The influence of Middle Range Energy Electrons on atmospheric chemistry and regional climate

P. Arsenovic a,*, E. Rozanov a, b, A. Stenke a, B. Funke c, J.M. Wissing d, K. Mursula e, F. Tummon a, T. Peter a

a Institute for Atmospheric and Climate Science ETH, Zürich, Switzerland
b Physical-Meteorological Observatorium Davos – World Radiation Center, Davos, Switzerland
c Instituto de Astrofisica de Andalucia, CSIC, Granada, Spain
d Universitäts-Observatorium, Lower Saxony, Germany
e ResOLVE Centre of Excellence, Oulu, Finland

1. Introduction

Energetic particles are one of the natural factors closely related to solar activity that can directly impact the chemical composition of the upper atmosphere. They can directly impact temperature and dynamics and can also have an indirect effect on polar surface temperatures (Seppälä et al., 2009; Rozanov et al., 2012). Their contribution to climate change is, however, not well established and typically not included in climate change assessments such as the 2013 Intergovernmental Panel on Climate Change (IPCC report, 2013).

Depending on their source and energy, energetic particles can be divided into five categories: galactic cosmic rays (GCR), solar energetic protons (SEP), low energy (auroral or plasmasheet) electrons (LEE), and middle and high energy (Van Allen radiation belt) electrons (MEE and HEE). GCR originate from outside of our solar system and consist largely of protons, ~10% helium nuclei and ~1% other elements, with energies ranging from about 1 MeV to 5 x 10^13 MeV (Grieder, 2001; Dorman 2004). Ionization by GCR maximizes at around 15 km altitude (Usoskin et al., 2010) over the polar areas and gradually decreases towards the equator. SEP originate from solar flares, coronal mass ejections, and accompanied interplanetary shocks. They occur as sporadic events and their kinetic energy is typically up to 500 MeV (Reames 1999; Cane et al. 2006). Ionization by SEPs is most pronounced in the Polar Regions (Jackman et al., 2008) and maximizes in the upper stratosphere. Energetic electrons originate from the solar wind and they can be trapped in the terrestrial magnetosphere (LEE), forming the aurora, or trapped in the outer Van Allen radiation belt where they can get accelerated during geomagnetic substorms and precipitate into the atmosphere (MEE and HEE) (Sinnhuber et al., 2012). LEE (< 30 keV) precipitate into the atmosphere from the Earth’s magnetospheric plasmasheet (Brasseur and Solomon, 2005) and ionize neutral molecules above 90 km.

* Correspondence to: Institute for Atmospheric and Climate Science ETH, Universitätsstrasse 16, 8092 Zürich, Switzerland.
E-mail address: pavle.arsenovic@env.ethz.ch (P. Arsenovic).
altitude inside the auroral oval (roughly 55°–70° geomagnetic latitude), but they are not capable of penetrating to lower latitudes (Baker et al., 2001; Barth et al., 2003). MEE precipitate continuously from the radiation belt (energies varying from 30 to 300 keV) by spiraling down into the sub-auroral zone and ionize neutral molecules (N₂ and O₂) mostly between 70 and 90 km altitude to produce nitrogen and hydrogen oxide radicals (Rusch et al., 1981; Solomon et al., 1981; Alikin 1994; Turunen et al., 2009; Egorova et al., 2011), which are known to deplete ozone in catalytic destruction cycles (Brasseur and Solomon, 2005). Finally, HEE (300 keV – several MeV) precipitate from the outer radiation belt and affect atmospheric chemistry below 70 km altitude (e.g., Bazelevskaya et al. 2008; Turunen et al., 2009).

Study of the lower thermosphere, mesosphere, and stratosphere essentially started in the second half of the 20th century. The chemical composition of the middle atmosphere and thermosphere was investigated using in situ measurements and remote sensing instruments and it has since become apparent that energetic particle precipitation can significantly influence atmospheric chemistry above the tropopause (e.g., Nicolet 1965, 1975; Weeks et al., 1972; Swider and Keneshea, 1973; Crutzen 1975; Solomon et al., 1982). The influence of energetic particles on the ozone layer and climate is a relatively new area of research. The effects of GCR have been analyzed by (Calisto et al., 2011), Semeñiuk et al. (2011), and more recently by Jackman et al. (2015). The simulated and observed effects of energetic SEP on the atmosphere have been widely presented in the literature (e.g., Jackman et al., 2009; Funke et al., 2011). Several groups have studied the influence of LEE. Baumgaertner et al. (2009) and Rozanov et al. (2012) applied state-of-the-art chemistry-climate models (CCM) and demonstrated that LEE substantially affect the ozone layer, stratospheric dynamics, as well as tropospheric climate during the cold season. However, these models did not include MEE and HEE electrons, which can underestimate the importance of energetic particles.

One of the first attempts to estimate the influence of MEE on the atmosphere was undertaken by Codrescu and Fuller-Rowell (1997). They used data obtained from the TIROS/NOAA polar orbiting satellites to characterize precipitating protons and electrons with energies in the range of 30 keV–2.5 MeV and used these data as inputs for the National Center for Atmospheric Research (NCAR) thermosphere ionosphere mesosphere electrodynamical general circulation model (TIME-GCM). They showed that MEE and HEE together significantly increased NOₓ ([N] + [NO] + [NO₂]) and HOₓ ([H] + [OH] + [HO₂]) leading to ozone loss of up to 27% between 70 and 80 km. This was in turn followed by small changes in temperature and wind. However, the potential climate effects of MEE were not considered in this work. Among others, a modeling study on energetic electrons was carried out using the Canadian Middle Atmosphere Model (CMAM; Semeñiuk et al. 2011). They used electron flux data from the Medium Energy Proton and Electron Detector (MEPED) for the period 1979-2006. The energy range of the electron data used in their model was 30–1000 keV and ionization rates were calculated using a simplified energy deposition code. Their results revealed significant increases of NOₓ and HOₓ in the mesosphere and upper stratosphere, which led to average mesospheric ozone depletion of up to 60% (80%) for boreal (austral) winter for the simulated period. These changes in ozone in turn influenced atmospheric temperature and dynamics. However, their experiments did not include the NOₓ produced by LEE resulting in low NO Mixing ratios in the upper stratosphere/mesosphere and an underestimation of the relative ozone depletion.

Limited understanding of MEE and their properties is reflected in the absence of reliable model parameterizations for the ionization induced by these particles. MEE precipitation into atmosphere is associated with high speed solar wind streams (Baker et al., 1993), which are most frequent during the declining phase of the solar cycle. On the other hand, a possible future grand solar minimum (Steinhilber and Beer, 2013) would lead to suppression of geomagnetic activity and a decrease in electron precipitation. In this case, the absence of MEE in models could result in an overestimation of the ozone increase in future, with consequent implications for climate. The direct ionizing effect leading to NOₓ and HOₓ production is constrained to the mesosphere. HOₓ is short-lived (lifetime of seconds-hours), while NOₓ has a longer lifetime (days-months). Therefore, HOₓ is more important near its production region in the mesosphere while NOₓ can be transported in the polar vortex (Solomon et al., 1982) to the stratosphere, inducing ozone depletion through catalytic chemical cycles. Ozone decreases lead to reduced heating and thus alters atmospheric dynamics, i.e. perturbations which may impact all the way down to the troposphere and Earth’s surface (Baumgaertner et al., 2011).

Recent progress in the calculation of ionization rates (Wissing and Kallenrode, 2009) makes it possible to consider MEE in global climate models. Furthermore, the availability of accurate observations of atmospheric composition (e.g., Funke et al., 2014; Andersson et al., 2014) can be used to validate model results.

2. Methods

We use the coupled chemistry-climate model SOCOL3-MPIOM (Stenke et al., 2013; Muthers et al., 2014), which consists of the general circulation model ECHAM5.4 (Roeckner et al., 2003) coupled to the chemistry module MEZON (Rozanov et al., 1999; Egorova et al., 2003) and the MPIOM ocean model (Marsland, 2003; Jungclaus et al., 2006). Parameterizations of GCR, SEP, and LEE were introduced identically as in Rozanov et al. (2012) and Anet et al. (2013). GCR ionization rates are parameterized as a function of geomagnetic latitude, pressure, and solar modulation potential. Daily vertical profiles of solar proton ionization rates are taken from Jackman et al. (2008), while the NOₓ flux into the model domain from the auroral zone is parameterized using the geomagnetic disturbance A index (Baumgaertner et al., 2009). HEE are not implemented due to the lack of an available parameterization.

The treatment of MEE in this model version is based on ionization rates obtained from the AIMOS version 1.6 dataset. AIMOS (Wissing and Kallenrode, 2009) is a 3D numerical model designed to calculate atmospheric ionization rates from energetic particle precipitation. AIMOS exploits a Monte Carlo approach and a sorting algorithm to assign observations from POES-15/16 and GOES-10/11 satellites to horizontal precipitation cells, depending on geomagnetic activity. The AIMOS data includes electrons, SEP, and alpha particles for the period 2002–2010. The highest MEPED electron channel, measuring electrons with energies exceeding 300 keV, is not included in the dataset as it does not have a proper upper energy range and is also contaminated (Yando et al., 2011). During periods of high proton flux, MEPED electron channels are not used at all. The electron energy range is 30–300 keV and unlike in previous versions where a positive bias was observed, there is no apparent overestimation of the electron ionization rate in version 1.6. In order to investigate the influence of MEE, we use daily ionization rates below 0.01 hPa (~80 km) from precipitating electrons.

Fig. 1a shows the hemispheric average of monthly mean ionization rates at 0.01 hPa. The period considered is characterized by different levels of solar and geomagnetic activities: the time period from 2002 to 2005 was rather active and characterized by very intense ionization, while after 2005 geomagnetic activity decreased, leading to lower ionization rates. Ionization rates in the Southern Hemisphere are higher than in the Northern Hemisphere.
at any time of the covered period. The red stars in Fig. 1a show the maximum and minimum monthly mean values of ionization rates, while the maximum and minimum vertical profiles of daily peak are shown in Fig. 1b. The maximum values appear in the second half of 2004 while minimum values are observed at the beginning of 2010. Ionization rates are highest at the model top (0.01 hPa) and decrease with altitude. The maximum ionization rate is four orders of magnitude higher than the minimum values. It should be noted that the magnitude of the applied ionization rates are up to ten times smaller than in Semeniuk et al. (2011).

Fig. 1. (A) Monthly and global mean ionization rates at 0.01 hPa (~80 km altitude). The vertical line separates periods of high (2002–2005) and low (2006–2010) geomagnetic activity. The blue (green) line: Northern (Southern) Hemisphere mean values while red stars indicate maximum and minimum ionization rates, (July 2004 and January 2010, respectively). (B) Vertical profiles of the peak daily ion pair production. The dash-dot (solid) line represents maximum (minimum) daily ionization rates for the 2002–2010 (October 28, 2003 and January 1, 2010, respectively). (C), (D)– Daily mean maximum ionization rates for the Northern (C) and Southern (D) Hemispheres for October 28, 2003. The black dot indicates the location of the geomagnetic pole (following Finlay et al., 2010). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 2. Zonal mean NO₃ difference (MEE – NOMEE) in ppbv for DJF (A) and JJA (B), averaged over the 2002–2005 period. Colored regions are significant at the 95% confidence level (calculated using a Student t-test). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
The geographic distribution of maximum ionization rates at 0.01 hPa is shown in Fig. 1c and d. The maximum electron ionization rates that occur on 28 October 2003 coincide with the one of the largest solar proton events of the past thirty years (Degestin et al., 2005). The center of the auroral oval is located at the geomagnetic pole (black dot in the Fig. 1c and d, following Finlay et al., 2010), and the asymmetric spatial distribution is caused by the drift of the loss cone. Electrons gyrate along the Earth’s magnetic field lines, bouncing from pole to pole. As they do so, some electrons get lost when they enter denser air at the poles. This loss intensifies when the magnetic field weakens in the area of the South Atlantic Anomaly (SAA) and particle precipitation therefore intensifies at the foot-points of the field lines crossing the SAA. The southern position of the SAA also causes the observed hemispheric asymmetry.

In the model ionization rates are converted to NO$_x$ and HO$_x$ production rates by assuming that 1.25 nitrogen atoms are produced per ion pair, from which 45% is ground-state atomic nitrogen and 55% is N(2D), which instantaneously convert to NO. The number of HO$_x$ particles produced per ion pair is parameterized as a function of altitude and ionization rate for daytime, polar summer conditions of temperature, air density, and solar zenith angle. This simplified treatment of NO$_x$ and HO$_x$ production in the mesosphere and upper stratosphere has been widely applied for the study of energetic particle effects on the atmosphere (e.g., Jackman et al., 2008; Funke et al., 2011; Semeniuk et al., 2011; Rozanov et al., 2012). This approach has been evaluated by comparison with more detailed treatments of the ion chemistry by Egorova et al. (2011) and Nieder et al., (2014). These studies confirmed that the accuracy of this approach is within 10–20% up to about 80 km altitude, for most of the species considered, including ozone. However, the production of HNO$_3$ driven by ion recombination cannot be properly reproduced.

We performed two ensemble experiments covering the 2002–
2010 period using our standard model configuration with approximately 3.75° horizontal resolution and 39 vertical levels from the surface up to 0.01 hPa (Muthers et al., 2014). The reference ensemble (hereafter referred to as NOMEE) consists, in terms of particles, of GCR, SEP, and LEE. The experiment (termed MEE) in addition includes MEE ionization rates from AIMOS. All other forcing data (solar irradiance, aerosols, greenhouse gases, ozone depleting substances, quasi-biennial oscillation) are kept the same between the experiments. Solar irradiance follows the 11-year solar cycle. Tropospheric aerosols are adapted from CAM3.5 simulations, while stratospheric aerosols are kept at background levels. Concentrations of greenhouse gases (GHGs) and ozone depleting substances (ODSs) follow the RCP4.5 scenario (van Vuuren et al., 2011), while the quasi-biennial oscillation (QBO) is nudged (see Anet et al., 2013). Each of the ensembles (MEE and NOMEE) consists of 6 members.

3. Results

We focus on the 2002–2005 period, when ionization by MEE is most pronounced.

During the polar night NO$_x$ does not get destroyed by photolysis and can be transported by atmospheric winds. In the presence of sunlight, however, its lifetime is only a couple days. Therefore, more pronounced and vertically extensive NO$_x$ enhancement is observed in the winter hemispheres (Fig. 2). In the Southern Hemisphere upper mesosphere the NO$_x$ increase exceeds 40 ppbv (or more than 100% relative to the reference case) and extends down to the stratopause. The magnitude of the simulated NO$_x$...
enhancement is slightly smaller than the 50–150 ppbv simulated by Semeniuk et al. (2011), which is to be expected since we apply much smaller ionization rates. The region of maximum increase is confined to the pole where sunlight is almost completely absent. In the Northern Hemisphere these features are less pronounced due to generally weaker ionization (see Fig. 1) and enhanced horizontal mixing across the vortex edge. Some NOx enhancement is also visible during the summer season, but mostly in areas outside the polar day zone. The spatial distribution of the NOx increase at 0.01 hPa (≈ 80 km) is better illustrated in Fig. 3, which suggests that the most pronounced NOx increase occurs in the regions with highest ionization rates. In winter, the extra NOx produced by MEE is retained inside the polar vortex and is not depleted because of the lack of photolysis (Funke et al., 2014). In the summer, NOx is locally produced in regions with high ionization rates, but the presence of sunlight in the Polar Regions leads to intense chemical destruction and less pronounced or even insignificant NOx increases. Stronger ionization rates in the Southern Hemisphere lead to higher amounts of NOx than in the Northern Hemisphere in both seasons. The weaker polar vortex in the Northern Hemisphere (Fig. 3a) leads to increased horizontal mixing of NOx across the vortex and thus a less defined shape compared to the Southern Hemisphere (Fig. 3d).

The seasonal and vertical structure of the MEE NOx enhancement over the Northern and Southern Polar Regions (60°–90°) is further illustrated in Fig. 4. Additional NOx production occurs above 64 km in all seasons, but maximizes during winter when sunlight is absent. The stronger wintertime descent inside the southern polar vortex facilitates deeper penetration of NOx into the stratosphere compared to the Northern Hemisphere (Rozanov et al., 2012). The NOx reaches down to altitudes of nearly 32 km, albeit the enhancement below 50 km is only marginally significant. The Northern Hemisphere pattern is strongly dominated by the large geomagnetic storms that occurred in November 2003, which resulted in a peak in NOx enhancement.

Because of its short lifetime, the seasonal and vertical structure of the HOx response to MEE over the Polar Regions (60°–90°) is only significant in the most upper model level in winter. Increases
of up to 2 ppbv and 6 ppbv are simulated in the Northern and Southern Hemispheres, respectively (not shown).

Some of the first experimental evidence that electron precipitation could produce significant HOx increase was provided by Verronen et al. (2011) and Andersson et al. (2012). They have shown that the HOx increase due to particle precipitation is confined to the upper mesosphere (70–78 km altitude). The geographical distribution of the MEE HOx response at 0.01 hPa is illustrated in Fig. 5; increases of up to 12 ppbv are simulated. This enhancement is only visible in winter and translates to a HOx increase of up to 45% in the Northern Hemisphere and almost 250% in the Southern Hemisphere. Again, the location of the enhancement corresponds to the location of peak MEE ionization rates. During summer no statistically significant impact on HOx is seen because of its extremely short lifetime and because the MEE response is masked by photolysis of water vapor. The magnitude of the HOx increase is lower than the annual mean response of 7 ppbv simulated by Semeniuk et al. (2011), again due to the smaller ionization rates applied in this study.

To evaluate the simulated NOx ([N]+[NO]+[NO2] +2[N2O5] +[HNO3] +[HNO4] +[CINO3]) we compare our results with observations from the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) instrument, which flew onboard the ENVISAT satellite (Funke et al., 2014). Fig. 6 shows NOx averaged over 70–90° N/S at 50, 60 and 70 km altitude for both the Northern and Southern Hemisphere. The seasonal cycle of NOx within the polar caps is driven by a number of processes including in situ chemical production/destruction, exchange with mid-latitudes and in situ production from different precipitating energetic particles, as well as thermospheric NOx produced by LEE and transported downward during polar winter. The model represents the features of the NOx seasonal cycle reasonably well. For example, the NOx enhancements caused by SEP in October 2003 and January 2005 are well simulated. The increase of NOx after the breakdown of the polar vortex caused by enhanced horizontal transport of NOx from the mid-latitudes is also captured, as is the wintertime influx of NOx from the thermosphere. However, the magnitude of these events is not in a good agreement with the satellite observations. The Northern Hemisphere winter 2008/2009 was characterized by weak geomagnetic activity and low ionization rates, while dynamically-initiated major sudden stratospheric warmings in December 2003 and January 2009 led to massive intrusions of thermospheric NOx into the stratosphere. This event is clearly visible in the MIPAS observations even down to 50 and 60 km (Funke et al., 2014). However, our model in free running mode and at the relatively low horizontal resolution does not properly simulate such events. The NOx peaks in October 2003 and January 2005 are caused by SPE, which are underestimated in the model simulation except at 50 km. However, at this altitude, the modeled NOx shows less sensitivity to the ionization rates, and simulated NOx is overestimated compared to MIPAS observations during this geomagnetically inactive period. The inclusion of MEE improves the representation of NOx at 60 and 70 km, particularly during geomagnetically active periods; however, substantial underestimation of NOx during winter remains an issue. This requires the development of new parameterizations for the treatment of NOx influx from the thermosphere.

A simulation without energetic particles (not shown) suggests that almost all NOx at 70 and 60 km results from energetic
particles; their exclusion from the model would lead to a significant underestimation of NO\textsubscript{x} and thus an overestimation of ozone at these altitudes.

Fig. 7 illustrates seasonal changes in ozone mixing ratios resulting from MEE. The main ozone loss occurs in the upper mesosphere (70-80 km altitude) and is driven by reactions involving the NO\textsubscript{x} and HO\textsubscript{x} families (Sinnhuber et al., 2012). MEE strongly impact ozone in the Southern Hemisphere during winter (JJA) where ozone depletion reaches up to 200 ppbv (about 40%) in the upper mesosphere and up to 120 ppbv (~2.5%) in the upper stratosphere. In the Northern Hemisphere winter ozone depletion is slightly smaller, reaching 150 ppbv (about 25%) in the upper mesosphere. Ozone depletion is also visible down to the upper stratosphere, but is not statistically significant below 1 hPa. Semeniuk et al. (2011) found even larger ozone decreases in the mesosphere in response to MEE (more than 1 ppbv or up to 80% during austral winter), which, again, can be explained by larger ionization rates used.

Following Andersson et al. (2014) we compare vertical profiles of ozone anomalies in the Northern Hemisphere during geomagnetically active (2003/2004) and inactive (2008/2009 and 2009/2010) periods (Fig. 8). Anomalies are calculated compared to a climatology from all winter seasons (NDJF) over the 2002–2010 period and averaged over the auroral oval (55°–70°N). During active periods there is up to 15% less ozone in the upper mesosphere and up to 8% less in the upper stratosphere. Without MEE, anomalies shows large variability between ensemble members and on average do not exceed 5% in the upper stratosphere. In contrast, during inactive periods, there is a positive ozone anomaly in the upper mesosphere of up to 5% and up to 3% in the upper stratosphere. Andersson et al. (2014) used satellite observations and also found similar MEE impacts on ozone, with negative ozone anomalies (up to 15%) in the mesosphere during active periods and positive anomalies in the mesosphere during inactive years (again up to 15%), which emphasizes the importance of MEE for the atmospheric chemistry.

Winter zonal mean temperature and zonal wind changes resulting from MEE are shown in Figs. 9 and 10, respectively. Ozone
loss confined to the layers above 1 hPa during all winter months (see Fig. 7) leads to lower heating rates and colder temperatures in the sunlit part of the high latitudes, which is not compensated by the small warming induced by the decrease of infrared cooling rates (see Karami et al., 2015). This cooling provides the necessary conditions for the statistically significant acceleration of the winter mean northern polar vortex by up to 7 m/s. A stronger polar vortex leads to the intensification of the descent and adiabatic warming in the mesosphere (e.g., Limpasuvan et al., 2005), which compensates for the initial cooling due to ozone depletion. As a result, the temperature changes above 1 hPa are only marginally significant. In the middle stratosphere acceleration of the zonal winds prevents horizontal heat and species transport leading to cooling and ozone reduction (albeit not significant). The same processes operate over the Southern Hemisphere, however due to the stronger and more stable vortex the changes are slightly less significant and shifted downwards. Semeniuk et al. (2011) found a significant equatorward shift of the Northern Hemisphere polar

Fig. 11. Spatial distribution of 2 m temperature difference (MEE – NOMEE) in K for DJF (upper plot) and JJA (lower plot) averaged over 2002–2005. Dashed line circles the regions with 90% and solid line with the 95% confidence level (calculated using a Student t-test).
vortex, with simultaneous significant decreases in temperature of up to 1 K near 50–60°N in the lower stratosphere and increases of up to 1 K above the stratopause. These features are consistent with our results, but the locations of the significant changes are slightly different. In austral winter we find conflicting results. Whereas Semeniuk et al. (2011) show warming in the stratosphere and cooling (both up to 3 K) in the mesosphere, our model simulates the opposite response. Our results are, however, consistent with the acceleration of the polar vortex. Using the ERA reanalysis, Seppälä et al. (2013) also found that high geomagnetic activity can drive a strengthening of the Northern Hemisphere polar vortex, with warming in the polar upper stratosphere and cooling below. A further study (Karami et al., 2015) showed a similar temperature response to our results in the Southern Hemisphere, but a reversed in sign for the Northern Hemisphere. However, direct comparison is not possible because the ozone perturbations scenario used for their study is different from the ozone response simulated with our model. Additionally, our results indicate significant warming over Antarctica in the lower troposphere of up to 1 K.

MEE precipitation influences not only chemistry and climate in the upper atmosphere, but also the surface climate. Intensification of the polar vortex is known to force a positive phase of the Northern/Southern Annular modes (Limpasuvan et al., 2005). In the Northern Hemisphere the positive phase of the Northern Annular Mode (NAM) results in cooling of the Polar Regions and warming of up to 2 K over continental Asia (Fig. 11). A positive temperature anomaly is also seen over Northern America, however this is not statistically significant. A recent study by Chiodo et al. (2016) confirmed this mechanism by showing that the cooling of the tropical stratosphere due to the decrease in UV radiation leads to a weakening of the Northern Hemispheric polar vortex, a negative phase of NAM, and thus warming in the Polar Region and simultaneous cooling in mid-latitudes.

During austral winter an increase of sea level pressure over Antarctica leads to a deceleration of westerly winds around 60 °S and thus a negative phase of Southern Annular Mode (SAM). This effect induces warming of up to 3 K over Antarctica (Kwok and Comiso, 2002), which can influence ice melt over longer timescales. Further investigation of this effect is beyond the scope of this paper. If the model accurately reproduces observed NOx ozone depletion will likely be larger leading to larger thermal and dynamical responses in the middle atmosphere and amplification of the simulated surface signal.

4. Conclusions

During geomagnetically active periods (e.g. 2002–2005), MEE (with energies ranging 30–300 keV) lead to significant increases of NOx (up to 150%) and HNO3 (up to 250%) in the polar mesosphere, which in turn result in ozone depletion. Ozone decreases are particularly evident during geomagnetically active years over the auroral oval (55°–70°N/S) when negative anomalies of up to 15% and 8% are seen in the mesosphere and stratosphere, respectively, compared to the climatological mean state. Dynamical changes are also seen during winter, with an intensification of the polar vortex and negative temperature anomalies in the middle stratosphere. Furthermore, a significant surface temperature response is detected over Antarctica during austral winter and over central and eastern Asia during boreal winter. The comparison of simulated NOx with MIPAS data showed that the implementation of a parameterization to represent MEE improves the agreement, especially during geomagnetically active periods. However, a substantial underestimation of winter NOx above 50 km even during the quiet periods remains. This model deficiency can be explained by the underestimation of the downward flux of NOx from the thermosphere and calls for an improvement of the parameterization applied here. A new parameterization is required to better simulate the magnitude of potential NOx decreases, particularly during periods of low solar activity relative to present day conditions. MEE produce thermal and dynamical changes in the atmosphere, even down to the surface, and are thus potentially of importance to climate change. Our results indicate that the inclusion of MEE in chemistry-climate models is crucial.

Acknowledgments

This work has been supported by the Swiss National Science Foundation under Grant CRSII2-147659 (FPSOL II). F. Tummon has been supported by the Swiss National Science Foundation under Project 20F211_138017. This work is a part of ROSMIC WGI activity within the SCOSTEP VariSET program. We also would like to acknowledge the financial support by the Academy of Finland to the ResoLVE Centre of Excellence (project no. 272157). We thank Aleš Kuchář from Charles University, Prague, Czech Republic for assistance with improving the graphics.

References
