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A Constrained Sparse-Representation-Based Binary
Hypothesis Model for Target Detection in

Hyperspectral Imagery
Qiang Ling , Yulan Guo , Zaiping Lin, Li Liu, and Wei An

Abstract�In this paper, we propose a novel constrained sparse-
representation-based binary hypothesis model for target detection
in hyperspectral imagery. This model is based on the concept that a
target pixel can only be linearly represented by the union dictionary
combined by the background dictionary and target dictionary,
while a background pixel can be linearly represented by both the
background dictionary and the union dictionary. To be physically
meaningful, the non-negativity constraint is imposed to the weight
vector. To suppress the target signals in the background dictionary,
the upper bound constraint is also imposed to the weight vector.
These upper bounds are adaptively estimated by the similarities
between the atoms in the background dictionary and target.
Then, the weight vectors under different hypotheses are recovered
by a fast coordinate descent method. Finally, both the residual
difference and weight difference between the two hypotheses are
used to perform the target detection. An important advantage of
the proposed method is the robustness to varying target contam-
ination. Extensive experiments conducted on real and synthetic
hyperspectral datasets have demonstrated the superiority of the
proposed detector in detection performance and computational
cost. Speci�cally, for the Avon dataset, our method achieves the
highest area under the receiver operating characteristic (ROC)
curve of 99.91%, and achieves the shortest runtime of 109.76 s.

Index Terms�Binary hypothesis, constrained sparse represen-
tation (SR), hyperspectral imagery (HSI), target detection.

I. INTRODUCTION

HYPERSPECTRAL imagery (HSI) has opened up new
opportunities for the target detection due to the abundant

spatial and spectral information of distinct objects [1]. Unlike
the traditional spatial-information-based image processing tech-
niques, the rich spectral information available in HSI data can be
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used to build more elaborate spatial–spectral models to achieve
a more accurate target detection. Hyperspectral target detec-
tion aims to locate all instances of an target in a scene with
prior spectral characteristics of target. It has been widely used
in many civilian and military applications including agricul-
tural estimation [2], mineral exploration [3], food safety and
quality monitoring [4], search and rescue [5], and explosive
detection [6].

With prior spectral characteristics of target, target detection
can be considered as a binary classifier where pixels are labeled
as target or background. Therefore, target detection algorithms
are typically derived from the binary hypothesis model (i.e., tar-
get absent hypothesis and target present hypothesis). According
to the model used for spectral variation, classical target detec-
tion approaches can be classified into three types: probabilistic
model, subspace model, and hybrid model. Probabilistic models
assume that the background or target can be modeled with a spe-
cific distribution, e.g., multivariate normal distribution [7], ellip-
tically contoured distribution [8], and finite mixture distribution
[9]. Well-known probabilistic models include spectral matched
filter (SMF) [7] and adaptive coherence estimator (ACE) [10].
The SMF first estimates the background covariance matrix, and
then, adopts the generalized likelihood ratio test to perform
detection with a single target spectrum. Subspace models as-
sume that the background or target lies in a low-dimensional
subspace, but the distribution within the subspace does not mat-
ter. Well-known subspace models include orthogonal subspace
projection (OSP) [11] and sparsity-based detectors [12], [13].
The OSP assumes that target has some components orthogonal
to the background subspace, and detects target by maximiz-
ing the signal-to-noise ratio (SNR) in the subspace orthogonal
to the background subspace. Hybrid models employ both the
probabilistic model and the subspace model. The well-known
hybrid models include matched subspace detector (MSD) [14]
and target-constrained interference-minimized filter [15]. The
MSD is modeled using the target and background subspaces
constructed by significant eigenvectors. Meanwhile, it assumes
that the binary hypothesis follows a multivariate normal distri-
bution with the same scaled identity covariance matrix but dif-
ferent means [13]. Besides, many nonparametric methods have
also been proposed. Examples include kernel-based detectors
[16], [17], manifold-based detectors [18], [19], tensor-based
detectors [20], [21], and multitask-learning-based detectors
[22], [23].
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In recent years, sparse representation (SR) has been success-
fully applied to HSI target detection [12], [13], [22], [24], [25].
The basic sparsity-based detector [12] uses a sparsity model to
represent the test pixel by a few training samples, and directly
employs the residuals (i.e., reconstruction errors) to perform the
target detection. The simultaneous joint sparsity detector [24]
forces the pixels within a small neighborhood to be simultane-
ously represented by a few common training samples but with
different weights. The sparse-representation-based binary hy-
pothesis (SRBBH) detector [13] effectively combines SR and
binary hypothesis, then sparsely and separately represents the
test pixel with different training samples under different hy-
potheses. There are two advantages of these sparsity-based de-
tectors, which are as follows: 1) the background data do not have
to follow any specific statistical distribution and 2) compared
to algorithms using a single target spectrum (such as SMF), the
target spectral characteristics are better represented by sparsity-
based detectors as the target subspace constructed by prior target
spectra is used. These sparsity-based detectors usually use only
the residuals to detect targets. Actually, the weight is also an
important information for the target detection as it represents
the target or background fraction of a test sample.

However, the detection performance of most existing
detectors degenerates when the background is contaminated
by outliers or pixels with target signal [26]. Due to the limited
number of training samples selected in background dictionary,
sparsity-based detectors are especially sensitive to target con-
tamination. For probabilistic models, this contamination results
in a corruption of the estimated background covariance matrix
[27]. Therefore, many robust covariance matrix estimation
methods, such as quasi-local estimation [28] and minimum
covariance determinant [29], have been proposed. For subspace
models, this contamination results in a corruption of the esti-
mated background subspace. The background subspace, which
employs the first few principal components to identify the large
variance directions, can be robustly estimated by robust prin-
cipal components methods [30], [31]. The hybrid sparsity and
statistics (HSS) detector [25] incorporates the statistical distri-
bution characteristics with the sparse representation theory. To
handle target contamination, a purification process is also em-
ployed to obtain a pure background dictionary. Another example
to alleviate the effect of target contamination is the support
vector machine (SVM) [32], which introduces a regularization
term with slack variables to avoid overfitting caused by outliers.

In this paper, a robust HSI target detection method is proposed
based on constrained sparse representation and binary hypothe-
sis model (CSRBBH). Similar to other sparsity-based detectors,
it is a nonparametric model without requiring any background
statistical information. Unlike other sparsity-based detectors,
two constraints are imposed to the weight vector. First, the non-
negativity constraint is imposed for physical meaning. Second,
the upper bound constraint is imposed to suppress the target
signals in the background dictionary. The motivation lies in the
suppression of atoms that are similar to target in the background
dictionary. That is, the weights of atoms similar to the target are
given small upper bounds, and the weights of atoms different
from the target are given large upper bounds. Therefore, adap-

tive estimation of the upper bound vector is achieved. Another
difference between our method and the existing sparsity-based
methods is, both the residual difference and weight difference
between the two hypotheses are used to detect targets in our de-
tector, resulting in an improved detection performance. More-
over, our sparsity model is solved by a fast dual coordinate
descent (DCD) method. The contributions of this paper can be
summarized as follows.

1) A CSRBBH model is proposed. Both non-negativity con-
straint and upper bound constraint are imposed to the
weight vector. This model is nonparametric and physi-
cally meaningful.

2) Both the recovered residual and weight information are
used in the proposed detector. This fully exploits the
weight difference and residual difference between the two
hypotheses to achieve a better detection performance.

3) The upper bound vector is adaptively estimated. This es-
timation is invariant to spectral intensity and can suppress
target signals in the background dictionary. Consequently,
the proposed detector is robust to target contamination.

The rest of this paper is organized as follows. The pro-
posed CSRBBH algorithm and its implementation details are
described in Section II. Experiments on real HSI datasets
are presented in Section III, followed by the conclusions in
Section IV.

II. CSRBBH FOR TARGET DETECTION

In this section, we propose a CSRBBH model for the target
detection. First, the proposed CSRBBH model is derived from
the SRBBH model with constraints on the weight vector. Then,
the adaptive estimation of the upper bound vector is described
in details. Finally, the scheme and some implementation tricks
of the proposed detector are introduced.

A. SRBBH Model

In the SRBBH model [13], a pure background is assumed to
lie in the background subspace, and a pure target or a subpixel
target is assumed to lie in a low-dimensional union subspace
(which is combined by the target and background subspaces).
Therefore, the union of the target and background dictionaries
can linearly and sparsely represent a pure target or a subpixel tar-
get, while the single background dictionary cannot. This binary
hypothesis model is expressed as

H0 : y = Ab� + n0 , target absent

H1 : y = Ab�b + At�t + n1 = A� + n1 , target present
(1)

where y denotes the test pixel, A = [Ab ,At ] � RM ×(Nb +Nt )

denotes the union dictionary consisting of the background dic-
tionary Ab and target dictionary At , M denotes the number of
bands, Nb and Nt denote the number of atoms in Ab and At ,
respectively. � is the weight vector corresponding to Ab under
hypothesis H0 . �b and �t are the weight vectors corresponding
to Ab and At under hypothesis H1 , respectively. � = [�T

b ,�T
t ]T
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is a sparse vector concatenated by �b and �t . n0 and n1 are
noise terms.

With a specific sparsity level, the sparse vector � and � can
be recovered by solving

min
�

�y � Ab��2
2 s.t. ���0 � K

min
�

�y � A��2
2 s.t. ���0 � K (2)

where �•�0 denotes the l0 norm, and K is a given upper bound on
the sparsity level. These problems can be approximately solved
by the orthogonal matching pursuit (OMP) [33] method.

This recovery process implicitly leads to a competition be-
tween hypothesis H0 and hypothesis H1 . The residuals recov-
ered by these two hypotheses are

r0(y) = �y � Ab�̂�2

r1(y) = | |y � A�̂| |2 . (3)

Then, the class label of the test pixel y can be determined by
comparing these residuals

DSRBBH(y) = r0(y) � r1(y). (4)

B. CSRBBH Model

Similar to the SRBBH algorithm, the binary hypothesis model
(1) is also used in our CSRBBH algorithm. According to the
linear mixture model (LMM), each mixed pixel can be lin-
early represented by several endmembers (pure pixels) weighted
by their corresponding abundances [34]. These abundances are
non-negative and their sum is equal to one. Due to the varia-
tion of illumination and atmosphere condition, the spectra of
an object exhibit significant intensity variations throughout all
spectral bands [35], especially when the prior target spectra are
collected from other HSIs or measured by ground experiments.
This strong spectral variability is the main criticism about the
abundance sum-to-one constraint [36]. Consequently, we only
impose the non-negativity constraint on the weight vector. Then,
the optimization problem of the hypothesis H1 is changed to

min
�

�y � A��2
2

s.t. �i � 0, i = 1, . . . , N (5)

where N = Nb + Nt is the number of atoms in the union dic-
tionary A. The objective function can be replaced by

�y � A��2
2 = (y � A�)T(y � A�)

= �TATA� � 2yTA� + yTy (6)

where yTy is a constant and can be removed from the objective
function.

Note that, compared to the SRBBH model, the sparsity con-
straint ���0 � K is removed in (5). This is due to the Karush–
Kuhn–Tucker (KKT) conditions [37] (which are applied to
constrained convex optimization problems). According to the
KKT conditions, the sparsity of optimal solution �� can still be
guaranteed after removing this sparsity constraint, more details
can be found in [38].

In practice, the background dictionary Ab is usually gener-
ated locally by a sliding dual window centered at the test pixel
y [39], while the target dictionary At is usually obtained by a
spectrometer in ground experiments or endmember extraction
from HSI. However, during the sliding process of the dual win-
dow, some target pixels may inevitably fall into Ab , especially
when targets are densely and evenly distributed in the scene.
This will lead to an impure background dictionary for the test
pixel and result in a weakened discriminative performance [25].
To avoid this problem, we introduce parameters Ci as the upper
bound of �i to limit the weights of target atoms presented in
Ab . Then, the optimization problem of hypothesis H1 can be
described as

min
�

�TATA� � 2yTA�

s.t. 0 � �i �
�

Ci i = 1, . . . , Nb
+� i = Nb + 1, . . . , N (7)

where Ci � 0. If all atoms in At are set with small Ci , and
the spectral intensities of these atoms are much smaller than
the test target pixel, the test target pixel cannot be effectively
recovered. Therefore, Ci corresponding to the atoms in At are
set to +�. The rest Ci are used to construct an upper bound
vector C(C = [C1 , . . . , CNb ]T). Apparently, Ci corresponding
to target pixels presented in Ab should be small, and Ci cor-
responding to background pixels should be large. The adaptive
estimation of C will be described in Section II-C.

To maintain the comparability between the hypotheses H0
and H1 , the same upper bound constraints for the atoms in Ab
are also used in the hypothesis H0 . Similarly, we can obtain the
optimization problem of the hypothesis H0 as

min
�

�TAT
b Ab� � 2yTAb�

s.t. 0 � �i � Ci, i = 1, . . . , Nb. (8)

The optimization problem of (8) can be replaced by

min
�̃

�̃TATA�̃ � 2yTA�̃

s.t. 0 � �̃i �
�

Ci, i = 1, . . . , Nb
0, i = Nb + 1, . . . , N (9)

where �̃T = [�T , 0T ], 0 is an Nt × 1 vector of all zeros.
Equations (7) and (9) are very similar to the Lagrange dual

problem of the linear SVM [40]. They are quadratic program-
ming problems and can be solved by a standard quadratic pro-
gramming solver with a computational cost of O(N 3), which
is too expensive. Due to the extensive applications of the SVM
over past decades, many fast methods have been proposed to
solve these problems, such as the cutting plane method [41], the
bundle methods [42], and the exponentiated gradient method
[43]. In this paper, a DCD method [44] is employed to solve
these problems.

Similar to the SRBBH, once the optimal solution �̃� and ��

are obtained, the residuals can be calculated by

r0(y) = �y � A�̃��2 (10)

r1(y) = �y � A���2 . (11)



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING

Different from the SRBBH, both the residuals and weights
are used to detect targets

DCSRBBH(y) = ��̃� � ���1 (r0(y) � r1(y)) (12)

where �•�1 denotes the l1 norm. ��̃� � ���1 denotes the weight
difference between hypotheses H0 and H1 , and r0(y) � r1(y)
denotes their residual difference. If DCSRBBH(y) is larger than a
given threshold, then y is labeled as target.

If y is a pure background pixel, �̃� and �� are very similar,
then ��̃� � ���1 is close to 0. Meanwhile, both r0(y) and r1(y)
are close to 0, hence, the detection value DCSRBBH(y) is close to
0. In contrast, if y is a pure target pixel or a mixed target pixel,
�̃� and �� are different, then ��̃� � ���1 is large. Meanwhile,
r0(y) is large, r1(y) is close to 0, hence, the detection value
DCSRBBH(y) is much larger than 0. Therefore, the differences
between the background pixels and target pixels are enlarged by
multiplying the weight difference with the residual difference.

C. Estimation of the Upper Bound Vector

In this section, the upper bound vector C is adaptively esti-
mated to suppress the target signals in the background dictio-
nary Ab . As aforementioned, Ci corresponding to target pixels
presented in Ab should be small, and Ci corresponding to back-
ground pixels presented in Ab should be large. Therefore, a
similarity measurement is required to determine which pixels
are more likely to be a target. To achieve invariance to spectral
intensities, the correlation coefficient [45] � is used in this paper

�(x,y) =
(x � x̄)T(y � ȳ)

�x � x̄�2 �y � ȳ�2
(13)

where � � [�1, 1], x,y � RM denotes the M -dimensional
spectral vectors, x̄ and ȳ denotes the average value of x and
y, respectively. An � close to 1 represents a high similarity be-
tween x and y. This similarity measurement has been widely
used in the hyperspectral classification [46]. One of the most
important property of the correlation coefficient is its invariance
to multiplicative scaling

�(k1x + b1 , k2y + b2) = �(x,y) (14)

where k1 , k2 > 0. This property means that the correlation co-
efficient between two pixels is invariant to spectral intensities,
and sensitive to spectral shape.

For each pixel ai in Ab , its correlation coefficients to all
prior target spectra are first calculated. Then, due to the multiple
type of prior target spectra, the maximum of these correlation
coefficients are considered as the similarity of ai to target

si = max{�(ai ,aj ) | j = Nb + 1, . . . , N} (15)

where i = 1, . . . , Nb .

Finally, we use a piece-wise function to map this similarity
to the upper bound Ci as

Ci =

�
�����

�����

+�, si < smin
1

2�Nb
+

1
2�Nb [1 + ek(si �s0 ) ]

, smin � si � smax

1
2�Nb

, si > smax

(16)
where s0 = (smin + smax)/2, smin, smax, and k are given parame-
ters. � denotes the fraction of target atoms in the background dic-
tionary. If smin � si � smax, the piece-wise function is a sigmoid
function, which is centrosymmetric at point (s0 , 3/(4�Nb)) and
whose bending degree is controlled by k. This sigmoid function
is close to 1/(2�Nb) if si is close to smax, and close to 1/(�Nb)
if si is close to smin.

If si < smin, ai is supposed to be a background pixel, then Ci
is set to +�. If smin � si � smax, ai can be a target pixel or a
background pixel, then the sigmoid function is used to estimate
Ci . Usually, due to the similar collection conditions within a
small region, the sum-to-one constraint is approximately sat-
isfied when representing a test background pixel. Considering
the background dictionary with contamination level �, there are
�Nb target atoms in Ab . Apparently, Ci < 1/(�Nb), so the sum
of Ci corresponding to the target atoms in Ab is smaller than
1. That means a test target pixel cannot be effectively recovered
by Ab . If si > smax, ai is supposed to be a target pixel, then Ci
is set to 1/(2�Nb) rather than 0. That is because, some back-
ground regions in a scene can be very similar to target. If Ci
is set to 0, Ci corresponding to the background atoms in these
regions are likely all set to 0. Consequently, the test background
pixel cannot be effectively represented, resulting in false alarms.
If Ci is set to 1/(2�Nb), the sum of Ci corresponding to the
background atoms in these regions can be larger than 1 due to
the redundant background information in Ab . Consequently, the
test background pixel can be recovered by Ab . Therefore, the
target signals in the background dictionary are suppressed by
this estimation.

Parameters smin, smax, and k in the sigmoid function need to
be estimated. We have computed the correlation coefficients be-
tween same materials and different materials under different data
collection platforms and instruments. It can be observed from
these data that, samples with correlation coefficients smaller
than 0.5 are very likely to be different materials, samples with
correlation coefficients larger than 0.9 are very likely to be
same materials, and samples with correlation coefficients be-
tween 0.5 and 0.9 can be same materials, different materials,
or mixed materials. Therefore, smin and smax are set to 0.5 and
0.9, respectively. k is set to 20 to ensure the sigmoid function
is close to 1/(2�Nb) at si = 0.9. Under these parameters, the
sigmoid function is shown in Fig. 1.

To detect a target pixel with its spatial neighbors contaminated
by target signals, the adaptive estimation of C can give small up-
per bounds on the weights corresponding to target atoms. There-
fore, the test target pixel cannot be effectively represented by
the background dictionary. In contrast, the test background pixel
can be effectively represented due to the large upper bounds on
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Fig. 1. Sigmoid function with Nb = 100, � = 5%, smin = 0.5, smax = 0.9,
and k = 20.

the weights corresponding to background atoms and the redun-
dant background information in the spatial neighborhood. Con-
sequently, although the background dictionary is contaminated
by target signals, targets can be detected due to the adaptive
estimation of C.

D. Final Scheme for the CSRBBH

The final scheme for the proposed CSRBBH algorithm is
described in this section. Some implementation tricks are used
to accelerate the CSRBBH. To be more suitable for the HSI
target detection, we have slightly modified the DCD method,
details are described in the Appendix. The gradient of the ob-
jective function is introduced as an additional both input and
output parameter in the modified DCD method. It will be used
in the following tricks. The semigradients of (7) and (9) can be
expressed as

Gb = Q�̃ + p, G = Q� + p (17)

where Q = ATA and pT = �yTA. The computational com-
plexity of Q and p is O(MN 2) and O(MN), respectively.

1) Trick 1: The calculation of C can be simplified. The cor-
relation coefficient between ai and aj can be replaced as

�(ai ,aj ) =
(ai � āi)T(aj � āj )

�ai � āi�2 �aj � āj �2

=
Qij � M āiāj�

(Qii � M āiāi)(Qjj � M āj āj )
(18)

where Qij , Qii , and Qjj can be extracted from Q. ā denotes the
average value of a. The computational complexity of all ā is
O(MN). Therefore, the computational complexity of the upper
bound vector C is O(MN + NtNb).

2) Trick 2: The modified DCD method can be accelerated
by a proper initial point. When solving (7) and (9), the DCD
requires an initial feasible solution (�̃,Gb) and (�,G). As
mentioned in the Appendix, the initial feasible solution is usu-
ally set to (0,p). This initialization strategy is adopted when

solving (9)

�̃ = 0, Gb = p. (19)

The same initialization strategy can also be adopted when
solving (7). In this case, solving (7) and solving (9) have similar
computational cost. Using the optimal solution information of
(9), we propose a more effective initialization strategy when
solving (7)

� = �̃�, G = G�
b . (20)

If y is a pure background pixel without any target compo-
nents, it can and only can be effectively represented by the atoms
in Ab . Therefore, the optimal solution of (7) and (9) will be the
same. In this case, the number of iterations is zero when solving
(7). Fortunately, targets are usually small and rarely present in
the scene, and most of the pixels in the scene are background
pixels. Therefore, the computational cost of solving (7) in the
whole scene can be ignored.

3) Trick 3: The computational cost of calculating the resid-
uals can also be reduced. Combining (6), (11), and (17), r1(y)
can be calculated in a more efficient way as

r1(y) =
�

�*TATA�� � 2yTA�� + yTy

=
�

�*T(G� + p) + yTy. (21)

The computational complexity of (11) is O(MN), such op-
erations are expensive. While the computational complexity of
(21) is O(M + N), which is much smaller than O(MN). Sim-
ilarly, r0(y) can be calculated by

r0(y) =
�

�̃*T(G�
b + p) + yTy. (22)

As described in the Appendix, the modified DCD method is
terminated when the decrease of objective value reaches a tol-
erance �. Usually, a large tolerance � should be set for a large
absolute optimal objective value. To easily set � for different
HSI datasets with different ranges of pixel values, we linearly
normalize an HSI to interval (0, 1). In this paper, � is set to 10�6 .
Combining these tricks, the implementation details of the pro-
posed CSRBBH method are presented in Algorithm 1. The mod-
ified DCD method has a computational cost of O(log(1/�)N).
Therefore, the total computational complexity of our CSRBBH
algorithm is about O(MN 2 + log(1/�)N) for each test pixel.
As described in Algorithms 1 and 2, the maximum matrices to
save are A and Q, which have the space complexity of O(MN)
and O(N 2), respectively. Therefore, the space complexity of our
CSRBBH algorithm is about O(MN + N 2). Using the kernel
trick, the proposed CSRBBH algorithm can be easily extended
to a kernel version.

III. EXPERIMENTAL RESULTS

In this section, three widely used HSI datasets are first intro-
duced. Then, the capability of the proposed method to represent
a target pixel, a mixed pixel, and a background pixel is ana-
lyzed in details. The robustness of the proposed method with
respect to target contamination is also demonstrated. Finally, the
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Algorithm 1: The CSRBBH Algorithm for Target
Detection.
Input: Three-dimensional hyperspectral cube, target
dictionary At , dual window size (�in, �out), and parameter �.
Initialize: Linearly normalize the whole HSI.
for each test pixel y in the scene do
1) Collect Ab based on (�in, �out), A = [Ab ,At ];
2) Q = ATA, pT = �yTA. Calculate C by (16);
3) Initialize the solution of DCD by (19);
4) Solve (9) and obtain the optimal solution (�̃�,G�

b );
5) Initialize the solution of DCD by (20);
6) Solve (7) and obtain the optimal solution (��,G�);
7) Calculate r0(y) and r1(y) by (22) and (21);
8) Compute the detection result via (12).

end for
Output: Target detection map.

Fig. 2. Synthetic Urban dataset. (a) False color image. (b) Prior target spectra.
(c) Ground-truth map of Urban-I. (d) Ground-truth map of Urban-II.

detection performance and execution time of the proposed
method are compared to several existing methods.

A. Dataset Description and Evaluation Metrics

The first dataset was collected by the Hyperspectral Digi-
tal Image Collection Experiment (HYDICE) sensor. The whole
dataset has a size of 307 × 307, while a region in the lower right
with a size of 180 × 180 is selected for experiments, as shown in
Fig. 2(a). It covers an urban area, with a spatial resolution of 1 m.
This dataset has 210 bands covering the spectral range of 400–
2500 nm, with a spectral resolution of 10 nm. After removing the
water absorption bands and low SNR bands (1–4, 76, 87, 101–
111, 136–153, and 198–210), 162 available bands are remained.

Fig. 3. Avon dataset. (a) False color image. (b) Ground-truth map.

Based on the LMM, 36 target panels constructed by three target
spectra are implanted as a grid, which has in four rows and nine
columns. These three target spectra are selected from the vehi-
cles in the upper right of the whole scene, as shown in Fig. 2(b).
These 36 target panels are implanted into the scene with two
spatial distribution densities, namely, Urban-I and Urban-II. In
Urban-I, the target panels are sparsely distributed, the distances
between neighboring panels within each row and each column
are 40 pixels and 15 pixels, respectively, as shown in Fig. 2(c). In
Urban-II, the target panels are densely distributed, the distances
between neighboring panels within each row and each column
are both 10 pixels, as shown in Fig. 2(d). The sizes of the panels
in the first, second, third, and fourth rows are 1 × 1, 2 × 2,
3 × 3, and 4 × 4 pixels, respectively. The first–third columns
of these panels are mixed by target 1 and the background, the
fourth–sixth columns of these panels are mixed by target 2 and
the background, the seventh–ninth columns of these panels are
mixed by target 3 and the background. The target abundances
of these panels in each column (from left to right) are 10%,
30%, 50%, 10%, 30%, 50%, 10%, 30%, and 50%, respectively.
For this dataset, the target dictionary At is constructed by these
three vehicle spectra.

The second dataset was collected by a pushbroom hyperspec-
tral ProSpecTIR-VS sensor during the “SpecTIR Hyperspectral
Airborne Experiment 2012” (SHARE 2012) data collection
campaign [47]. From the Avon-morning reflectance data, a
region with a size of 330 × 330 is selected for experiments,
as shown in Fig. 3(a). It covers a driving park in Avon, south
of Rochester, NY, USA, with a spatial resolution of 1 m.
This dataset has 360 bands covering the spectral range of
400–2450 nm, with a spectral resolution of 5 nm. There are
24 tarps and three red or blue felts with 67 target pixels to be
detected in the scene, as shown in Fig. 3(b). For this dataset, we
select 5 pixels from different targets in the scene to construct
the target dictionary At .

The third dataset was collected by the Airborne Visi-
ble/Infrared Imaging Spectrometer sensor. The whole dataset
has a size of 400 × 400, while a region with a size of 300 × 300
is selected for experiments, as shown in Fig. 4(a). It covers a
naval air station in San Diego, CA, USA, with a spatial resolu-
tion of 3.5 m. This dataset has 224 bands covering the spectral
range of 370–2510 nm, with a spectral resolution of 10 nm.
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Fig. 4. San Diego dataset. (a) False color image. (b) Ground-truth map.

After removing the water absorption bands and low SNR bands
(1–6, 33–35, 97, 107–113, 153–166, and 221–224), 189 avail-
able bands are remained. There are six airplanes with 132 target
pixels to be detected in the scene, as shown in Fig. 4(b). For this
dataset, we select 6 pixels from different targets in the scene to
construct the target dictionary At .

The proposed CSRBBH algorithm was compared to several
existing methods including SMF [48], MSD [14], SVM with
composite kernel (SVM-CK) [49], SRBBH [13] integrated with
a purified background dictionary (SRBBH-PBD), and HSS inte-
grated with a purified background dictionary (HSS-PBD) [25].
Pixels falling between the inner and outer window regions are
used to construct the background dictionary Ab . For all de-
tectors, we use the same target dictionary At and background
dictionary Ab as the prior training samples. For the SMF, the
prior target spectrum is determined as the mean of the target
atoms in At . For the MSD, the significant eigenvectors of the
target and background covariance matrices are used to generate
the target and background subspaces [50]. For the SVM-CK,
the composite kernel combines the spectral and spatial features
via a weighted summation, where the commonly used Gaussian
radial basis function kernel is adopted [12]. For the SRBBH and
HSS, a purification process proposed in [25] is applied to the
background dictionary to handle target contamination.

The receiver operating characteristic (ROC) curve with con-
fidence intervals of the false alarm rate [51] is used for perfor-
mance evaluation. According to the detection map, a specific
threshold is applied to calculate the detection probability (Pd )
and false alarm rate (Pf ), which can be used to plot the ROC
curve. The ROC curve of a better detector lies close to the upper
left corner [52]. For each point on the ROC curve, the confi-
dence interval of false alarm rate can be computed using an
appropriate statistical model under a specific significance level.
Therefore, each ROC curve is surrounded by these confidence
intervals. If one ROC curve of a detector is on the upper left of
the other and their confidence intervals do not overlap, it can be
considered that this detector statistically performs better. Oth-
erwise, if the confidence intervals are overlapped, there is no
statistical difference. In this paper, the significance level is set
to 0.05.

However, if the detection probabilities of one detector are
higher than that of the other at some false alarm rates, but lower
than that of the other at other false alarm rates, the ROC curve

Fig. 5. Background dictionary Ab and target dictionary At . (a) Ab with 95
background atoms and five target atoms. (b) At with five pure target atoms.

cannot clearly distinguish which detector is better. In this case, it
is more proper to use the area under the ROC curve (AUC) [53]
to evaluate the comprehensive performance. The AUC value is
defined as the area between the ROC curve and the axis of false
alarm rate, it can be calculated by a number of trapezoids

AUC =
1
2

n�1	

i=1

(P i+1
f � P i

f )(P i+1
d + P i

d) (23)

where (P i
f , P i

d)(i = 1, . . . , n) denotes the ith point on the ROC
curve. n is the total number of these points. A larger AUC value
indicates a better detection performance.

B. Representation Ability

To illustrate the superiority of the proposed CSRBBH algo-
rithm, an experiment is conducted to reconstruct a target pixel,
a mixed target pixel, and a background pixel. First, we se-
lect 95 background samples from the boundary area between
grass and soil, and three target samples from the sports court
area in the Avon dataset. Two mixed target samples are sim-
ulated based on the LMM, one with 80% of target and the
other with 20% of target. All samples are used to construct
the background dictionary Ab , as shown in Fig. 5(a). The tar-
get samples are located at the 48th, 49th, 50th, 51st, and 52nd


















