains three major steps: polynomial computation de-

noted as ψ(·) indicating nonlinearity, filtering compu-

tation denoted as H(·), and accumulation of filtering

results and LO leakage compensation c.

Specifically, ψp(xn) =
∑
m∈Ip um,p|xn|

p−1xn (p ∈
IP) and ψ̄q(xn) = ψq(x

∗
n) =

∑
m∈Iq um,q|xn|

q−1x∗n (q ∈
IQ) are the polynomial of direct signal xn for pth main

branch and the polynomial of conjugate signal x∗n for

qth conjugate branch, respectively. IP and IQ denote

the set of used polynomial orders in main and conju-

gate branch, respectively. For example, if only odd order

polynomials are considered, then IP = {1, 3, 5, · · · , P}
and IQ = {1, 3, 5, · · · , Q}, where P and Q indicate the

highest polynomial orders in the main branch and con-

jugate branch, respectively. Typically, P is larger than

Q considering the conjugate signal caused by I/Q imbal-

ance is usually weaker than direct signal, for example,

P = 5 and Q = 3. Ip and Iq are the subset of IP and

IQ, containing polynomial orders up to p and q, respec-

tively, and um,p and um,q are corresponding coefficients

of statistically orthogonal polynomials, which are pre-

calculated according to [25]. hp,k and h̄q,k denote the

kth filter coefficient of FIR filter Hp(z) with Lp taps and

FIR filter Hq(z) with Lq taps, respectively. Those filter

4 Kaipeng Li et al.

coefficients as well as LO leakage compensation c are

DPD parameters to be estimated during the iterative

training stage before they are finally used for effective

predistortion processing on actual payload samples.

2.2 DPD Parameter Estimation

For DPD parameter estimation, we pack those filter

coefficients into vectors hp=[hp,0 hp,1 · · ·hp,Lp−1]T and

h̄q=[h̄q,0 h̄q,1 · · · h̄q,Lq−1]T , and then stack hp and hq

for all p and q as well as parameter c as a single coeffi-

cient vector h=[hT
1 , hT

3 · · · hT
P h̄

T
1 h̄

T
3 · · · h̄

T
Q c]T . In

fact, the parameter estimation of DPD is to calculate

the vector h which can lead to optimal or near optimal

DPD suppression effect at PA output for transmit sam-

ples, and can be realized by indirect learning architec-

ture (ILA) [26]. As shown in Figure 1(b), ILA performs

iterative training in a feedback loop. For a certain ith

iteration, M training samples y
(i)
0 , y

(i)
1 , y

(i)
2 · · · y

(i)
M−1 are

prepared as the input of the DPD function ˆDPD
(i−1)

(·),
which is estimated from the (i-1)th iteration, and the

DPD output samples z
(i)
0 , z

(i)
1 , z

(i)
2 · · · z

(i)
M−1, where z

(i)
m =

ˆDPD
(i−1)

(y
(i)
m) , are sent to the PA (z

(1)
m = y

(1)
m in the

first iteration). In the feedback loop, we extract the PA

output samples s
(i)
0 , s

(i)
1 , s

(i)
2 · · · s

(i)
M−1 scaled by PA gain

G and estimate the parameters for ˆDPD
(i)

by least

squares (LS) estimation. Specifically, the LS estimation

gives ĥ (i)=(ΨHΨ)
−1

ΨHz(i) to minimize the sum of

squared errors between current reference DPD output

z(i) in the TX path and to-be-estimated DPD output

ẑ(i) in the feedback path. Here, ΨH is the conjugate

transpose of Ψ; z(i)=Ψĥ
(i−1)

, where ĥ
(i−1)

indicates

the estimated h from (i-1)th iteration and Ψ is the basis

matrix defined as Ψ=[Ψ1Ψ3 · · ·ΨPΨ1Ψ3 · · ·ΨQ 1]T .

Element Ψq=Ψ∗q , and Ψp (or Ψ∗q) is the element ma-

trix, defined as:

Ψp =

ψp(y0) 0 0 · · · 0
ψp(y1) ψp(y0) 0 · · · 0
ψp(y2) ψp(y1) ψp(y0) · · · 0
· · · · · · · · · · · · 0

ψp(yM−1) ψp(yM−2) ψp(yM−3) · · · ψp(yM−Lp)
0 ψp(yM−1) ψp(yM−2) · · · ψp(yM−Lp + 1)
0 0 ψp(yM−1) · · · ψp(yM−Lp + 2)

.

.

.
.
.
.

.

.

.
.
.
.

0 0 0 · · · ψp(yM−1)

.

(2)

For (i + 1)th iteration, we can insert the estimated

ˆDPD
(i)

(·) in the TX path and perform similar esti-

mation, and usually 1-3 iterations are enough for the

convergence of the final parameter h, which is to be

used in the actual predistortion stage.

With fixed PA and radio hardware, and relatively

static environment, the DPD parameters can be trained

and estimated offline and used for a long period without

the need of retraining, while the actual predistortion

with finalized filter coefficients, as structured in Figure

1(a), demands high data rate for streaming transmit

samples. Therefore, in the following section, we focus

on implementation details of the finalized digital predis-

torter on mobile processors, assuming that the training

process has been completed offline and the final DPD

parameters are ready to use for the implementations.

Once a retraining is performed, we can simply reconfig-

ure the values of DPD parameters in design functions

and rebuild the design. We note, however, if retraining

is frequently needed, for example, in an unusually fluc-

tuating environment, we can also implement the train-

ing part on mobile processors to realize online training.

We can use similar parallel programming techniques de-

tailed in the following, while introducing extra compu-

tation complexity and processing latency for training,

which we leave for future work to build a more complete

software-defined mobile terminal.

3 DPD Implementation on Parallel Mobile

Processors

In this section, we detail the DPD implementation on

mobile processors targeting mobile transmitters. To map

the DPD algorithm on parallel processors efficiently, we

need to first explore the inherent data parallelism and

data dependencies in the DPD algorithm. We then uti-

lize a particular vectorization scheme for a specific pro-

cessor, for example, GPU or multicore CPU, to realize

the parallel data computation, and perform necessary

but low-overhead communication to handle data depen-

dencies. In Algorithm 1, we summarize the DPD pro-

cessing algorithm to be implemented. We show specifi-

cations of our experimental mobile processors in Section

3.1, discuss the data parallelism in the DPD algorithm

and vectorization schemes on mobile processors in Sec-

tion 3.2, and describe how we handle the data depen-

dencies and data communications efficiently by various

optimization strategies in Section 3.3.

3.1 Experimental Embedded Platform

We implement the predistorter on mobile GPU using

CUDA, and on embedded ARM multicore CPU based

on NEON SIMD intrinsics with OpenMP multi-threading.

We benchmark our GPU and CPU implementations on

two generation of Nvidia Jetson development boards,

i.e, Jetson TK1 and TX1, for performance comparison.

Parallel Digital Predistortion Design on Mobile GPU and Embedded Multicore CPU for Mobile Transmitters 5

Algorithm 1 DPD Processing Algorithm

1: Input:
2: xn, n = 0, 1, ..., N − 1; c;
3: hp,k, p ∈ IP , k = 0, 1, ..., Lp − 1;
4: hq,k, p ∈ IQ, k = 0, 1, ..., Lq − 1;
5: Polynomial Computation:
6: ψp(xn) =

∑
m∈Ip

um,p|xn|p−1xn (p ∈ IP)

7: ψ̄q(xn) = ψq(x∗n) =
∑

m∈Iq
um,q|xn|q−1x∗n (q ∈ IQ)

8: (um,p, um,q are pre-calculated poly. coefficients)
9: Filtering Computation:

10: fp(xn) =
∑Lp

k = 0 hp,kψp(xn−k)

11: f̄q(xn) =
∑Lq

k = 0 h̄q,kψ̄q(xn−k)
12: Accumulation Computation:
13: zn =

∑
p ∈ IP

fp(xn) +
∑

q ∈ IQ
f̄q(xn) + c

14: Output:
15: zn, n = 0, 1, ..., N − 1

Table 1: Specifications of the implementation platforms

Jetson TK1 Jetson TX1

SoC 28nm Tegra K1 20nm Tegra X1

CPU
quad-core Cortex-A15 quad-core Cortex-A57

32-bit ARMv7 64-bit ARMv8
GPU 192-core Kepler GPU 256-core Maxwell GPU

Coding CUDA for GPU / NEON+OpenMP for CPU
Compiler nvcc -O3 for GPU / GCC -O3 for CPU

OS Linux for Tegra (L4T)

The specifications of the implementation platforms are

listed in Table 1.

3.2 Data Parallelism Exploration

3.2.1 Parallelism Analysis

According to Figure 1(a) and Algorithm 1, to obtain

a certain predistorted output sample zn from a certain

input sample xn, we have three major steps: (1)poly-

nomial computation: calculate the polynomial results

at each of P main branches and Q conjugate branches

for a window of Lp or Lq input samples, respectively;

(2)filtering computation: calculate the filtering result

for each branch (filter) based on the estimated filter co-

efficient and the corresponding window of polynomial

results; (3)accumulation: accumulate the filtering result

from each branch as well as the LO leakage compensa-

tion c to generate the final output zn. Assume we have

N input samples for DPD processing. In step (1), for a

certain input sample xn, the polynomial computation

for higher order is dependent on lower order polynomial

results. Although we can still calculate the polynomials

for each order independently on a certain xn, a more ef-

ficient way to avoid redundant computations is to calcu-

late the polynomial from low order to high order in se-

rial for both main branch and conjugate branch, so that

the only data parallelism in this step is that we can cal-

𝑥0 𝑥1 𝑥𝑁−1

𝜓1
(𝑥𝑁−1)

𝜓𝑃
(𝑥𝑁−1)

𝜓�1
(𝑥𝑁−1)

𝜓�𝑄
(𝑥𝑁−1)

𝜓1
(𝑥0)

𝜓𝑃
(𝑥0)

𝜓�1
(𝑥0)

𝜓�𝑄
(𝑥0)

𝜓1
(𝑥1)

𝜓𝑃
(𝑥1)

𝜓�1
(𝑥1)

𝜓�𝑄
(𝑥1)

𝒄𝒐𝒏𝒗 ℎ,𝜓
𝐷𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑖𝑒𝑠 𝑎𝑐𝑟𝑜𝑠𝑠
𝒔𝒂𝒎𝒑𝒍𝒆 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛

𝑓1
(𝑥𝑁−1)

𝑓𝑃
(𝑥𝑁−1)

𝑓1̅
(𝑥𝑁−1)

𝑓�̅�
(𝑥𝑁−1)

𝑓1
(𝑥0)

𝑓𝑃
(𝑥0)

𝑓1̅
(𝑥0)

𝑓�̅�
(𝑥0)

𝑓1
(𝑥1)

𝑓𝑃
(𝑥1)

𝑓1̅
(𝑥1)

𝑓�̅�
(𝑥1)

∑ ∑ ∑

𝑧0 𝑧1 𝑧𝑁−1

... ...
...

... ...
...

... ...
...

...
...

...

𝑃 + 1
2

𝑚𝑎𝑖𝑛
𝑏𝑟𝑎𝑛𝑐ℎ𝑒𝑠

𝑄 + 1
2

𝑐𝑜𝑛𝑗.
𝑏𝑟𝑎𝑛𝑐ℎ𝑒𝑠

𝑠𝑎𝑚𝑝.
𝑑𝑖𝑚.

𝑓𝑖𝑙𝑡𝑒𝑟
𝑑𝑖𝑚.

Input

(1)Poly.

(2)Filtering

(3)Accum.

Output

𝑠𝑎𝑚𝑝.
𝑑𝑖𝑚.

𝑠𝑎𝑚𝑝.
𝑑𝑖𝑚.

Fig. 2: Data flow and parallelism

culate polynomials for each sample xn in parallel with

total parallelism degree of N across sample dimension.

In step (2), since we already have all the polynomial re-

sults, when we calculate the filtering result for a certain

branch p or q, we can extract the corresponding win-

dow of polynomial results from step (1), for example,

ψp(xn−Lp+1), ψp(xn−Lp+2), · · · , ψp(xn−1), ψp(xn) for

branch p corresponding to input sample xn. Therefore,

for filtering computation, we introduce another parallel

dimension and have even higher data parallelism: we

can calculate the filtering result for each branch (filter)

across filter dimension and for each sample across sam-

ple dimension in parallel with total parallelism degree

N×R, where R = (P+1)/2+(Q+1)/2 indicates the to-

tal number of branches (filters) in DPD. In step (3), all

the filtering results for a certain sample xn need to be

reduced to one accumulation in serial, but we can cal-

culate the accumulation for each sample xn in parallel

with parallelism degree of N across sample dimension.

Figure 2 visualizes the data flow and parallelism for

each step discussed above.

6 Kaipeng Li et al.

3.2.2 Data Vectorization on GPU

On the GPU, we implement the computing flow by

CUDA kernel functions, and invoke the kernel with

large number of parallel threads to perform the com-

putation in parallel based on single instruction multi-

ple threads (SIMT) execution model. In our previous

work [19], we have designed three kernels to perform

polynomial computation, filtering computation and ac-

cumulation, which are invoked with N , NR, N threads,

respectively, indicating their parallelism degrees. How-

ever, in this way, we need to share intermediate results

between those kernels using GPU global memory, which

will pose significant memory access overhead. Alterna-

tively, we can combine those kernels into a single kernel

invoked with N threads to perform the DPD process-

ing under a per-sample basis, while wasting some par-

allelism degree for the filtering computation. In fact,

when we have a large number of N samples to process

with N threads, the GPU performance will saturate

with high occupancy of cores, a larger NR parallelism

will benefit little. However, a combined kernel can ef-

fectively reduce the memory access overhead by shar-

ing the intermediate results via faster shared memory

or even local registers, which is shown to achieve a per-

formance gain for the whole DPD design.

3.2.3 Data Vectorization on multicore CPU

On the multicore CPU, we can realize the data paral-

lelism by two-level vectorization: (1)thread level: since

there are four high-power cores on the ARM CPU of

Jetson TK1 and Jetson TX1, we can generate four threads

using OpenMP, each controlling the DPD processing for

one fourth of the total workload running on each core;

(2)instruction level: NEON SIMD instructions, an ad-

vanced SIMD extension in ARM processors, operating

on 64-bit doubleword or 128-bit quadword NEON vec-

tor registers, are supported in the ARMv7 and ARMv8

architecture. For using NEON SIMD instructions, we

can either code low level NEON assembly instructions

with manually controlled instruction selection and schedul-

ing, or code high-level NEON intrinsics which serve

as function calls of C/C++ programs and leave the

instruction selection and scheduling to the compiler.

Here, in our design, we choose NEON intrinsics con-

sidering the high facilitation on design development,

and high portability for different ARM CPUs, rather

than using NEON assembly, which needs to be specifi-

cally optimized for a certain ARM CPU. The input and

output of a NEON intrinsic function usually require a

special vector data type. We utilize the 128-bit quad-

word registers in the register bank on NEON unit to

represent a vector of four 32-bit floating point elements,

for example, we define the real part or imaginary part

of complex input samples using the float32x4 t data

type of NEON, so that when a compiled NEON instruc-

tion operates on a certain float32x4 t data, it actually

processes four floating point elements in parallel with

the single instruction. For the DPD processing, most of

the computation operations are additions and multipli-

cations, which can be easily realized by vaddq f32 and

vmulq f32 intrinsics, where q indicates 128-bit quad-

word and f32 indicates 32-bit floating point elements in

a vector. Based on such NEON SIMD intrinsics, every

four 32-bit floating point data can be processed together

in parallel under a per-sample basis, on each core con-

trolled by an OpenMP thread, and therefore we have

16 samples in total to process at the same time on the

multicore CPU.

For a certain input sample, while the data depen-

dencies within polynomial computation of different or-

ders and data dependencies for accumulation of differ-

ent branches can be handled simply and efficiently in

serial, the data dependencies within filtering computa-

tion are more tricky, since the polynomial results for a

window of Lp or Lq samples are required, but not only

the polynomials of the current sample. Therefore, when

we process the input samples under a per-sample basis

in parallel, for example, for input sample xn, we need to

explore an efficient way to prepare and extract the nec-

essary window of polynomial results for obtaining the

filtering results indexed by xn. We discuss our strategies

for handling such filtering dependencies in the following

section.

3.3 Memory Access Optimization

To enhance the performance of the DPD design, ef-

ficient memory access needs to be taken care of for

necessary data sharing and communication. On Tegra

SoC, CPU and GPU share a unified device memory,

and have their own local caches and registers. The key

goal for memory access optimization is to resort to the

slow device memory only when necessary, but to exploit

the faster on-chip local caches and near-core registers

for communication as much as possible while carefully

ensuring that we keep their utilization under resource

limitations considering their scarcity.

3.3.1 Zero Copy Access of Device Memory on GPU

On the GPU, since we combine all the DPD processing

computations into a single kernel as discussed before,

we only need to fetch the data from device memory as

DPD input, and store back the processed data to device

Parallel Digital Predistortion Design on Mobile GPU and Embedded Multicore CPU for Mobile Transmitters 7

313029282726 31302928 32 33

28 29

__shuf_up

Thread
1

Thread
2

Thread
3

Thread
4

Thread
5

Thread
6

Thread
26

Thread
27

Thread
28

Thread
29

Thread
30

Thread
31

warp 1 warp 2

var_1

redundant threads

var_1

var_2

a register value

Fig. 3: Warp shuffle

memory as DPD output, and other intermediate results

should be buffered and shared in local caches or regis-

ters. For DPD input and output data, since they should

essentially reside in CPU memory, a conventional way

for GPU to access them is to perform explicit memory

copy from CPU memory to GPU memory for the in-

put and from GPU memory to CPU memory for the

output. Such explicit memory copy will lead to signif-

icant overhead and thus degradation of data rate per-

formance. Usually, on desktop GPU, one can schedule

and pipeline the GPU kernel execution and CPU-GPU

memory copy in multiple streams, so that the CPU-

GPU memory copy latency can be overlapped and the

kernels in multiple streams can also execute concur-

rently to improve performance. Unfortunately, the Jet-

son TK1 or TX1 board, which has only one stream-

ing multiprocessor on chip and a unified memory, cur-

rently does not support multi-stream scheduling. Ac-

tually, considering the CPU and GPU share a unified

on-board physical memory, we can use another strat-

egy, zero copy access [15], to avoid the explicit CPU-

GPU memory copy by mapping the CPU host mem-

ory address to GPU device memory pointer, which can

be then passed to the kernel function. To enable zero

copy access, we should begin with setting device flag by

cudaSetDeviceFlags(cudaDeviceMapHost), and allo-

cate host memory using cudaHostAlloc function call

with special flag cudaHostAllocMapped, and then map

the host memory to GPU device pointer by

cudaHostGetDevicePointer function call. In this way,

the kernel will directly fetch the input from the host

memory which the mapped GPU device pointers point

to and store back the output to the host memory simi-

larly without explicit host-device memory copy. Those

extra configurations and function calls for zero copy

access can be set up at the beginning of the program

before performing any computations, thus pose little

extra overhead on the data rate performance of actual

DPD processing.

For multicore CPU, the memory access is straight-

forward: within a certain core controlled by an OpenMP

thread, we can load a vector containing four 32-bit float-

ing point elements from memory to 128-bit NEON reg-

isters via vld1q f32 SIMD intrinsic and store the out-

put back from NEON registers to memory via vst1q f32

SIMD intrinsic, where flag 1q indicates one 128-bit quad-

word vector.

3.3.2 Inter-thread Communication via Warp Shuffle

on GPU

As discussed in Section 3.2, when we perform DPD

computation for each input sample xn in parallel, we

should be aware of the data dependencies during the

filtering computation: the FIR filter at pth main branch
or qth conjugate branch requires a window of Lp or Lq
polynomial results of both current and previous input

samples. A simple and direct way is to use GPU de-

vice memory which can be accessed by any invoked

thread in any thread block to buffer the intermedi-

ate results, that is, when we complete the polynomial

computations for all samples, we store the polynomial

results back to GPU device memory, and for a cer-

tain FIR filter, for example, the pth main branch fil-

ter when processing xn in thread n, which requires

the polynomial results ψp(xn−Lp+1), ψp(xn−Lp+2), · · · ,
ψp(xn−1), ψp(xn), we extract them again from global

memory within that thread n for the following filtering.

However, this approach will lead to extra memory ac-

cess overhead and competitions. A better way is to use

shared memory, a special L1 cache which can be con-

trolled by the programmer, to store the intermediate

polynomial results which can be accessed by threads

within the same thread block, but it is still far slower

than local registers and can also arise issues such that

8 Kaipeng Li et al.

several adjacent threads compete for a shared polyno-

mial result.

Here, in our design, to achieve optimized data shar-

ing and communication between threads, we utilize warp

shuffle technique, which was introduced in Kepler GPU

[27], to realize direct register-to-register data shuffling

among different threads within a thread warp. Specifi-

cally, we call dest var= shuf up(source var, delta,

warpSize) in a thread to retrieve a certain register

variable source var from the thread whose index is

smaller than the calling thread by a number of delta,

so that the retrieved dest var in the calling thread

can be used for the following computations. warpSize

is a fixed number of 32 reserved by Nvidia. In our

problem, during the filtering computation for a certain

sample xn, we can use such shuf up intrinsic to re-

trieve the polynomial results corresponding to previous

Lp − 1 or Lq − 1 input samples calculated by lower-

indexed near-neighbor threads, for the thread which

controls the DPD processing for current xn. Since that

shuf up can only be used for thread communication

within a warp, the first Lp − 1 or Lq − 1 threads in

a certain warp cannot access all of their required Lp
or Lq polynomial results which may reside in another

warp. To resolve this, we can simply overlap some com-

putations between two neighbor warps with consec-

utive thread index numbers. For example, if we set

Lp = 5, Lq = 5,∀p, q, then the first warp, which in-

cludes 32 threads, will perform the DPD processing for

sample x0 to x31; for the second warp, it will operate

on input samples x28, x29, x30, x31, x32, · · · , x59, where

the processing of x28 to x31 by the first 4 threads in

the second warp is redundant and only for obtaining

the polynomial results required by the shuf up called

from the 5th to 8th threads in that warp. Similarly,

the third warp will operate on sample x56 to x87 with

its first 4 threads as redundant threads. When Lp and

Lq are small, such as 5, the performance gain obtained

from direct register-to-register data shuffle for resolving

dependencies without accessing shared or global mem-

ory is shown to be more significant than some small

overhead introduced by such redundant threads. Fig-

ure 3 shows our warp shuffle approach for achieving

efficient inter-thread communication.

For the estimated filter coefficients, since they are

pre-calculated before DPD processing, we can simply

fetch and store them in the shared memory, so that

all threads within a thread block can access them effi-

ciently for the filtering computation.

0 1 2 3 4 5 6 7

3 4 5 6

v0 v1

vtmp

vextq_f32
(n=3)

Fig. 4: Vector extraction

3.3.3 Inter-vector Data Regrouping via Vector

Extraction on CPU

Similar to the GPU implementation, for the CPU im-

plementation, to avoid unnecessary global memory ac-

cess, we only load the input data from memory be-

fore DPD computation and store back the DPD output

to memory after the computation, but exploit faster

NEON registers and general local registers for buffering

and sharing intermediate results during the computa-

tion.

For the filtering computation which exposes data de-

pendencies on polynomial results of previous samples,

we may simply store the polynomial results of all input

samples back to CPU memory after polynomial compu-

tation, and extract the required window of results for

the following filtering, while sacrificing the performance

from significant global memory access overhead. In fact,

when we have N DPD input samples, instead of gener-

ating N threads to process them all together like GPU,

we have N/4 input samples deployed by OpenMP on

each of the four cores, and process them vector by vec-

tor, each including 4 samples, based on SIMD instruc-

tions, so we need N/16 iterations in serial for complet-

ing the processing of all N/4 samples on each CPU core.

Therefore, in our design, we buffer polynomial results

of one or two previous iterations, which correspond to

polynomial results of previous samples, to NEON reg-

isters as temporary variables, and combine with the

polynomial results in the current iteration to extract

the necessary ones for filtering computation. For exam-

ple, when Lp = 5 and Lq = 5, the first iteration com-

putes the polynomial results at each branch (we omit

the branch index p, q for simplicity) for first four input

samples as a vector v0={ψ(x0), ψ(x1), ψ(x2), ψ(x3)}
by SIMD instructions, and the second iteration com-

putes v1={ψ(x4), ψ(x5), ψ(x6), ψ(x7)}. For processing

input samples x4, x5, x6, x7 in this iteration, at the first

filtering tap, we need to prepare vtmp={ψ(x4), ψ(x5),

ψ(x6), ψ(x7)} interacting with the first filter coefficient

f1={h1, h1, h1, h1}, each element corresponding to each

input, and at the second filtering tap, we need to have

vtmp={ψ(x3), ψ(x4), ψ(x5), ψ(x6)} interacting with

the second filter coefficient f2={h2, h2, h2, h2}, and so

Parallel Digital Predistortion Design on Mobile GPU and Embedded Multicore CPU for Mobile Transmitters 9

Table 2: APH DPD configuration

Parameter Main branch Conjugate branch

Max polynomial order P=5 Q=3
Number of filters 3 2

Taps per filter Lp=5 (for each p) Lq=5 (for each q)

Table 3: Comparison of implementation techniques

Mobile GPU Multicore ARM CPU

Exec. model SIMT SIMD
Data type 32-bit FP 128-bit quadword vector

Vectorization CUDA threads OpenMP+NEON intrinsics
Parallelism N threads 4 threads × 4 samples/vector

Memory access zero copy vld1q f32/vst1q f32

Data Sharing warp shuffle vextq f32

on. Here, vector vtmp in the second iteration can be

extracted from the buffered v0 and current v1 by using

vtmp =vextq f32(v0,v1, n) NEON intrinsic to pack

the lower-end n elements of v1 and the 4 − n higher-

end elements of v0 into vtmp, within NEON registers,

as shown in Figure 4. For larger Lp and Lq, we can

buffer the polynomial results from more previous it-

erations and perform the similar vector extraction to

regroup inter-vector data for filtering computation.

3.4 Design Summary and Comparison

In this part, we summarize and compare the major de-

sign decisions of DPD implementations on mobile GPU

and multicore CPU.

In Table 2, we show a typical configuration of APH

DPD parameters which can achieve good DPD suppres-

sion effect. We use this configuration for the experi-

mental verification and performance benchmark in the

following sections. Considering the reconfigurability of

our implementations, we can easily update those pa-

rameters, for example, with higher order polynomials

and more filter branches, for possible better DPD sup-

pression effect on certain radio hardware and in certain

transmit environment.

In Table 3, we summarize and compare the major

techniques and optimization strategies for enhancing

the performance of our GPU and CPU implementa-

tions. While using different programming models and

schemes, they share the same goal to exploit the data

parallelism and to facilitate the data access and com-

munication for better performance.

Our current embedded DPD designs are targeting

mobile transmitters, however, we emphasize that our

implementations are portable and scalable to desktop

GPUs and CPUs if we want to apply DPD at basesta-

tions. On desktop GPUs which support CUDA, we can

invoke even more threads and thread-blocks to realize

data parallelism on thousands of CUDA cores, and can

Jetson board WARP board

Mobile Transmitter

Ethernet Cable

Power Supply

Spectrum Analyzer

Experimental Platform

RFA
RFB

Fig. 5: Experimental setup

perform multi-stream scheduling for pipelining CPU-

GPU memory copy and kernel execution as an alter-

native technique of zero copy to resolve memory copy

overhead. Our previous work [19] has discussed DPD

performance on desktop GPUs as reference. On desk-

top CPUs, we can take advantage of even longer SIMD

instructions, such as SSE and AVX, with 256-bit or

512-bit registers, and generate more OpenMP threads

on more CPU cores for higher performance.

4 Experimental Verification of DPD

Functionality

To verify the DPD suppression effect on spurious spec-

trum emissions experimentally, we stream the DPD out-

put samples generated from Jetson board to WARP v3

radio board, which is equipped with MAX2829 transceiver

and Anadigics AWL6951 PA, and monitor the PA out-

put by an Agilent E4404B spectrum analyzer.

Figure 5 shows the experimental setups, where we

connect a Jetson board to WARP board via Ethernet

cable as a software-defined mobile transmitter, and the

radio output is sent to the spectrum analyzer via a coax-

ial cable. Here, the original transmit samples are gen-

erated on the Jetson board, and then passed through

the DPD implementation accelerated on mobile GPU or

multicore CPU, the DPD output samples will be packed

into streaming packets, and sent to WARP based on

socket APIs. The WARP board receives the packets

from Jetson, processes those packets and finally directs

them to the PA and RF by FPGA-based radio control

modules. The underlying framework for packet transfer

between Jetson and WARP and packet delivery to RF is

based on WARPLab [28], with the original MATLAB-

based baseband processing and socket wrapper replaced

by CUDA-based or OpenMP/NEON-based DPD pro-

cessing and a customized C-based socket wrapper, so

that the input data can be processed and streamed to

WARP at high data rate and monitored on spectrum

analyzer in real time.

10 Kaipeng Li et al.

The DPD parameter estimation happens offline be-

fore we perform the actual DPD on streaming data as

described above. For the offline training, we establish

the feedback loop by connecting RF antenna connec-

tor A (RFA) and RF antenna connector B (RFB) on

WARP, and collect the samples in the feedback path

for estimation based on WARPLab.

The properties of PA on WARP can be formulated

with a memoryless PA model, which is developed based

on experimentally gathered PA input and output data:

PAout = α1 · PAin + α3|PAin|2PAin + α5|PAin|4PAin,
(3)

Here, α1 = 0.9490− 0.0197i, α3 = 0.4885 + 0.1071i,

α5 = −1.0156−0.0474i are the 1st, 3rd, 5th polynomial

coefficients for the 5-order WARP PA model.

5 Performance Results

5.1 Data Rate Performance

In this section, we benchmark the data rate perfor-

mance of the DPD implementation on both mobile GPU

and multicore CPU. The timing performance is mea-

sured by the CPU wall-clock latency L for predistorting

a certain number of input data. We need to ensure nec-

essary synchronization between CPU and GPU by call-

ing cudaDeviceSynchronize() when performing time

measurement for the GPU implementation.

The computation workload scaled by the number of

input samples N and the clock frequency of the pro-

cessor are two major factors which affect the data rate

performance. Here, we calculate the throughput T for

the GPU implementation by:

TGPU =
N × (warpSize−R)

L× warpSize
, (4)

and for the CPU implementation simply by:

TCPU =
N

L
, (5)

where R indicates the redundant threads in a warp

to facilitate the filtering computation, and is set to

R = Lp − 1 = Lq − 1 = 4 according to the design con-

figuration in Table 2, and warpSize = 32 is reserved

by Nvidia.

In Figure 6(a), we show the throughput performance

comparison between GPU implementations including

explicit memory copy and zero copy, respectively. The

benchmarks are performed with various workload N on

the Jetson TK1 board, and from the results we can find

that explicit memory copy will poses significant over-

head and performance degradation, while zero copy can

achieve much higher performance with very low over-

head.

Figure 6(b) records the throughput performance com-

parison between the Kepler mobile GPU on Jetson TK1

board and the Maxwell mobile GPU on Jetson TX1

board, at various workload configurations with their

maximum GPU clock frequencies, i.e, 852 MHz on TK1

and 998 MHz on TX1. With the increase of the work-

load N , the throughput performance increases on both

Kepler GPU and Maxwell GPU, with increasing occu-

pancy rates of computing cores, until saturation. Ob-

viously, the Maxwell GPU can outperform the Kepler

GPU because of more efficient streaming multiproces-

sors with higher maximum clock frequency, improved

control logic partitioning, better workload balancing,

and advanced instruction scheduling and issuing schemes.

Our design achieves a peak performance over 150 Msam-

ples/s on Jetson TK1 and over 220 Msamples/s on Jet-

son TX1.

Figure 6(c) records the throughput performance com-

parison between two boards at various GPU clock fre-

quencies, which can be tuned manually [29]. We fix

a large N(N > 1.5 × 106) to ensure high occupancy

of GPU cores for all the frequency benchmarks. The

throughput performance increases nearly linearly with

the increase of frequency at low frequencies. At high fre-

quencies, the throughput performance exposes satura-

tion due to thread deployment and scheduling overhead,

and memory resource competitions and bandwidth lim-

itations.

In Figure 7(a), we show the throughput performance

comparison of the CPU implementation at different work-

loads. We verify various CPU frequencies on the Cortex-

A15 CPU on the Jetson TK1 and conclude that the

workload variation has little effect on the throughput

performance on the CPU, since the four CPU cores can

be easily saturated at low workloads.

Figure 7(b) shows the throughput performance com-

parison between two boards at various CPU clock fre-

quencies. Here, we fixed a large workload, for example,

N = 1×105, for more consistent and stable results. We

find that the Cortex-A57 CPU with ARMv8 architec-

ture on TX1 achieves higher throughput performance

than Cortex-A15 CPU with ARMv7 architecture on

TK1 at similar frequencies, and the throughput can in-

crease almost linearly with the CPU frequency, to a

peak performance of around 200 Msamples/s.

In Table 4, we compare the peak performances of

our implementations with previous work. Our work ex-

ceeds previous work in terms of throughput performance

and sample precision.

Parallel Digital Predistortion Design on Mobile GPU and Embedded Multicore CPU for Mobile Transmitters 11

0 2 4 6 8 10 12 14 16
x 105

0

20

40

60

80

100

120

140

160

Workload (number of samples)

Th
ro

ug
hp

ut
 (M

sa
m

pl
es

/s
)

zero copy
expicit copy

(a) zero copy vs. explicit copy

0 2 4 6 8 10 12 14 16
x 105

0

50

100

150

200

250

Workload (number of samples)
Th

ro
ug

hp
ut

 (M
sa

m
pl

es
/s

)

Kepler GPU
Maxwell GPU

(b) throughput vs. workload

0 200 400 600 800 1000
0

50

100

150

200

250

GPU Clock Frequency (MHz)

Th
ro

ug
hp

ut
 (M

sa
m

pl
es

/s
)

Kepler GPU
Maxwell GPU

(c) throughput vs. GPU freq.

Fig. 6: Throughput performance of mobile GPU implementation

0 0.5 1 1.5 2 2.5 3 3.5 4
x 105

0

20

40

60

80

100

120

140

160

180

200

220

Workload (number of samples)

Th
ro

ug
hp

ut
 (M

sa
m

pl
es

/s
)

ARMv7 CPU@828MHz
ARMv7 CPU@1428MHz
ARMv7 CPU@2320MHz

(a) throughput vs. workload

0 500 1000 1500 2000 2500
20

40

60

80

100

120

140

160

180

200

220

CPU Clock Frequency (MHz)

Th
ro

ug
hp

ut
 (M

sa
m

pl
es

/s
)

Cortex-A15 ARMv7 CPU
Cortex-A57 ARMv8 CPU

(b) throughput vs. frequency

Fig. 7: Throughput performance of mobile CPU implementation

-30 -20 -10 0 10 20 30
-70

-60

-50

-40

-30

-20

-10

0

Radio Frequency Offset (MHz)

P
ow

er
 in

 1
M

H
z

(d
B

m
)

Without DPD
Fifth order DPD

(a) Single component carrier

-40 -30 -20 -10 0 10 20 30 40
-70

-60

-50

-40

-30

-20

-10

0

Radio Frequency Offset (MHz)

P
ow

er
 in

 1
 M

H
z

(d
B

m
)

Without DPD
Fifth Order DPD

(b) Non-contiguous carrier aggregation

Fig. 8: DPD suppression effect

Besides data rate performance, energy efficiency is

another dimension of design space exploration, espe-

cially for mobile devices where power is usually con-

strained. To enable high energy efficiency, Tegra K1

and Tegra X1 SoCs are designed for the mobile mar-

ket with a peak power consumption at the level of

10W-15W[22,23]. Some previous work has presented

power measurements of Tegra K1 and X1 using power

meters[30], which indicates that mobile GPUs usually

enable higher performance/watt than embedded CPUs

because of high throughput with low clock frequencies.

Some other work has discussed accurate power mod-

eling for Tegra SoCs[31], showing that the power con-

sumption of Tegra SoCs can be higher with the increase

of off-chip memory clock frequencies, GPU/CPU hard-

ware utilization such as on-chip local caches and func-

12 Kaipeng Li et al.

Table 4: Performance comparison with previous work

Data precision Peak throughput

90nm CMOS TTA [18] 16-bit FP 20.8 Msamples/s
45nm CMOS TTA [18] 16-bit FP 53.3 Msamples/s
Kepler GPU @ 852MHz 32-bit FP 153.5 Msamples/s

Maxwell GPU @ 998MHz 32-bit FP 221.8 Msamples/s
ARMv7 CPU @ 2.32GHz 32-bit FP 214.4 Msamples/s
ARMv8 CPU @ 1.91GHz 32-bit FP 200.1 Msamples/s

tional units, as well as GPU/CPU clock frequencies.

To arrive at optimal performance/watt of our DPD de-

signs, we need to further perform detailed benchmarks

on hardware utilization at each single step of computa-

tion with experimental measurements of the power con-

sumption, which can be an interesting following work

in the future.

5.2 DPD Suppression Performance

On the mobile transmitter built by Jetson board and

WARP radio, we experimentally record the PA out-

put to verify the DPD suppression effect on spurious

spectrum emissions. We prepare a single 10MHz LTE

uplink carrier, as well as two non-contiguous 3MHz

LTE uplink carriers with 10MHz spacing as original in-

put of DPD, to show the DPD effect for single-carrier

and non-contiguous carrier aggregation scenarios. Fig-

ure 8(a) and Figure 8(b) show that we can experimen-

tally achieve over 10dB suppression on major spurious

spectrum components, indicating that our DPD design

works effectively for practical radio setups.

6 Conclusion

In this paper, we present high performance parallel DPD

implementations on mobile GPU and embedded multi-

core CPU for mobile transmitters. For both GPU and

CPU implementations, we explore and realize the in-

herent data parallelism of DPD based on correspond-

ing parallel programming models and schemes. To re-

duce the data sharing and communication overhead in

our implementations, we take advantage of warp shuffle

techniques on GPU and vector extraction intrinsic on

CPU to resolve the data dependencies efficiently within

local registers. Our DPD implementations achieve over

150 Msamples/s peak throughput on a Kepler mobile

GPU, over 220 Msamples/peak throughput on a Maxwell

mobile GPU, and over 200 Msamples/s peak through-

put on ARMv7 and ARMv8 multicore CPU, which indi-

cates that our DPD design can efficiently support prac-

tical high bandwidth mobile transmitters. By integrat-

ing our DPD implementation on a customized software-

defined mobile transmitter built by Jetson board and

WARP radio board, we further experimentally verify

that our DPD design can suppress major spurious spec-

trum emissions effectively by over 10dB on real radio

hardware.

Acknowledgements This work was supported by the US
NSF under grants EECS-1408370, CNS-1265332, ECCS-1232274,
and the Finnish Agency of Innovation, Tekes.

References

1. P.-I. Mak, S.-P. U, and R.P. Martins, “Transceiver ar-
chitecture selection: Review, state-of-the-art survey and
case study,” IEEE Circuits and Systems Magazine, vol.
7, no. 2, pp. 6–25, Second 2007.

2. E. Larsson, O. Edfors, F. Tufvesson, and T. Marzetta,
“Massive MIMO for next generation wireless systems,”
IEEE Communications Magazine, vol. 52, no. 2, pp. 186–
195, February 2014.

3. E. Dahlman, S. Parkvall, and J. Skold, 4G LTE/LTE-
Advanced for Mobile Broadband, 2011.

4. S.Haykin, “Cognitive radio: brain-empowered wireless
communications,” IEEE Journal on Selected Areas in
Communications, vol. 23, no. 2, pp. 201–220, Feb 2005.

5. V. Lehtinen, T. Lahteensuo, P. Vasenkari, A. Piipponen,
and M. Valkama, “Gating factor analysis of maximum
power reduction in multicluster lte-a uplink transmis-
sion,” in IEEE Radio and Wireless Symposium (RWS),
2013, Jan 2013, pp. 151–153.

6. J. Kim and K. Konstantinou, “Digital predistortion of
wideband signals based on power amplifier model with
memory,” Electronics Letters, vol. 37, no. 23, pp. 1–2,
Nov 08 2001.

7. L. Anttila, P. Handel, and M. Valkama, “Joint mitigation
of power amplifier and I/Q modulator impairments in
broadband direct-conversion transmitters,” IEEE Trans-
actions on Microwave Theory and Techniques, vol. 58,
no. 4, pp. 730–739, April 2010.

8. Y. D. Kim, E. R. Jeong, and Y. H. Lee, “Adaptive Com-
pensation for Power Amplifier Nonlinearity in the Pres-
ence of Quadrature Modulation/Demodulation Errors,”
IEEE Transactions on Signal Processing, vol. 55, no. 9,
pp. 4717–4721, Sept 2007.

9. M. Wolf, High-performance embedded computing: appli-
cations in cyber-physical systems and mobile computing,
Newnes, 2014.

10. J.D. Owens, M. Houston, D. Luebke, S. Green, J.E.
Stone, and J.C. Phillips, “GPU computing,” Proceed-
ings of the IEEE, vol. 96, no. 5, pp. 879–899, May 2008.

11. G. Wang, Y. Xiong, J. Yun, and J. R. Cavallaro, “Accel-
erating computer vision algorithms using opencl frame-
work on the mobile gpu - a case study,” in 2013 IEEE
International Conference on Acoustics, Speech and Sig-
nal Processing, May 2013, pp. 2629–2633.

12. Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long,
R. Girshick, S. Guadarrama, and T. Darrell, “Caffe: Con-
volutional Architecture for Fast Feature Embedding,” in
Proceedings of the 22Nd ACM International Conference
on Multimedia, New York, NY, USA, 2014, MM ’14, pp.
675–678, ACM.

13. K. Li, M. Wu, G. Wang, and J. R. Cavallaro, “A high
performance GPU-based software-defined basestation,”
in 48th IEEE Asilomar Conference on Signals, Systems,
and Computers (ASILOMAR), 2014.

Parallel Digital Predistortion Design on Mobile GPU and Embedded Multicore CPU for Mobile Transmitters 13

14. K. Li, B. Yin, M. Wu, J. R. Cavallaro, and C. Studer,
“Accelerating massive MIMO uplink detection on GPU
for SDR systems,” in Circuits and Systems Conference
(DCAS), 2015 IEEE Dallas, Oct 2015, pp. 1–4.

15. Nvidia CUDA tookit documentation,
http://docs.nvidia.com/cuda.

16. The open standard for parallel programming of hetero-
geneous systems, https://www.khronos.org/opencl/.

17. M. Abdelaziz, C. Tarver, K. Li, L. Anttila, R. Martinez,
M. Valkama, and J. R. Cavallaro, “Sub-band digital
predistortion for noncontiguous transmissions: Algorithm
development and real-time prototype implementation,”
in 2015 49th Asilomar Conference on Signals, Systems
and Computers, Nov 2015, pp. 1180–1186.

18. A. Ghazi, J. Boutellier, M. Abdelaziz, Xiaojia Lu,
L. Anttila, J.R. Cavallaro, S.S. Bhattacharyya,
M. Valkama, and M. Juntti, “Low power implementation
of digital predistortion filter on a heterogeneous appli-
cation specific multiprocessor,” in IEEE International
Conference on Acoustics, Speech and Signal Processing
(ICASSP), May 2014, pp. 8336–8340.

19. K. Li, A. Ghazi, J. Boutellier, M. Abdelaziz, L. Anttila,
M. Juntti, M. Valkama, and J. R. Cavallaro, “Mo-
bile GPU accelerated digital predistortion on a software-
defined mobile transmitter,” in 2015 IEEE Global Con-
ference on Signal and Information Processing (Global-
SIP), Dec 2015, pp. 756–760.

20. A. Ghazi, J. Boutellier, L. Anttila, M. Juntti, and
M. Valkama, “Data-parallel implementation of recon-
figurable digital predistortion on a mobile gpu,” in 2015
49th Asilomar Conference on Signals, Systems and Com-
puters, Nov 2015, pp. 186–191.

21. ARM NEON technology, http://www.arm.com/ prod-
ucts/processors/technologies/neon.php.

22. Nvidia Jetson TK1, http://www.nvidia.com/object/jetson-
tk1-embedded-dev-kit.html.

23. Nvidia Jetson TX1, http://www.nvidia.com/object/jetson-
tx1-module.html.

24. WARP Project, http://warpproject.org/trac/.
25. R. Raich and G. T. Zhou, “Orthogonal polynomials for

complex gaussian processes,” IEEE Transactions on Sig-
nal Processing, vol. 52, no. 10, pp. 2788–2797, Oct 2004.

26. E. Changsoo and E. J. Powers, “A new Volterra predis-
torter based on the indirect learning architecture,” IEEE
Transactions on Signal Processing, vol. 45, no. 1, pp.
223–227, Jan 1997.

27. Warp shuffle, https://devblogs.nvidia.com/parallelforall/
cuda-pro-tip-kepler-shuffle/.

28. WARPLab, https://warpproject.org/trac/wiki/WARPLab.
29. Jetson performance tuning, http://elinux.org/ Jet-

son/Performance/.
30. V. P. Nikolskiy, V. V. Stegailov, and V. S. Vecher, “Ef-

ficiency of the Tegra K1 and X1 systems-on-chip for
classical molecular dynamics,” in 2016 International
Conference on High Performance Computing Simulation
(HPCS), July 2016, pp. 682–689.

31. Kristoffer Robin Stokke, H̊akon Kvale Stensland, Carsten
Griwodz, and P̊al Halvorsen, “A High-precision, Hybrid
GPU, CPU and RAM Power Model for Generic Multi-
media Workloads,” in Proceedings of the 7th Interna-
tional Conference on Multimedia Systems, New York,
NY, USA, 2016, MMSys ’16, pp. 14:1–14:12, ACM.

	1 Introduction
	2 Overview of DPD Algorithms
	3 DPD Implementation on Parallel Mobile Processors
	4 Experimental Verification of DPD Functionality
	5 Performance Results
	6 Conclusion

