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Abstract—In the context of the next generation wireless
networks, freshness of status update packets is essential for
enabling the services where a destination needs the most recent
measurements of various sensors. In this paper, we study the
information freshness of a multi-source M/G/1 first-come first-
served (FCFS) queueing model, where each source independently
generates status update packets according to a Poisson process.
The information freshness of the status updates of each source
is evaluated using the average age of information (AoI). To this
end, we derive a closed-form expression for the average AoI of
each source. As particular cases of our general expressions, we
also derive closed-form expressions of the average AoI for both
multi-source M/M/1 and single-source M/G/1 queueing models.

Index Terms– Information freshness, age of information (AoI),
multi-source M/G/1 queueing model.

I. INTRODUCTION

Recently, various services in wireless sensor networks
(WSNs) such as Internet of Things and cyber-physical control
applications have attracted both academic and industrial atten-
tion. In these networks, low power sensors may be deployed to
send their status updates about a random process to interested
destinations [1]–[3]. The status updates can include differ-
ent quantities such as temperature of a specific environment
(room, greenhouse, etc.), and a vehicular status (position,
acceleration, etc.) [1]. In order to have appropriate control
commands or decision making in the system, the destination
needs the most recent measurements of different sensors.
Accordingly, the key enabler for such systems is the freshness
of the sensor’s information at the destinations.

The traditional metrics such as throughput and delay can not
fully characterize the information freshness [2]–[4]. Recently,
the age of information (AoI) was proposed as a destination
centric metric to measure the information freshness [4]–[6].
The most common metrics of the AoI include average AoI,
peak AoI, and effective AoI [2], [7], [8].

From the viewpoint of queueing theory, AoI was first
studied in [4] where the authors derived the average AoI for a
single-source M/M/1 first-come first-served (FCFS) queueing
model. In [8], the authors proposed peak AoI as an alternative
metric to evaluate the information freshness. The average
AoI and average peak AoI for different packet management

policies in an M/M/1 queueing model were derived in [9].
The authors of [10] derived the average AoI for a multi-source
M/M/1 FCFS queueing model with two sources. The authors
of [11] considered a multi-source M/G/1 queueing system and
optimized the different arrival rates of each source to minimize
the peak AoI. The authors of [12] derived the closed-form
expression for the average AoI and average peak AoI in a
multi-source M/G/1/1 preemptive queueing model. In [3], the
authors introduced a new technique based on stochastic hybrid
systems to evaluate the AoI in finite-state continuous-time
queueing systems. In other words, this technique can not be
used for queueing models with the infinite queue size.

In this work, we derive a closed-form expression for the
average AoI of the different sources in a multi-source FCFS
M/G/1 queueing model. To the best of our knowledge, such a
result has not been derived earlier for this queueing model.
Differently from [4], [10]–[14], we consider both multiple
sources and an FCFS M/G/1 queueing model which has an
infinite queue size. Our result is the most general in the sense
that it can be used to derive the average AoI of both the
single-source FCFS M/M/1 queueing model in work [4], and
the single-source FCFS M/G/1 queueing model in work [14].
Moreover, we derive the average AoI for a multi-source M/M/1
queueing model, which was earlier addressed in work [10].
However, the authors in [10] derived an approximation for the
average AoI of the considered queueing model, resulting in a
different expression as derived in this paper.

The rest of this paper is organized as follows. The system
model and AoI definition is presented in Section II. The
closed-form expression for the average AoI for the multi-
source M/G/1 queueing model is derived in Section III.
Evaluation of the AoI is presented in Section IV. Finally, the
concluding remarks are expressed in Section V.

II. SYSTEM MODEL AND DEFINITIONS

We consider a system consisting of a set of independent
sources denoted by C = {1, . . . , C} and one server. Each
source observes a random process, which can represent, e.g.,
temperature, vehicular speed or location, at random time in-
stants. A remote destination is interested in timely information
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Fig. 1: Age of information of source c as a function of time.

about the status of these random processes. Status updates
are transmitted as packets, containing the measured value of
the monitored process and a time stamp representing the time
when the sample was generated.

For each source, the AoI at the destination is defined as the
time elapsed since the last successfully received packet was
generated. Next, we give a formal definition of the AoI.

Definition 1 (AoI). Let tc,i denote the time instant at which
the ith status update packet of source c was generated, and
t′c,i denote the time instant at which this packet arrives at the
destination. At a time instant τ , the index of the most recently
received packet of source c is given by

Nc(τ) = max{j|t′c,j ≤ τ}, (1)

and the time stamp of the most recently received packet of
source c is given by Uc(τ) = tNc(τ). The AoI of source c at the
destination is defined as the random process ∆c(t) = t−Uc(t).

An example of evolution of the AoI with time is shown in
Fig. 1. As it can be seen, ∆c(t) at the destination increases
linearly with time, until the reception of a new status update,
when the AoI is reset to the AoI of the newly received status
update, i.e., the difference of the current time instant and the
time stamp of the newly received update. The most common
metric for evaluating the AoI of a source at the destination
is the average AoI [2], [7], [8], which is considered in this
paper. Formally, let (0, τ) denote an observation interval.
Accordingly, the time average AoI of the source c at the
destination, denoted as ∆τ,c, is defined as

∆τ,c =
1

τ

∫ τ

0

∆c(t)dt. (2)

The integral in (2) is equal to the area under ∆c(t) which
can be expressed as a sum of disjoint areas determined by a
polygon Qc,1, Nc(τ) − 1 trapezoids Qc,i, i = 2, . . . , Nc(τ),
and a triangle Q̄c, as illustrated in Fig. 1. Following the
definition of Nc(τ) in (1), ∆τ,c can be calculated as follows:

∆τ,c =
1

τ

(
Qc,1 +

Nc(τ)∑
i=2

Qc,i + Q̄c

)

=
Qc,1 + Q̄c

τ
+
Nc(τ)− 1

τ

1

Nc(τ)− 1

Nc(τ)∑
i=2

Qc,i. (3)

The average AoI of source c, denoted by ∆c, is calculated
when τ →∞, i.e., ∆c = limτ→∞∆τ,c. The steady state rate

of generating the status update packets of source c is given by

λc = limτ→∞
Nc(τ)

τ
. Then, due to the ergodicity of Qc,i [2],

[4], [6]–[16], we have ∆c = λcE[Qc,i].
As depicted in Fig. 1, Qc,i can be calculated by sub-

tracting the area of the isosceles triangle with sides (t′c,i −
tc,i) from the area of the isosceles triangle with sides
(t′c,i − tc,i) + (tc,i − tc,i−1). Let the random variable Xc,i =
tc,i− tc,i−1 represent the ith interarrival time of source c, i.e.,
the time elapsed between the generation of packets c, i−1 and
c, i. From here onwards, we refer to the ith packet from source
c simply as packet c, i. Moreover, let the random variable
Tc,i = t′c,i − tc,i represent the system time of packet c, i,
i.e., the time interval the packet spends in the system which
consists of the sum of the waiting time and the service time.
Finally, we have

∆c = λcE[Qc,i] = λc

(
1

2
E[(Xc,i + Tc,i)

2]− 1

2
E[X2

c,i]

)
(4)

= λc

(E[X2
c,i]

2
+ E[Xc,iTc,i]

)
.

III. AOI IN A MULTI-SOURCE M/G/1 QUEUEING MODEL

We assume that the packets of source c are generated
according to the Poisson process with rate λc, c ∈ C. Let
ρc = λcE[S] be the load of source c, where E[S] is the mean
service time of each packet in the system. Since packets of
each source are generated according to the Poisson process,
and the sources are independent, the packet generation in the
system follows the Poisson process with rate λ =

∑
c∈C λc.

Moreover, the overall load in the system is given by ρ =∑
c∈C ρc = E[S]λ. Note that since we do not assume any

specific probability distribution function (PDF) for the service
time, the considered model is referred to as a multi-source
M/G/1 queueing model.

Next, we derive a closed-form expression for the average
AoI in (4) for each source in the considered multi-source
M/G/1 queueing model. The first term in (4) is easy to
compute. Namely, since the interarrival time of source c
follows the exponential distribution with parameter λc, we
have E[X2

c,i] = 2/λ2c . However, because the random variables
Xc,i and Tc,i are dependent, the most challenging part in
calculating (4) is E[Xc,iTc,i] which is derived in the following.
Let a random variable Sc,i denote the service time of packet
c, i. Since Tc,i=Wc,i+Sc,i, we can rewrite term E[Xc,iTc,i]
as

E[Xc,iTc,i] = E[Xc,iWc,i] + E[Xc,i]E[S], (5)

where Wc,i is the waiting time of packet c, i and we used the
fact that the interarrival time and service time of the packet
c, i are independent. Next, we will derive E[Xc,iWc,i]. In order
to calculate E[Xc,iWc,i], we follow the approach of [10] and
characterize the waiting time Wc,i by means of two events
EB
c,i and EL

c,i as follows:

EB
c,i =

{
Tc,i−1 ≥ Xc,i

}
, EL

c,i =
{
Tc,i−1 < Xc,i

}
. (6)

2019 IEEE Information Theory Workshop (ITW)



First, EB
c,i is the event where the interarrival time of packet

c, i is brief, i.e., the interarrival time of packet c, i is briefer
than the system time of packet c, i− 1. On the contrary, EL

c,i

refers to the complementary event where the interarrival time
of packet c, i is long, i.e., the interarrival time of packet c, i
is longer than the system time of packet c, i− 1.

Under the event EB
c,i, the waiting time of packet c, i contains

two terms: 1) the residual service time to complete serving
packet c, i− 1, and 2) the sum of service times of the packets
of other sources c′ ∈ C \ {c} that must be served before packet
c, i according to the FCFS policy. Under the event EL

c,i, the
waiting time of packet c, i is equal to the sum of service times
of the packets of other sources c′ ∈ C \ {c} that must be served
before packet c, i according to the FCFS policy. Thus, the
waiting time for packet c, i can be expressed as

Wc,i=

{
Tc,i−1 −Xc,i +

∑
c′∈C\{c}

∑
j∈MB

c′
Sc′,j , E

B
c,i∑

c′∈C\{c}
∑
j∈ML

c′
Sc′,j , EL

c,i,
(7)

where MB
c′ is the set of indices of packets of source c′ that

must be served before packet c, i under the event EB
c,i, where

|MB
c′ | = MB

c′ , and ML
c′ is the set of indices of packets of

source c′ that must be served before packet c, i conditioned
on the event EL

c,i, where |ML
c′ | = ML

c′ , c
′ ∈ C \ {c}. Fig. 2

depicts the evolution of the AoI as a function of time for the
event EB

c,i. For the case EB
c,i, let us further divide the waiting

time Wc,i in (7) into two terms SB1
c,i and SB2

c,i as follows. Let

SB1
c,i = Tc,i−1 −Xc,i (8)

represent the residual service time to complete serving packet
c, i− 1 and let

SB2
c,i =

∑
c′∈C\{c}

∑
j∈MB

c′

Sc′,j (9)

represent the sum of service times of the packets of other
sources c′ ∈ C \ {c} that must be served before packet c, i.
Similarly for the event EL

c,i, let

SL
c,i =

∑
c′∈C\{c}

∑
j∈ML

c′

Sc′,j (10)

represent the sum of service times of the packets of the
other sources c′ ∈ C \ {c} that must be served before packet
c, i. Based on the above definitions in (8), (9), and (10),
E[Xc,iWc,i] in (5) can be calculated as follows:

E[Xc,iWc,i] = P (EB
c,i)

(
E[SB1

c,iXc,i|EB
c,i]+ (11)

E[SB2
c,iXc,i|EB

c,i]

)
+ E[SL

c,iXc,i|EL
c,i]P (EL

c,i),

where P (EB
c,i) and P (EL

c,i) denote the probability of the
events EB

c,i and EL
c,i, respectively.

Next we derive each term of (11), starting from the ex-
pressions for P (EB

c,i) and P (EL
c,i). Then, by referring to

E[SB1
c,iXc,i|EB

c,i], E[SB2
c,iXc,i|EB

c,i], and E[SL
c,iXc,i|EL

c,i] in (11)
as the first, the second, and the third conditional expectation

term of (11), we present elaborate derivations of each of them
in Sections III-1, III-2, and III-3, respectively. The following
lemma gives the expression for P (EB

c,i) and P (EL
c,i) in (11).

Lemma 1. For each c ∈ C, the probabilities of the events EB
c,i

and EL
c,i in (6) are calculated as follows:

P (EB
c,i) =

LS(λc)(λ+ (ρ− 1)λc)−
∑
c′∈C\{c} λc′

λLS(λc)−
∑
c′∈C\{c} λc′

, (12)

P (EL
c,i) =

(1− ρ)λcLS(λc)

λLS(λc)−
∑
c′∈C\{c} λc′

, (13)

where LS(λc) = E[e−λcS ] is the Laplace transform of the
service time at λc.

Due to the space limitations, the proof is given in [17]. The
relation between the Laplace transform of the system time and
the service time is given as follows [18, Sect. 5.1.2]:

LT (a) =

(
1− ρ

)
aLS(a)

a− λ
(
1− LS(a)

) , HS(a), (14)

where we used the notation HS(a) to emphasize that LT is a
function of the Laplace transform of the service time.

1) The First Conditional Expectation Term of (11):
Let us now focus on the first conditional expectation term
E[SB1

c,iXc,i|EB
c,i] in (11). According to (8), this term is ex-

pressed as follows:

E[SB1
c,iXc,i|EB

c,i] = E[Tc,i−1Xc,i|EB
c,i]− E[X2

c,i|EB
c,i] (15)

=

∫ ∞
0

∫ ∞
0

xtfXc,i,Tc,i−1|EB
c,i

(x, t)dxdt−
∫ ∞
0

x2fXc,i|EB
c,i

(x)dx,

where fXc,i|EB
c,i

(x) is the conditional PDF of the interarrival
time Xc,i given the event EB

c,i and fXc,i,Tc,i−1|EB
c,i

(x, t) is the
conditional PDF of the interarrival time Xc,i and system time
Tc,i−1 given the event EB

c,i. They are given by the following
two lemmas (see the proofs in [17]).

Lemma 2. For each c ∈ C, the conditional PDF fXc,i|EB
c,i

(x)
is given by

fXc,i|EB
c,i

(x) =
λce
−λcx(1− FTc,i−1

(x))

P (EB
c,i)

. (16)

Lemma 3. For each c ∈ C, the conditional PDF
fXc,i,Tc,i−1|EB

c,i
(x, t) is given by

fXc,i,Tc,i−1|EB
c,i

(x, t) =


0 x > t

λce
−λcxfTc,i−1(t)

P (EB
c,i)

x ≤ t.
(17)

Now, having introduced the conditional PDFs in Lemma 2
and Lemma 3, we can compute the conditional expectation
E[SB1

c,iXc,i|EB
c,i] in (15). Based on Lemma 3, the first term in

(15) is calculated as (detailed steps can be found in [17]):

E[Tc,i−1Xc,i|EB
c,i] = (18)

1

P (EB
c,i)

(
−H ′′S(λc) +

H ′S(λc)

λc
+

E[Wc] + E[S]

λc

)
.
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Using Lemma 2, the second conditional expectation term
E[X2

c,i|EB
c,i] in (15) is calculated as follows:

E[X2
c,i|EB

c,i] = (19)
1

P (EB
c,i)

(
2

λ2c
−H ′′S(λc) +

2H ′S(λc)

λc
− 2HS(λc)

λ2c

)
.

Finally, substituting (18) and (19) in (15), the first condi-
tional expectation E[SB1

c,iXc,i|EB
c,i] in (11) is given by

E[SB1
c,iXc,i|EB

c,i] = (20)
1

P (EB
c,i)

(
E[Wc] + E[S]

λc
− H ′S(λc)

λc
+

2HS(λc)

λ2c
− 2

λ2c

)
.

2) The Second Conditional Expectation Term of (11):
The conditional expectation E[SB2

c,iXc,i|EB
c,i] in (11) can be

expressed as (detailed steps are presented in [17])

E[SB2
c,iXc,i|EB

c,i] =
E[S]

∑
c′∈C\{c} λc′

P (EB
c,i)

(21)(
2

λ2c
−H ′′S(λc) +

2H ′S(λc)

λc
− 2HS(λc)

λ2c

)
.

3) The Third Conditional Expectation Term of (11): To
calculate the third term E[SL

c,iXc,i|EL
c,i] in (11), we need to

determine the quantity
∑
c′∈C\{c}M

L
c′ which is the total num-

ber of packets of other sources c′ ∈ C \ {c} that must be served
before packet c, i under the event EL

c,i = {Tc,i−1 < Xc,i}.
This is determined by the following lemma which relies on
the PASTA (Poisson Arrivals See Time Averages) property of
Poisson arrivals [19, Sect. 7.1.2] (see the proof in [17]).

Lemma 4. The total number of packets
∑
c′∈C\{c}M

L
c′ that

must be served before packet c, i under the event EL
c,i is

stochastically equal to the number of arrived packets of other
sources c′ ∈ C \ {c} during Tc,i−1.

Consequently, the third conditional expectation term
E[SL

c,iXc,i|EL
c,i] in (11) can be calculated as (See [17])

E[SL
c,iXc,i|EL

c,i]=

∑
c′∈C\{c} λc′E[S]

P (EL
c,i)

(
H ′′S(λc)−

H ′S(λc)

λc

)
.

(22)

Finally, substituting the event probabilities P (EB
c,i) and

P (EL
c,i) in Lemma 1 and the three derived conditional ex-

pectation terms (20), (21), and (22) into (11), the average AoI
of source c is given as

∆c = E[Wc] + 2E[S] +
2HS(λc)

λc
−H ′S(λc)−

1

λc
(23)

+ E[S]
∑

c′∈C\{c}

λc′

(
2

λc
+H ′S(λc)−

2HS(λc)

λc

)
,

where the average waiting time for each packet of source

c ∈ C, E[Wc], is given as E[Wc] =
E[S2]λ

2(1− E[S]λ)
[20], where

E[S2] is the second moment of the service time, HS(λc) is a
function of the Laplace transform of the service time presented
in (14), and H ′S(λc) is the derivative of HS(λc).

IV. VALIDATION AND RESULTS

Owing to the generality of the derived closed-form expres-
sion for the average AoI of each source in a multi-source
M/G/1 queueing model given in (23), the result can be used to
derive AoI expressions for certain particular queueing setups.
Accordingly, we derive the average AoI for the multi-source
M/M/1 and single-source M/G/1 queueing models under the
FCFS serving policy.

1) Multi-Source FCFS M/M/1 Queueing Model: In the
multi-source M/M/1 FCFS queueing model, C independent
sources generate packets according to Poisson processes of
rates λ1, λ2, . . . , λC , and the service time follows exponential
distribution with parameter µ. Using (23), the average AoI for
source c is given by (detailed steps can be found in [17])

∆c =
1

µ

(
1 +

1

ρc

)
+ (24)

(1− ρ)ρc
∑
c′∈C\{c} ρc′

µ(1−
∑
c′∈C\{c} ρc′)

2

(
2

1−
∑
c′∈C\{c} ρc′

+
1

ρc

)
+

ρ2c
µ(1−

∑
c′∈C\{c} ρc′)

2

(
1

1− ρ
+

2
∑
c′∈C\{c} ρc′

1−
∑
c′∈C\{c} ρc′

)
.

For case C = 2, the average AoI for source 1 is given by

∆1 =
(1− ρ)ρ1ρ2
µ(1− ρ2)2

(
2

1− ρ2
+

1

ρ1

)
(25)

+
ρ21

µ(1− ρ2)2

(
1

1− ρ
+

2ρ2
1− ρ2

)
+

1

µ

(
1 +

1

ρ1

)
.

Remark 1. It is worth to note that (25) does not co-
incide with the prior result [10, Eq. (16)]. The deviation
of the average AoI of source 1 (∆1) between the result
of [10] and our result in (23) for different arrival rates of
source 1 is shown in Fig. 3 where the mean service time
is E[S] = 1 and the arrival rates of other sources are
λc = 0.1,∀c ∈ C \ {1}. This deviation is measured as the

percentage difference
∆Opt

1 −∆App
1

∆App
1

× 100, where ∆Opt
1 is

the average AoI of source 1 using our result in (23) and ∆App
1

is the average AoI of source 1 using the result of [10]. We
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can observe that the result in [10] provides a lower bound
for the average AoI in a multi-source M/M/1 queueing model
(detailed discussion can be found in [17]).

2) Single-Source FCFS M/G/1 Queueing Model: By setting
C = 1, we have a single-source M/G/1 queueing model where
interarrival rate of the packets has the exponential distribution
with parameter λ. Then, the average AoI is given by

∆ = E[S] +
λE[S2]

2(1− ρ)
+

1− ρ
λLS(λ)

. (26)

It is worth to note that (26) follows the result in [14, Eq. (22)].
The effect of number of classes C on the average AoI of class
1 (∆1) is shown in Fig. 4. For simplicity, we consider that the
service time is exponentially distributed. When C increases,
∆1 increases, as expected. Note that C affects ∆1 non-linearly.
As can be seen from the curvatures, when C increases, the
optimal value of ρ1 decreases.

V. CONCLUSION

We considered a multi-source FCFS M/G/1 queueing model
and derived the closed-form expression for the average AoI
of each source as a function of the Laplace transform of the
service time along with certain system parameters. We also
showed that the expression for the average AoI for a multi-
source M/M/1 and a single-source M/G/1 queuing models can
be both obtained as particular cases of our general expression.
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