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Texture Classification in Extreme Scale Variations
using GANet
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Abstract—Research in texture recognition often concentrates
on recognizing textures with intraclass variations such as il-
lumination, rotation, viewpoint and small scale changes. In
contrast, in real-world applications a change in scale can have a
dramatic impact on texture appearance, to the point of changing
completely from one texture category to another. As a result,
texture variations due to changes in scale are amongst the hardest
to handle. In this work we conduct the first study of classifying
textures with extreme variations in scale. To address this issue,
we first propose and then reduce scale proposals on the basis of
dominant texture patterns. Motivated by the challenges posed by
this problem, we propose a new GANet network where we use
a Genetic Algorithm to change the filters in the hidden layers
during network training, in order to promote the learning of more
informative semantic texture patterns. Finally, we adopt a FV-
CNN (Fisher Vector pooling of a Convolutional Neural Network
filter bank) feature encoder for global texture representation.

Because extreme scale variations are not necessarily present
in most standard texture databases, to support the proposed
extreme-scale aspects of texture understanding we are developing
a new dataset, the Extreme Scale Variation Textures (ESVaT), to
test the performance of our framework. It is demonstrated that
the proposed framework significantly outperforms gold-standard
texture features by more than 10% on ESVaT. We also test the
performance of our proposed approach on the KTHTIPS2b and
OS datasets and a further dataset synthetically derived from
Forrest, showing superior performance compared to the state of
the art.

Index Terms—Texture descriptors, rotation invariance, local
binary pattern (LBP), feature extraction, texture analysis

I. INTRODUCTION

Texture analysis [1] plays a key role in computer vision,
supporting a great many applications: image and scene classi-
fication, object detection and recognition, medical image anal-
ysis, robot vision and autonomous navigation for unmanned
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Fig. 1. A changing scale can have a dramatic impact on the appearance
of textures: (a) grasses, (b) wheat, and (c) trees, with the images from
significantly different viewpoints, essentially sampling the textures from a
broad extent of underlying continuous scale. Even more challenging (d) are
cases of continuous scale variations within a single image. Note that for the
last column of (a) (b) and (c), the images are basically textureless and only
show a region of a certain color. For the second last column of (a) (b) and (c),
the images show small scales and has quite different texture appearances as
those of the first, second and third column. For (d), each column has a different
texture, and shows continuous but extreme scale changes, containing textures
in both near and far distances. All images are collected from the Internet.

aerial vehicles. Research in texture recognition [1]–[3] often
concentrates on recognizing textures with intraclass variations
such as illumination, rotation, viewpoint, and small scale
changes. On the other hand, in many real world applications
the significant variations or changes of scale may have a
dramatic impact on the appearance of an underlying texture,
as resolved in some image. For example, as illustrated in
Fig. 1, as the scale becomes increasingly and substantially
coarser, from left to right, the corresponding texture category
also changes; for example, the top row (grasses) changes from
grass to lawn to a nearly featureless field. Particularly in ap-
plications such as robot vision or remote surveillance, extreme
scale changes can occur quite routinely (Fig. 1 (d)), when a
single image contains both near and far distances, meaning
that in contexts involving autonomous or machine vision it
becomes crucial to investigate texture analysis under extreme
scale variations. To the best of our knowledge no existing
texture classification methods can handle scale changes of
such magnitude. Our aim is to fill this gap and to develop
effective methods for classifying textures under the sorts of
scale changes illustrated in Fig. 1.

Much effort has been devoted to exploring and developing
texture features that are robust to a variety of imaging changes,
particularly to illumination, rotation, viewpoint and noise [4]–
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[10]. In terms of change-invariant features, scale variations are
amongst the hardest to handle and only modest progress has
been made in finding features invariant to even small scale
changes [2], [11], [12]. These methods have demonstrated
good performance on benchmark datasets such as Brodatz
[13], CUReT [14], UIUC [2] and KTHTIPS [15], and more
recently the OpenSurfaces (OS) dataset [16]; however all
of these datasets exhibit rather modest scale variations, not
necessarily representative of the significantly harder problem
of texture recognition in the presence of the extreme scale
variations of interest here.

Existing successful texture representation paradigms seek to
represent textured images statistically as histograms over texels
or textons [2], [12], [17], [18]. The fundamental question is the
scale of this image, in that texels may compactly represented
when computed at some certain scale, but not at larger and/or
smaller scales. The right scale is thus part of the definition of
the texture and plays an important role, recognized early in
the pioneering work of Julesz [19].

Motivated by the above, our method first searches scale
proposals and reduces the number of proposals by finding
the basic dominant texels that occur most frequently in the
image. Based on the challenges posed by this problem, we
then propose a new network GANet and adopt a FV-CNN
feature encoder for global texture representation. The main
contributions of this work are summarized as follows:

• To the best of our knowledge, we conduct pioneering
investigation towards the problem of recognizing textures
exhibiting extreme scale variations, that is, with scale
variations of two or more orders of magnitude.

• When the scale of a texture changes, the category of the
resulting texture image also changes at some boundary,
boundaries which are important to identify in order to la-
bel two images of the same physical material as different
texture classes. This paper offers the first investigation of
such scale boundaries.

• We propose a new network, which we refer to as GANet,
which can learn more informative texture patterns by
using a genetic algorithm to change the filters in the
hidden layers during network training.

• We contribute a large texture dataset consisting of 15,747
texture images having substantial scale variations, in an
effort to support the study of texture and scale.

II. RELATED WORK

Texture can be characterized by statistical distributions of
texels or textons, which are defined as repetitive local features
that are responsible for the preattentive discrimination of
textures [19]. The recent literature on texture analysis is vast,
and recent surveys can be found in [7], [18], [20], [21].

The approach in this work is related to the texel size or
texture scale. Lindeberg [22] investigated scale for texture
description, suggesting that texture characteristics strongly
depend upon it. Mirmehdi and Petrou [23] discussed scale
variations in real scenes and used them for the segmentation
of color textures. There is recent work focusing on the
estimation of the local or global scale of textured images

without explicitly extracting texture texels [2], [11]. To search
the scale proposals of a given texture image, we adopt the
binarized normed gradients (BING) algorithm [24], which has
been shown to be very efficient and powerful in proposing
local salient regions.

Recently, deep Convolutional Neural Networks (CNN)
[25]–[27] [28], [29] have demonstrated excellent results in
many domains of computer vision, including texture recog-
nition [6]–[8], [12], [30], [31]. For example, Zhang et al.
proposed a Deep Texture Encoding Network (DeepTEN) with
a novel Encoding Layer integrated on top of convolutional
layers, which ports the entire dictionary learning and encoding
pipeline into a single model. Different from other methods
build from distinct components, such as SIFT descriptors or
pre-trained CNN features for material recognition. DeepTEN
provides an end-to-end learning framework, where the inherent
visual vocabularies are learned directly from the loss function.
The features, dictionaries, encoding representation and the
classifier are all learned simultaneously. The representation
is orderless and therefore is useful for material and texture
recognition. Dai et al. proposed an effective fusion architecture
- FASON that combines second order information flow and
first order information flow. FASON allows gradients to back-
propagate through both flows freely and can be trained effec-
tively. They build a multi-level deep architecture to exploit
the first and second order information within different convo-
lutional layers. Zhang Detect 2018 et al. proposed an effective
and scalable method for learning feature detectors for textures,
which combines an existing “ranking” loss with an efficient
fully-convolutional architecture as well as a new training-loss
term that maximizes the “peakedness” of the response map.
They demonstrated that their detector is more repeatable than
existing methods, leading to improvements in a real-world
texture-based localization application.

Xian TextureGAN et al. investigated deep image synthesis
guided by sketch, color, and texture. They allowed a user to
place a texture patch on a sketch at arbitrary locations and
scales to control the desired output texture. Their generative
network learns to synthesize objects consistent with these
texture suggestions. To achieve this, they develop a local
texture loss in addition to adversarial and content loss to train
the generative network, TextureGAN.

However, it is a common belief that existing CNN architec-
tures are not robust to appearance variations such as rotation,
scale and noise [7] (see Section V for more details.), and the
texture recognition work on CNN mainly focuses on domain
transferability [6], [12].

In additon, there are other approaches proposed for texture
analysis. Mehta and Egiazarian presented a rotation invari-
ant and computationally efficient texture descriptor called
Dominant Rotated Local Binary Pattern (DRLBP). A rota-
tion invariance is achieved by computing the descriptor with
respect to a reference in a local neighborhood. A reference
is fast to compute maintaining the computational simplicity
of the Local Binary Patterns(LBP). DRLBP not only retains
the com-plete structural information extracted by LBP, but it
also captures the complimentary information by utilizing the
magnitude information, thereby achieving more discriminative
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power. Depeursinge et al. presented texture operators called
SWM, which encoding class-specific local organizations of
image directions (LOIDs) in a rotation invariant fashion. The
LOIDs are key for visual understanding, and are at the origin
of the success of the popular approaches. SWM learns data-
specific representations of the LOIDs in a rotation-invariant
fashion. The image operators are based on steerable circular
harmonic wavelets (CHWs), offering a rich and yet compact
initial representation for characterizing natural textures.

Motivated by the challenges posed by recognizing textures
exhibiting extreme scale variations, we propose a new network,
GANet, where we use a genetic algorithm (GA) to change the
filters in the hidden layers during network training in order
to promote the learning of more informative semantic texture
patterns and to suppress the number of nonsemantic ones.
Here, semantic pattern for textures means a pattern include a
texel/texton or a combination of texels/textons. Non-semantic
pattern for textures means a pattern does not include any
texel/texton. There certainly has already been work applying
GA to deep learning [32]–[36]: The work in [35] aims at
learning the architectures of modern CNNs by employing an
encoding method to represent each network architecture in a
fixed length binary string; in [33], a GA was used to train
networks with a large number of layers, each of which was
trained independently to reduce the computational burden; in
[32], a GA was used to improve the performance of a deep
autoencoder and to produce a sparser neural network; and in
[34] a GA was used to train a network when annotated training
data were not available.

Our method is quite different from previous work [32]–[36],
in that our work aims at developing CNNs specifically to learn
more semantic patterns, a focus which is has not been studied.

III. METHODOLOGY

Our work builds on the extensive literature on CNNs in
texture recognition [12], but further motivated by the work of
Zhou et al. [31], which demonstrate a relationship between se-
mantic filters and recognition success. In particular, those CNN
convolutional filters showing semantic patterns are regarded
as effective at visual recognition, while those showing non-
semantic patterns are regarded as being incompletely learned,
on which basis the authors claimed that increasing the number
of semantic filters improves the recognition performance. As
a result, we are inspired to adopt a genetic algorithm (GA) to
promote the learning of networks in a global and optimized
way, by which we aim to reduce the number of non-semantic
filters and to increase the number of semantic ones.

GAs are effective at searching large and complex spaces in
an intelligent way to approximately solve global optimization
problems. Furthermore, from weak learning theory in pattern
recognition [37], using an ensemble of models boosts clas-
sification performance, since multiple models capture richer
semantic filters than a single model does, thus we propose
to adopt three CNN models in our GANet. We will define
genetic operations of mutation and crossover, so that we can
traverse the search space efficiently, seeking to maximize the
number of semantic patterns, thereby successively eliminating

non-semantic ones. By using different training sets to train
the three networks, we realize further improvements in filter
diversities of the hidden layers, increasing the string diversities
used for crossover and mutation, which we expect should lead
to improved performance.

A. Proposed GANet Network

Our proposed GANet is shown in Fig. 2, highlighting the
genetic operations of mutation and crossover.

Mutation is a genetic operator used to maintain genetic
diversity from one generation to the next of a population of
chromosomes, analogous to biological mutation. The mutation
process of an individual involves flipping each bit indepen-
dently with some probability q. In practice, q is often small
(0.05), since setting q too high causes the search to turn
into a primitive random search. A modest q allows the good
properties of a survived individual to more likely be preserved,
while still providing opportunities to explore.

In contrast, Crossover is a genetic operator to vary the
programming of a chromosome or chromosomes from one
generation to the next. It is analogous to reproduction and
biological crossover, involving a swapping, with probability p,
between two individuals, allowing the diversities of the filters
in the hidden layers to be improved.

The number of filters used for crossover or mutation is not
a trivial question, normally found empirically. Based on our
experiments we have chosen 10% of the filters for exchange
during crossover and 5% of the filters for mutation. Here,
we improve the classical/traditional genetic algorithm (GA)
according to our case for crossover and mutation. Specifically,
we already have a good initial population used for GA opera-
tions since the initial population is encoded from the filters in
an off-the-shelf CNN model (VGGNet [24]) pre-trained on a
large-scale dataset like ImageNet [26]. We thus decrease the
probability for crossover but increase probability for mutation.
On the one hand, the probability for crossover in our case
is 10% vs. typical value 60% of the classical/traditional
GA. In other words, we reduce the probability for crossover
because of the good initial population. On the other hand,
the probability for mutation in our case is 5% vs. typical
value 0.8% of the classical/traditional GA. In the traditional
GA, the population size typically contains several hundreds or
thousands of possible solutions. For each generation, therefore,
one would have several individuals to perform the mutation. In
our case, the population size for first layer has only 64 filters,
which means we have only 3 individuals used for mutation. In
other words, we increased the probability for mutation because
of the small population.

To undertake the GA operations, all of the filters in a
convolutional/pooling layer are concatenated into one string.
For crossover we choose two filter strings Ui and Uj from two
nets at random, and then exchange some elements between
these two strings. For example, as shown in Fig. 2,

{ui1, ui2, ..., uit} from Ui are exchanged with
{uj1, uj2, ..., ujt} from Uj . (1)
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For mutation we similarly choose two filter strings from two
nets, however unlike exchange, mutation uses some elements
in one string to replace some in the other. For example, again
as shown in Fig. 2, we use elements {ub1, ub2, ..., ubt} from Ub

to replace certain elements in Ua, but keep Ub unchanged. Note
that in all cases the two filter strings for crossover and mutation
are from the same layer. In our case, on the one hand, we flip
the bit in the string i.e., from semantic elements to be non-
semantic elements. Specifically, we encode the non-semantic
elements in one string as 0s and semantic elements as 1s. We
used 0s in one string to replace 1s in the other string. It is a
kind of flipping bits. On the other hand, we did not use 1s to
replace 0s because our motivation is to simulate the strategy of
dropout [34] in deep network learning, intentionally designed
to slow down the learning process, such that the occasional
removal of semantic filters leads to more effective overall
learning. In addition, we also use the probability to control the
bit flipping by randomly selecting 5% bit to perform mutation.

The key question is the selection of filters for crossover and
mutation. We have developed the following rules:

• Crossover elements are chosen at random from the two
networks.

• Mutation elements are chosen such that, paradoxically,
non-semantic filters replace semantic ones. Although the
targeted removal of semantic filters feels perverse, the
approach is, in fact, analogous to the strategy of dropout
[38] in deep network learning, intentionally designed to
slow down the learning process, such that the occasional
removal of semantic filters leads to more effective overall
learning.

What remains to be determined is a criterion by which a filter
is judged to be semantic or not. Motivated by the method
presented in [31], we visualized the filters and found that
filters at the first convolutional layer are typically responsive
to simple texture patterns, such as line elements, crosses
and corners, whereas deeper layers are associated with more
complex patterns having higher level semantics.

Therefore at the first layer each we apply the Local Binary
Pattern (LBP) operator [4] to the layer. The basic form of LBP
takes as input a local neighborhood around each pixel and
thresholds the neighborhood pixels at the value of the central
pixel. The resulting binary-valued string is then weighted as
follows:

LBP (gc) =
P −1∑
i=0

2is(gc − gi)(2)

where the parameter P means the number of the neighbors
(e.g., P =8 with neighborhood radius R =1 ), and gc is the
central pixel. gc and gi are the gray-level values at c and i,
and s(A) is 1 if A ≥ 0 and 0 otherwise.

One extension of the original LBP is the uniform patterns:
an LBP is ‘uniform’ if it contains at most two 0-1 or 1-
0 transitions when viewed it as a circular bit string (e.g.,
11110011 is a uniform pattern). A uniform pattern usually
conpresonds to edges, cornor and flat area in textures [4] .In
our case, each location in the layer is considered semantic
(systematic, non-random) if its corresponding LBP pattern is

uniform (i.e., edges, cornor or flat area etc), and likewise non-
semantic (irregular, random) if the corresponding LBP pattern
is nonuniform [4].

At coarser layers, the distinction is a bit more subtle. We
begin with a pre-trained VGGNet, from which (as in [31]) we
visualize the filters of each layer and then cluster the filters
into two groups (semantic and nonsemantic). The minimal
activation of the semantic group is used as the semantic
threshold τl, which will be a function of layer l. Then, for some
input image I , let f l

j be the output of the jth convolutional
filter at the lth layer, that is, such that f l

j includes the effect
of the activation function (here a ReLU — Rectified Linear
Unit). A given filter output at position (r, c) and layer l will
be considered semantic if f l

j(r, c) > τl.
For each position (r, c) in feature map xl

j (i.e., the output
channel of the j-th convolutional filter at the l-th layer) , we
wish to determine whether the region around (r, c) corresponds
to semantic behavior. To do this, we search within a 5 × 5
window centered at (r, c) to count the number of semantic
activations, as just defined. If we cannot find k (typically k =
10) strong activations, we neglect position (r, c) and move to
the next position in the feature map. If we do have at least k
activations, we assert filter j to be semantically meaningful, an
assessment to be taken into account during mutation and in the
final assessment of the resulting network. Note that our aim is
to check whether a filter is semantic or not. In the activation
map it is easy to find several locations whose activations are
larger than the given threshold because textures consists of
repeated texels. If we find such one location in the activation
map generated by a filter, we regard this filter is semantic. For
the other locations on the activation map, we just ignore them.

To learn our semantically driven network, we start with an
off the shelf CNN model (VGGNet [26]) pretrained on a large
scale dataset like ImageNet [30]. The model is then fine tuned
via the genetic strategy of Fig. 2, given texture images. Based
on our experiments, we found the fraction of filters showing
semantic patterns increasing from 60% in the original VGGNet
(fine tuned on textures, but with no GA) to around 70% in
GANet (VGGNet after the genetic algorithm).

B. Scale Proposal

Intuitively, the scale change of a texture image clearly
affects its appearance, however the direct estimation of global
scale is very unstable. In order to achieve scale invariance
in texture classification we propose to search a set of scale
proposals or candidate scale levels in a given texture image.
We then reduce the number of scale proposals by searching
among the basic dominant texels that occur most frequently.

Scale Proposal Searching. In general, there can be not
only multiple scales, but indeed continuous changes in scale
within a single image, as was illustrated in Fig. 1 (d). A
necessary prerequisite for texture classification with extreme
scale variations to be successful is that we should find all
of the existing scale proposals; to this end, we use the
BING algorithm [24] to find candidate texture element (texel)
windows, and then compute the scale proposals according to
these windows. The rationale behind the BING searcher is
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Fig. 2. Architecture of our GANet network. There are three nets CNN-1, CNN-2 and CNN-3, each one being a 19 layer VGG-Net. Here, ”3 × 3 conv 256”
implies a convolution with filters of size 3 × 3 × 256, where 256 is the number of feature channels in this layer. “fc n” denotes a fully connected layer of
size n, where n = C (final layer) is the number of texture classes. The GA includes two operations — crossover and mutation — which are only applied
to the hidden filters in the convolutional and pooling layers. By this way, we promote the network learning in a global and optimized way to reduce the
number of non-semantic filters and to increase the number of semantic ones. To undertake the GA operations, all of the filters in a convolutional/pooling
layer are concatenated into one string. For crossover we choose two filter strings Ui and Uj from two nets at random, and then exchange some elements
between these two strings. For example, {ui1, ui2, ..., uit} from Ui are exchanged with {uj1, uj2, ..., ujt} from Uj . For mutation we similarly choose two
filter strings from two nets, and then perform mutation by using some elements in one string to replace some in the other. For example, we use elements
{ub1, ub2, ..., ubt} from Ub to replace certain elements in Ua, but keep Ub unchanged.

that it searches the scale proposals in real time (300 fps) and
returns almost all of the potential texels in an image.

As demonstrated in Fig. 3 (a), to be sensitive to a range of
scales we resize an input image I ∈ RW0×H0 to a sequence
of quantized sizes characterized by scale ratio s. In our
experiments, we choose s = 0.95 and generate an image
pyramid of resized images of sizes {(W0sm, H0sn)}, to some
lower limit (here set to ten pixels), determined by the region of
support of the features being extracted, with an 8 × 8 feature
extraction window recommended by Cheng et al. [24]. We
calculate the normed gradient (NG) 1 feature [24] (shown in
Fig. 3 (b)) of the entire pyramid. Note that we deliberately
downsample separately along each axis, to account for textures
having different aspect ratios (as illustrated in Fig. 3 (d)).

To find texels within a texture image, we scan over its entire
image pyramid with an 8 × 8 BING feature [24]. As shown

1The normed gradient represents Euclidean norm of the gradient.

in Fig. 3 (c), at any particular scale level l a number of texels
Ω = {Tl,k}, indexed by location k, could be proposed. To
keep the concept of scale clear, every location in the image
pyramid is characterized by its rescaling relative to the original
image; that is, pyramid image of size {(W0sm, H0sn)} is said
to be at scale l = (sm, sn). We denote all texels found over
the entire image pyramid as Ω = {Tl,k}.

In practice, we typically find thousands of potential texels
over an entire image pyramid by using small thresholds for the
BING searcher. As shown in Fig. 4, the scales of these texels
form the scale proposals for this texture image. Specifically,
we denote the set of all the scale proposals

Ssp = {l|Tl,k ∈ Ω} (2)

as the candidate scale proposal.
Scale Proposal Reduction. The candidate scale proposals

Ssp are usually redundant for an input image. For efficiency
consideration, we need to reduce the number of the scale
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Fig. 3. Scale proposal searching using an image pyramid and the BING
searcher [24]: (a) Images are downsized to obtain an image pyramid; (b)
A single 64D linear model for selecting texture element proposals based
on normed-gradient features; (c) Candidate texture element windows; (d) A
texture image whose texels have a significantly different aspect ratio from
those in (c).

proposals by finding the basic texels that most frequently occur
in the image.

Textures, whether they are regular or stochastic, contain
repetitive patterns that exhibit stationary statistics of some
sort [20]. Hence, the texels found by the BING searcher are
expected to appear repetitively. As shown in Fig. 4, for each
texel proposal T ∈ Ω, we search its similar texels over the
texel proposal set from the same scale level. We only keep
those texels having sufficiently many similar texels and remove
the others from the candidate texel set Ω, with the remaining
texels forming a new set Ωre, having a corresponding reduced
scale-proposal set Ssp-re, a significant reduction in the number
of scale proposals.

Based on our analysis, in order to obtain a good reduced
scale proposal set, two more issues have to be taken into
consideration: how to evaluate the similarity between two
texels, and how many texels to be reserved.

Regarding the similarity measure between two texels Tm

and Tn, we propose to compute the distance between the
LBP histograms [4] of them. Herein, the rationale behind the
Local Binnary Pattern (LBP) is that it works in real time and
it achieved state-of-the-art performance for texture analysis
compared to other methods [21].

After getting the LBP features for Tm and Tn, we compute
their LBP histograms Hm and Hn. In our case, we take P =8
and R =1 and use the uniform patterns for LBP (i.e., LBPu2

8,1).
We then compute the histogram intersection as the similarity
between Tm and Tn.

In terms of which texels in the candidate texel proposal set
should survive, for each T ∈ Ω, we find the set Ω′ of similar
texels whose similarities are larger than some threshold η, such
that candidate T is preserved only if the number of similar
texels surpasses threshold K, only keeping the dominant, most
frequently occurring texels, essentially those which are more
stable and removing noise. The setting of the two threshold
parameters η, K will be discussed in Section IV-A.

C. Scale Boundary

As demonstrated in Fig. 1, we argue that the category of
a texture image only remains unchanged during some scale
interval. In other words, when the scale of a texture image
changes significantly, the category of this texture image may
also change. The interesting question is the location of the
scale boundary which separates the two images of the same
physical material as different texture classes. Olshausen and
Field [39] reconstruct any given image in a sparse way based
on a selected group of patches. Inspired by this finding, we
similarly develop a patch based method to infer boundary in
scale.

Given a texture dataset S = {Sc} with C classes and for
each class Sc, we randomly select 10 images and then compute
its basis functions Xc = {xc} on 16 × 16-pixel patches, as in
[39]. For any image I ∈ Sc, we compute its reconstructed
image Î and the reconstructed error

δ = ∥I − Î∥/∥I∥ (3)

If δ > ξ, we consider that category of the texture image
changes, i.e. I /∈ Sc. In our case, we set ξ = 0.1 as suggested
by [39].

We adopt this approach to group our synthesized image set
SForrest Θ+(Sf ) and ESVaT (detailed later in Section IV)
into subcategories. The process is detailed in Algorithm 1,
where dataset SForrest is used as example. After applying
Algorithm 1, each texture class in SForrest is regrouped into
a number of subcategories, i.e. Θ+(Sf ) = {Ssyn

c,p }, indexed
by class c and scale level p, where there are Pc distinct scale
levels associated with class c. As a result, dataset SForrest with
C original texture classes has been regrouped into

∑C−1
c=0 Pc

categories 2. All of the images are also manually checked after
this automatic regrouping. Likewise, ESVaT is also regrouped
with Algorithm 1.

D. Summary of Proposed Framework

Our texture classification pipeline is summarized in Fig. 5,
consisting of the following steps:

1) For each image I in training/testing set ΘI, we compute
its reduced scale proposals Ssp-re as described in Section
III-B.

2) We downsize each image I to obtain its image pyramid
{Ip} using its reduced scale proposals Ssp-re. For the
downsized images, we let I = I

∪
{Ip} be the expanded

2In fact we manually combine some subsets in {{Ssyn
c,p }p}c as one category

since some of them are basically textureless and only show a region of a
certain color.
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Fig. 4. Pipeline for generating scale proposal. Given a texture, we first generate its image pyramid using the scale (sm, sn) as shown in Fig. 3, from which
we search the candidate texels. We then collect the scale proposals by which we find the candidate texels in the image pyramid. For each candidate texel,
we find its similar texles. For those candidate texels who have more than K similar texles, we keep them and collect their scales to form the reduced scales
proposals Ssp�re .
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Fig. 5. The proposed texture classification pipeline

set for image I. Thus, we have a new training/testing set
Θ+

I = {I}.
3) For each image in the new training/testing set, we use

the proposed FV-GANet to extract global texture feature
representation, following FV-CNN [12].

4) The extracted FV-GANet features are classified using
an Support Vector Machine (SVM) classifier. For each
image I, if its reduced scale proposals Ssp-re has M scale
levels (i.e. |Ssp-re| = M ), then we have M + 1 category
labels for it after classification. Image I will be assigned
the category label which occurs the most frequently.

In our case, we use SVM for classification, which constructs
a hyperplane or set of hyperplanes in a high- or infinite-
dimensional space [40]. It can be used for classification,
regression, or other tasks like outliers detection. Intuitively,
a good separation is achieved by the hyperplane that has the
largest distance to the nearest training-data point of any class
(so-called functional margin), since in general the larger the
margin the lower the generalization error of the classifier.

The evaluation of the texture classification performance
in step 3 uses FV-CNN [12] for texture feature description.
FV-CNN truncates a CNN network and regards the last
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convolutional layer of a CNN as a filter bank, performing
orderless pooling of CNN descriptors using the Fisher Vector,
as is commonly done in standard bag of words approaches.
FV pools local features densely within the described regions
removing global spatial information, and is therefore more apt
at describing textures than objects. The pooled convolutional
features are extracted immediately after the last linear filtering
operator and are not normalized. These features are pooled into
a FV representation with 64 Gaussian components. FV-CNN
is remarkably flexible and effective. First, the convolutional
layers behaving like non-linear filter banks are better local
texture descriptors than the fully connected layers, which may
be useful for representing the overall shape of an object. Sec-
ond, the FV pooling encoder is suitable for texture description
since it is orderless and multi-scale. Third, it avoids expensive
resizing of input images since any image size can be processed
by convolutional layers.

We have to emphasize that the training set is divided into
subcategories via the scale boundary search algorithm pre-
sented in Algorithm 1. During classification, a testing image
is considered being correctly classified only it is assigned the
correct subcategory label.
Algorithm 1: Divide each texture class in the synthesized
SForrest into subcategories to find its scale boundary
Input: The synthesized dataset SForrest Θ+(Sf )
Output: Regrouped SForrest Θ+(Sf ) = {{Ssyn

c,p }p}c

for each texture class c in SForrest do
Let Θ+

c be all the samples of class c in SForrest;
Set p = 0;
if Θ+

c ̸= ∅ then
1. Randomly select ten texture samples with the
largest scale level Ise

c ⊂ Θ+
c ;

2. Compute basis functions Xc,p based on Ise
c ;

3. Reconstruct all the samples in Θ+
c with basis

functions Xc,p;
4. Determine the samples whose reconstructed
error is less than ξ and denote them as Ssyn

c,p :

Ssyn
c,p = {Ik| ∥Ik −Îk ∥

∥Ik ∥ < ξ, Ik ∈ Θ+
c };

5. Update Θ+
c = Θ+

c − Ssyn
c,p ;

6. p = p + 1.
end

end

IV. DATASETS AND EXPERIMENTAL SETUP

We test the proposed framework on four datasets: the
synthesized dataset SForrest derived from Forrest [41], ESVaT,
KTHTIPS2b [15] and OS (OS) [16]. Some example texture
images from Forrest, KTHTIPS2b and OS are shown in Fig. 6
and some examples from ESVaT are shown in Fig. 1.

SForrest is synthesized based on the Forrest dataset Sf ,
which contains 17 texture classes and 935 images captured in
the wild. The method for synthesizing SForrest is as follows.
For each image Ii ∈ Sf , we firstly generate an image pyramid
ΘIi = {Ii,p} with scale s = 0.95 using the method detailed
at the beginning of Section III-B and illustrated in Fig. 3 (a).
We synthesize new images ΘJi = {Ji,p} based on ΘIi , in that

for each Ii,p ∈ ΘIi , we stitch several reduplications of Ii,p

together to generate a larger image Ji,p, which is cropped at
random, if needed, to have the same size as Ii. We define
Θ(Sf ) = {ΘIi }i to be the image pyramids of all images
in image set Sf , and Θ+(Sf ) to be the combined image
set Sf

∪
{ΘJi }i. Θ+(Sf ) is our final synthesized dataset. For

image editing, we use the method proposed by Perez et al.
[42], introduced for the seamless editing of image regions.

ESVaT is composed of 15,747 texture images from 15
material categories3, each of which has extreme scale vari-
ations and is further annotated to several subcategories by
the approach detailed in Section III-C. KTHTIPS2b [15] has
11 texture categories and four physical samples per category.
Each physical sample is imaged with 3 viewing angles, 4
illuminants and 9 different scales to obtain different images.
From OS [16] we use the same dataset as in [12]. It has 53,915
annotated material segments in 10,422 images spanning 22
different classes.

Most scale variations in KTHTIPS2b and OS are small
compared with SForrest and ESVaT. SForrest and ESVaT
were specifically designed to test texture classification under
extreme scale variations. However we do continue to test
the performance of our framework on KTHTIPS2b and OS
to show that the proposed can give significantly improved
performance, even though our method is specifically designed
for extreme scale variations.

For SForrest, half of the class samples were selected at
random for training and the remaining half for testing, and
results are reported over ten random partitions of training
and testing sets. For ESVaT, we split images evenly into
training, validation and testing subsets. For KTHTIPS2b, one
sample is available for training and the remaining three for
testing, following [12]. For OS, we also use the same setup
as in [12]. SForrest and ESVaT are regrouped per Algo-
rithm 1. KTHTIPS2b and OS are augmented by building the
image pyramids using the scale proposals as discussed in
Sections III-B, but without regrouping.

Implementation Details. We finetune VGGNet using
CUReT [14] and UIUC [2]. Our finetuning is carried out
for the whole network. The original training set of CUReT
and UIUC are expanded as follows. For each image I in the
training set Φ = {I}, we compute its reduced scale proposal
set Ssp-re, then downsize it to obtain M = |Ssp-re| downsized
images I+ = {Ip} using its scale proposals Ssp-re. Thus, we
have a new training set Φ+ = I+

∪
Φ. Note that each image

in I+ has the same class label as I. We further perform data
augmentation and window cropping on the new training set,
following the method in [26]. By these means, the number of
training samples increases significantly, to 3.96 million, which
are split at random into three even subsets (S1, S2 and S3),
which are then used to train the three CNN models shown in
Fig. 2 respectively.

In our GANet, we train three CNNs to perform crossover
and mutation for the filter strings from the same layer because
they show similar semantic features. Since we propose to use

3bark, bubble, brick, carpet, concrete, fabric, grass, granite, laminate,
plastic, stone, tile, wood, wheat and tree
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(b) KTHTIPS2b Texures

(c) OpenSurface Textures

(a) Forrest Textures

Fig. 6. Some example textures from (a) Forrest, (b) KTHTIPS2b and (c) OS
(Original images and their corresponding annotated texture segments).

Fig. 7. Example of a synthesized texture at different scales.

TABLE I
CLASSIFICATION SCORES OF EACH CNN IN GANET ON THE

SYNTHESIZED SFORREST DATASET.

Methods SForrest
FV-CNN (S1) 85.3%
FV-CNN (S1 + S2 + S3) 87.3%
FV-CNN-GA-1 (S1) 88.1%
FV-CNN-GA-2 (S1) 87.8%
FV-CNN-GA-3 (S2) 88.3%
FV-GANet 90.4%

TABLE II
PERFORMANCE EVALUATION OF EACH COMPONENT OF OUR PROPOSED

SCALE SEARCHER ON THE SYNTHESIZED SFORREST DATASET.

Dataset SForrest
Methods Without GA Crossover Mutation Crossover+Mutation

FV-CNN-GA-1 (S1) 85.3% 87.3% 87.1% 88.1%
FV-CNN-GA-2 (S2) 84.9% 87.1% 86.8% 87.8%
FV-CNN-GA-3 (S3) 85.4% 87.5% 87.4% 88.3%

three CNNs, we have three SVM classifiers. We use these
three classifiers to vote for texture categories. Following the
work in [12], we also normalize descriptors by L2 norm and
let the learning constant be C = 1.

The network is implemented following the parameter setting
of VGG net [27]. Specifically, the hyper parameters of this
network include: mini-batch size (4), learning rate (1e-6),
momentum (0.9), weight decay (0.002), and maximum number
of training iterations (600,000). For the cost function, we use
the same as that of VGG net [27].

A. Experimental Tests

GANet: The classification results on SForrest are listed in
Table I. FV-CNN means the original VGGNet. FV-CNN (S1)
means that FV-CNN is finetuned using S1. FV-CNN (S1+S2+
S3) means that FV-CNN is finetuned using all the three subset
S1 + S2 + S3. FV-CNN-GA-n (n = 1, 2, 3) are the three CNN
models finetuned using GA. FV-GANet is to combine the three
FV-CNN-GA-n models by voting for texture categories. The

TABLE III
PERFORMANCE EVALUATION OF EACH COMPONENT OF OUR PROPOSED

FRAMEWORK ON SFORREST AND KTHTIPS2B.

Methods SForrest KTHTIPS-2b
FV-GANet 90.4% 82.6%
FV-GANet+SP 91.5% 83.0%
FV-GANet+SP+RE 96.3% 86.7%

TABLE IV
PERFORMANCE EVALUATION USING DIFFERENT SCALE PROPOSAL

SEARCHERS ON SFORREST AND KTHTIPS2B.

Methods SForrest KTHTIPS2b
FV-GANet 90.4% 82.6%
FV-GANet+FFT 89.8% 81.6%
FV-GANet+Lindeberg 92.1% 83.3%
FV-GANet+SP+RE 96.3% 86.7%

majority vote algorithm is an algorithm for finding the majority
of a sequence of elements using linear time and constant space.
In its simplest form, the algorithm finds a majority element,
if there is one: that is, an element that occurs repeatedly for
more than half of the elements of the input [43].

From Table I, we can observe that including GA improves
performance, since the individual models FV-CNN-GA-n out-
perform both FV-CNN (S1) and FV-CNN (S1+S2+S3). When
combined, one can observe that FV-GANet is significantly
better than FV-CNN.

The performance evaluation how crossover and muta-
tion change the performance of the proposed method is
shown Table II. We used three subsets to train three
CNNs separately. we can observe that including GA compo-
nents (crossover and/or mutation) improves performance. In
other words, FV-CNN-GA-n(Sn) with the two components
(crossover+mutation) works better than FV-CNN-GA-n(Sn)
with only one component (crossover or mutation). However,
both of them, i.e., FV-CNN-GA-n(Sn) with one or two com-
ponents (crossover and/or mutation) works better than FV-
CNN-GA-n (Sn) without GA components. In addition, from
this table, we can observe that crossover works slightly better
than mutation. One reason might be that we get two new
children strings for crossover but only one new child string
for mutation. Thus, the former brings more diversity into the
network.

Component of Scale Searcher: Scale searcher results are
shown in Table III. FV-GANet means that we only use FV-
GANet. FV-GANet+SP means we use FV-GANet and the
Scale Proposals (SP) component. FV-GANet+SP+RE means
we use FV-GANet and the REduced SP. The pipeline about
how to get the training set for these three cases is shown in
Fig. 8.

The results in Table III clearly show that the combination
of FV-GANet, SP and RE improves the classification perfor-
mance significantly. It demonstrates that texture classification
in extreme scale variations can benefit from SP. After we
combine RE, the number of scale proposals drops significantly
since RE discards many errors in scale proposals. To check the
accuracy of the predicted scale levels for each image by FV-
GANet+SP+RE, we use the mode of the predicted scale levels
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Fig. 8. (Illustration of training set for network training. (a) FV-GANet block. (b) training set using for FV-GANet, FV- GANet+SP, and FV-GANet+SP+RE.)

to compare with ground truth; the accuracy for the synthesized
dataset is 97.4%, clearly demonstrating the accuracy of texture
classification in the extreme scales of SForrest.

Different SP Searchers. We compare our SP method with
other possible SP searchers such as Fast Fourier Transform
(FFT) and the method by Lindeberg [22]. As shown in Fig. 9,
we use the same pipeline as FV-GANet+SP+RE shown in
Fig. 8. The difference is that FV- GANet+FFT using FFT
to find the texture period instead of the method proposed in
Section III-B. To find the texture period by FFT, we use the
method proposed in Matsuyama et al. [44]. Results are shown
in Table IV, which clearly demonstrate that our method works
the best. The reason that BING works better than Lindeberg
[22] is that BING return almost all of the potential texels in an
image. Although BING might not be the best method to find
texels without redundancy, these redundant texel candidates
satisfy the prerequisite for texture classification with extreme
scale variations to be successful, i.e., finding all of the existing
scale proposals. In addition, BING run in real time (300 fps),
which speeds up the training of a network.

One possible reason that FV-GANet+FFT works poorly is
that the texture images in the test set have other uninformative
variations, such as illumination and rotation changes, besides
scale variations.

Parameter Evaluation: In our approach, we have two
important threshold parameters: η, the threshold similarity
measure of two texels, and K, the number of similar texels of
a candidate texel, as discussed in Section III-B. For parameter
η, we use the following statistical value. Starting with dataset

TABLE V
A COMPARISON OF OUR PROPOSED METHOD WITH THE STATE OF THE ART

IN TEXTURE DESCRIPTORS.

Methods SForrest (%) KTHTIPS2b (%) OS (%) ESVaT (%)

LBP [4] 61.8 49.9 35.4 40.5
SIFT [45] 63.4 52.7 38.9 39.1

IFV+DeCAF [6] 78.4 77.5 55.6 53.3
PR-proj [30] 73.7 72.6 53.8 52.7
RAID-G [8] N/A 81.3 61.1 59.7

FV-CNN [12] 85.3 82.1 60.3 56.2
BCNN [33] 81.6 79.0 56.7 54.8
SWM [46] 67.8 64.4 38.4 42.5

DRLBP [47] 65.1 65.7 39.5 41.4
DeepTen [48] 91.6 84.5 67.9 55.7
FASON [49] 89.5 76.5 64.7 51.6

Ours 96.3 86.7 68.4 67.9

CUReT having 61 texture classes S = {S1, ..., SC}, we adopt
LBP and nearest neighbor to classify the textures in CUReT.
For those correctly classified textures in each class we compute
the image-wise similarity based on LBP histograms, letting
ϕi denote the minimal similarity in class Si, and then setting
η = min{ϕi}. We find that although η is derived based on
CUReT it works well for other datasets.

For parameter K, we determine its value empirically as
shown in Fig. 10. The performance (and computational com-
plexity) of our method increases with K, with performance
very much levelling off at K = 20, so we have set K = 20
for all experiments.

Results for KTHTIPS2b: The results for KTHTIPS2b are
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Fig. 9. Illustration of training set for training the network FV-GANet+FFT, where FV-GANet block is shown in Fig. 8 (a).
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Fig. 10. Classification performance as a function of paramter K.

shown in Table IV. One can observe that the performance im-
provement for KTHTIPS2b is similar to that for the SForrest.
This demonstrates that our scale proposal approach generalizes
to improving the texture classification in KTHTIPS2b which
has small scale variations. Note that although images in
KTHTIPS2b are spread over nine scales, we can find that there
also several scale variations within one image.

V. COMPARATIVE EVALUATION

For comparison purposes, Table V compares our proposed
approach with recent state of the art texture features including
LBP [4], SIFT [45], IFV+DeCAF [6], PR-proj [30], RAID-G
[8] and B-CNN [33]. For methods IFV+DeCAF, PR-proj and
FV-CNN, we adopt the code provided by the original authors.
For LBP and SIFT we use our own implementation. Note that
IFV+DeCAF, PR-proj and FV-CNN are all fine-tuned using
the same training set as our approach. The results of RAID-G
[8] and B-CNN [33] are quoted directly from their original
papers.

From Table V, we can see that our proposed approach
achieves consistently and significantly better results than all
methods in comparison on all four evaluated datasets, partic-
ularly providing a significant performance margin in excess
of 10% on SForrest and ESVaT over previous state of the
art, almost certainly because of the extreme scale variations
present in those datasets, relative to the more modest gains in
KTHTIPS2b, which has less extensive scale variations. Some
texture classification example are shown in Fig. 11. Although
some of textures are quite challenging, our method classifies
them correctly.

In Table V, we can find the two methods SWM and DRLBP
does not work so well for ESVaT although they perform very
well for rotated textures [46], [47] . For example, SWM got
42.5% and DRLBP got 41.4% compared to 67.9% by our

�:�K�L�W�H���E�U�H�D�G �:�R�R�G �/�L�Q�H�Q

�%�X�E�E�O�H �*�U�D�V�V �:�K�H�D�W

Fig. 11. Example of a synthesized texture at different scales.

method. It is because both SWM and DRLBP are designed for
rotation invariation and ESVaT is a dataset showing extreme
scale variation. In addition, we also show the experimental
comparsion between our methods and DeepTen [48] and
FASON [49]. From Table V, we can find that both DeepTen
and FASON achieve quite good perfomrance for KTHTIPS-
2b but the performance for ESVat dataset is also not so good
compared to our method. It is because that the dataset ESVaT
is a dataset showing extreme scale variation and most of
existing methods can not work so well. It is also verified that
developing a new method for extreme-scale-variation texture
analysis is an important issue.

As we mentioned in Section II, existing CNN architectures
are not robust to appearance variations such as rotation, scale
and noise. Specifically, for the scale variation, as shown in
Table V, both FV-CNN and IFV+DeCAF are CNN archi-
tectures. They got very good performance for KTHTIPS-
2b (82.1% and 77.5%) but not so well for ESVaT (56.2%
and 53.3%). The major difference between KTHTIPS-2b and
ESVaT is the extreme scale variation in ESVaT. For the noise
variations, please refer to [7]. In [7], Liu et al. perform
extensive experiments to evaluate the perfomance variations of
CNN architectures when textures are degraged by noise. For
the rotation variation, CNN architectures have the capability
of processing transforms including small rotations. Such capa-
bility is endowed with the inherent properties of convolutional
operations, redundant convolutional filters, and hierarchical
spatial pooling. However, their ability in handling significant
local and global image rotations remains limited [50], [51].
Zhou et al proposed the Oriented Response Networks for
rotation robustness, but it need extra rotating filters.
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VI. CONCLUSIONS

Overall, we have proposed a highly effective framework
for recognizing textures with extreme scale variations, first
searching scale proposals and then discarding errors in scale
proposals by exploring dominant texture primitives. We have
proposed a novel GANet network for better texture feature
learning. Extensive experiments on four challenging texture
benchmarks show that the proposed framework works much
better than existing methods, especially for those textures with
extreme scale variations. In addition, our method is efficient
since the scale proposal searching and reducing methods are
very fast.
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