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Abstract—In order to reduce the latency of data delivery, one of
techniques is to cache the popular contents at the base stations
(BSs) i.e. edge caching. However, the technique of caching at
edge can only reduce the backhaul delay, other techniques such
as BS densification will also need to be considered to reduce the
fronthaul delay. In this work, we study the trade-offs between BS
densification and cache size under delay constraint at a typical
user (UE). For this, we use the downlink SINR coverage proba-
bility and throughput obtained based on stochastic geometrical
analysis. The network deployment of BS and cache storage is
introduced as a minimization problem of the product of the BS
intensity and cache size which we refer to the product of “cache
intensity” under probabilistic delay constraint. We examine the
cases when (i) either BS intensity or the cache size is held fixed,
and (ii) when both BS intensity and the cache size are vary. For
the case when both BS intensity and the cache size are variable,
the problem become nonconvex and we convert into a geometric
programing which we solve it analytically.

Index Terms—Edge caching, homogeneous PPP, stochastic
geometry, geometric programming, delay constraint.

I. INTRODUCTION

In the upcoming 5G cellular networks, to achieve high
throughput and very low latency as well as how to utilize the
infrastructure more effectively are some of the main challenges
in 5G deployment. In [1], it was shown that more than
60% percent of the traffic is due to the multiple downloads
of popular video files. The redundancy of data transmission
causes severe delay due to backhaul transmission, one of the
methods to reduce backhaul delay is to employ the concept of
proactive caching at the base stations (BSs). Proactive caching
at edge has been introduced in [2]. Apart from the backhaul
delay, the fronthaul delay also needs to be reduced in order
to reduce the overall delay. As such, the technique of BS
densification needs to be considered. By increasing the BS
intensity, it can reduce the average number of user equipments
(UEs) served by each BS, thus reducing the fronthaul delay.

In general, caching in wireless networks consists of two
stages which are cache placement and data delivery. During
the cache placement stage, by considering proactive caching,
the most popular files will be cached at the BS during the off-
peak traffic period. For the data delivery stage, the requested
files from UEs will be delivered from cache storage at the BSs.
In [3], the benefits of popularity-based caching in terms of
backhaul offloading was investigated. A collaborative hierar-
chical caching at both the cloud RAN and BSs with the aim of

minimizing the delay of content delivery under UEs’ quality-
of-service (QoS) constraints was proposed in [4]. In [5],
various game theoretical approaches for wireless proactive
caching was surveyed. In [6], the authors propose enhanc-
ing the QoE aware wireless edge caching with bandwidth
provisioning in software-defined wireless networks. Caching
as a service where multiple service providers have to pay
for the storages deployed at smallcell BSs that owned by
MNOs, is studied in [7]. Auctions mechanism is proposed
to solve this caching problems. The network virtualization,
where the infrastructure providers (InPs) lease infrastructure
and radio resources to the MNOs is provided in [8]. The
Cournot oligopoly market is used the model the multiple-
seller multiple-buyer with infrastructure sharing deployment.
However, the sharing of cache storage was not considered.

In this paper, we study the wireless aspects of caching at
the cellular BS which owned by an MNO. The MNO aims to
deliver the required quality-of-experience (QoE) to its UEs, in
terms of latency of data delivery, regards to cache size and BS
intensity. First, we obtain the downlink signal-to-interference-
plus-noise-ratio (SINR) coverage probability and throughput
based on stochastic geometry then, using these results to ana-
lyze the end-to-end delay at UE. Second, assuming proactive
caching placement, we formulate the minimization problem
through the reduction of the BS intensity and/or cache storage
with probablistic delay constraint at the typical UE of an
MNO. We explore the cases, (i) when either BS intensity or
the cache size is held fixed and (ii) when both BS intensity
and cache size are vary. The optimization problem when both
BS intensity and cache size are variable, becomes geometric
programming and we can obtain solutions in closed form. The
journal version of this paper is in [9].

II. SYSTEM MODEL

Consider a set Φb of BSs owned by an MNO that are
spatially distributed according to homogeneous Poisson point
processes (PPPs). Each of the BSs is assumed to be equipped
with a single antenna. Each BS is assumed to employ time
division multiplexing access (TDMA) scheme. Thus, the BS
serves a single UE in a given time slot. The maximum transmit
power of each BS is pmax. A UE subscribed to an MNO
associates to the nearest BS. The net intensity of the BSs
that a typical UE of the MNO can associate itself with is
λ. The set of UEs Φu are assumed to be spatially distributed



according to homogeneous PPPs with spatial intensity ξ and
let η ∈ (0, 1) be the activity level of a UE. The two point
processes Φb and Φu are assumed to be independent of each
other. Each UE is equipped with a single antenna. We will
assume that the MNO has a bandwidth of W Hz, which is
divided into L subchannels. Each BS operate in one of the L
available subchannels randomly assigned to it by the MNO.
Thus, the intensity of interfering BSs is given by λI = λ

L .

A. Caching Policy

Finally, to enable edge caching, we assume that each BS
can store S number of files in its storage. For simplicity, we
assume that all the files have equal size. Let F = {f1 . . . , fF }
be the set of files available for caching, where F = |F| is the
total number of files. Based on the file popularity distribution
and cache replacement policy at the edge, let S ⊆ F be the
set of files cached at each BS, where |S| = S is the cache
size. If a random file f ∈ F is requested by a UE, then let
the probability that the file-f is available at the BS cache be
Phit(S) = Pr(f ∈ S), which we refer to as “hit probability.”

We assume that the cache policy is to store the S most
popular files from F . We can model the popularity of the files
by Zipf distribution given by

pd =
1/dν∑F
j=1 1/jν

. (1)

where pd is the probability of d-th most popular file being
requested and the exponent ν > 0 reflects the skewness of
the content popularity distribution. The larger of value ν, the
fewer popular contents hold a majority of the content requests.

The probability that the requested file f ∈ F is stored in the
cache is Phit(S) = Pr(d ≤ S), where d is the popularity rank
of the file f . We observe that Pr(d ≤ S) is the cumulative
distribution function (CDF) of the Zipf distribution. Hence,
we can express Phit(S) as

Phit(S) =

∑S
d=1 1/dν∑F
j=1 1/jν

=
HS,ν

HF,ν
. (2)

In (2), we have concisely expressed Phit using generalized
harmonic numbers, HS,ν and HF,ν , where

HS,ν =
S−1∑
n=0

1

(n+ 1)ν
. (3)

The HF,ν is defined similarly.

B. Downlink SINR Coverage Probability and Goodput

Without loss of generality, we consider a typical UE of
MNO located at the origin, which associates with the nearest
BS. For convenience, let us label the nearest BS as BS-0.
We assume that the message signal undergoes Rayleigh fading
with the channel gain given by g0. Furthermore, let α > 2
denote the path-loss exponent for the path-loss model r−α0 ,
where r0 is the distance between the typical UE and the nearest
BS-0, 0 ∈ Φb. Finally, let σ2 denote the noise variance; and

p denote the transmit power of all the BSs of the MNO. The
downlink SINR at the typical UE is SINR =

g0r
−α
0 p

I+σ2 .
Since each BS employs TDMA scheme, the interference

experienced by a typical UE associated with BS-0 comes from
the transmit signal from other BSs to the UEs in the same time
slot. Thus, I =

∑
j∈Φb\{0} gjr

−α
j p. Here gj is the channel

gain between the typical UE and interfering BS-j, and rj is
the distance between the typical UE and the interfering BS-
j, where j ∈ Φb\{0}. For a given threshold T , the SINR
coverage probability for the typical UE is defined as Pc =
Pr(SINR > T ).

To find an analytical expression for Pc under our system
assumptions, we substitute λ and λI = λ/L in [10, Prop. 1].
We can express the coverage probability of a typical UE as,

Pc = πλ

∫ ∞
0

exp{−(Az +Bzα/2)}dz, (4)

where the coefficients A and B are given by A = π[λI(β −
1) + λ] and B = Tσ2

p . Subsequently, we can evaluate (4) by
using a simple closed form approximation, as given by [11,

Eqn. 4], as Pc ' πλ
[
A+ α

2
B2/α

Γ
(

2
α

)]−1

. Therefore, we obtain

Pc =

[
1 +

β − 1

L
+

α

2πλΓ
(

2
α

) (Tσ2

p

)2/α
]−1

, (5)

where Γ(z) is Gamma function. For interference limited case,
when σ2 → 0 or when λ→∞, (5) simplifies to

Pc '
L

β + L− 1
(6)

Equation (6) is independent of λ. Also, as L → ∞, we have
from (6) that Pc → 1. Next, we introduce the performance
metric in terms of throughput. The throughput of the typical
UE served by the nearest BS is

G =
PcW

L
log2(1 + T ), (7)

where Pc is the downlink coverage probability, W is band-
width. We can approximate the throughput (7) using (5) in
general, or (6) for the interference limited case.

III. DELAY MODELING

A. Expected Fronthaul Delay

The delay in the transmission of a file between BS and UE
is referred to fronthaul delay. If a file requested by a UE is
available in cache of the serving BS, then the delay incurred
during transmission of the file is only due to the fronthaul. This
delay is contributed by a number of factors, including finite
channel capacity, transmission success rate, size of the file, and
the number of UEs in a cell. The potential delay due to the
channel is the reciprocal of the goodput, 1/G, in seconds per
bit. If there are N UEs in the cell being served simultaneously,
since the BS deploys TDMA scheme, the goodput per UE is
G/N . Thus, the potential delay for a UE is N/G. Hence, in
order to transfer a file of fixed size xf , the total fronthaul
delay, is Dfh =

Nxf
G .



Here, only N is the random variable. The expected number
of UEs inside an average Voronoi cell formed by the PPP of
the BS, Φb, is given by ξ

λ [12, Eqn 20]. Thus, the number of
UEs being served is

E[N ] =
ηξ

λ
, (8)

where ξ is the intensity of the UEs and η ∈ (0, 1) is the
probability that an UE will request service from the BS.
Normally, η is quite small, allowing the MNO to retain a large
number of idle UEs to be potentially served by a single BS by
its limited infrastructure. Hence, the average fronthaul delay
is given by

E[Dfh] =
E[N ]xf
G

=
ηξxf
λG

. (9)

Equation (9) confirms our intuitive understanding that BS
densification leads to lower fronthaul delay.

B. Expected Backhaul Delay

When the requested file from the UE is not available in
cache of the serving BS, then the file needs to be fetched from
cloud server to the BS. Let us assume that the BSs connect
to cloud via backhaul (fiber optic, ethernet, and T1). We can
model the process of a BS fetching the contents from the
cloud server as a G/G/m queue. Let τ be the mean service
time at a single server. That is, the average time taken for
the server to deliver xf bits of information to the BS. The
expected backhaul delay can be given as [13, Eqn 2.14],

E[Dbh] ≈
(
c2a + c2s

2

)
E[W (M/M/m)] + τ (10)

where E[W (M/M/m)] ≈ τ(ρ
√

2(m+1)−1)/(m(1− ρ)) is the
expected waiting time of M/M/m queue. Here, φ denotes
the mean arrival rate of file requests to the server, µ = m/τ
is service rate of the server, and ρ = φ/(mµ) is the server
utilization. Also, ca and cs are coefficient of variations of the
inter-arrival time and the service time, respectively. For the
stability of the cloud server queue, the condition ρ < 1 must
be satisfied. When m = 1, the above approximation yields
E[Dbh] ≈

(
c2a+c2s

2

)(
ρ

1−ρ

)
τ + τ .

C. Expected Total Delay

The delay experienced by a UE while downloading a file is
only due to the fronthaul, Dfh, if the requested file is already
cached at its serving BS. If this is not the case, then the
delay experienced by the UE is the sum of the fronthaul and
backhaul delay, Dfh + Dbh. Since the availability of a file in
the BS cache is given by the hit probability, Phit, the expected
total delay is given by the law of total expectation as

E[D] = E[Dfh] + E[Dbh](1− Phit(S)) (11)

Since Phit depends on the cache size S, this implies that
the minimum expected delay that we can achieve by changing
only the cache size is E[Dfh]. This bound also suggests that
we cannot impose an arbitrarily lower bound on the total
delay by only adding cache to the BSs, which allows us to

eliminate the backhaul delay only. In terms of latency, the
fronthaul presents the ultimate bottleneck for cache based
cellular systems. Therefore, we also need to decrease the
number of BSs deployed to lower the fronthaul delay. Thus,
we have cache versus base station deployment scenario.

IV. PROBLEM FORMULATION

In this section, we consider the trade-offs between cache
storage S and the BS intensity λ. We will refer to the product
λS as “cache intensity”. This is the amount of cache per unit
area of the MNO. It allows us to capture the tradeoff between
adding more BSs versus adding more cache. We will formulate
an optimization problem so as to minimize the cache intensity
while satisfying the latency constraint for a typical UE, while
assuming that the size of the cache is large. The optimization
problem is as follows:

minλ,S λS (12)
s.t. Pr(D ≥ Dth) ≤ γ, (13)

S ≤ F (14)

where λ ≥ 0 and S ≥ 0. Here, (13) is a probabilistic constraint
that limits the latency above some threshold value Dth to
probability γ ∈ (0, 1). To make the problem more tractable,
we have from Markov’s inequality

Pr(D ≥ Dth) ≤ E[D]

Dth
. (15)

Using the Markov’s inequality (15), we can linearize the
probabilistic constraint in (13) as

E[D] ≤ γDth. (16)

Substituting the expression for E[D] from (11) into (16), we
obtain after some algebra

1− γDth − E[Dfh]

E[Dbh]
≤ Phit(S). (17)

Thus, in (17), we have succeeded in modifying the state-
ment about the delay constraint into an equivalent statement
concerning the cache size. Since Phit(S) ≤ 1, the left-hand-
side of (17) is less than the unity, we can express (17) as,

γDth ≥ E[Dfh] (18)

This leads to a fundamental lemma about cache based cellular
system:

Lemma 1. If E[Dfh] ≤ γDth, then the constraint (13) is
feasible for some S such that S ≤ F .

Lemma 1 gives us the sufficient condition under in which
both the constraints (13) and (14) can be feasible. Although
the delay constraint (16) is over the total delay, we see that
the fronthaul delay plays the most crucial part.

In equation (18), since E[Dfh] is a constant for given λ, we
see that γ and Dth should be at least inversely proportional
to each other. If we have E[Dfh] = γDth, then the cache size
is S = F . That is, the BS should cache all the available files
in F . This is an unrealistic expectation in practice. Hence,
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Fig. 1. Hit probability versus size of cache (S).

realistically, it should be the case that E[Dfh] < γDth so that
S < F .

If we substitute the expression for E[Dfh] from (9) in (18),
we obtain a minimum bound for the BS intensity required for
the feasibility of (18), and hence (13), as

λ ≥ ηξxf
γDthG

. (19)

This gives us a relationship between the intensity of the BS λ
and the UE ξ for the delay constraint to be feasible for some
S such that S < F .

To facilitate further analysis, we first give the following
lemma on the asymptotic approximation for the hit probability:

Lemma 2. When the size of cache S is large and ν 6= 1,
the probability that the requested file f ∈ F is in cache is
asymptotically given by

Phit(S) ∼ 1

HF,ν

[
ζ(ν)− (S + 1)1−ν

ν − 1

]
, (20)

where ζ(ν) is the Riemann zeta function.

Proof: See Appendix.
Note that although it was stipulated that <(ν) > 1 during

the definition of the Hurwitz zeta function in (33), the Riemann
zeta function ζ(ν) has a unique analytic continuation to the
entire complex plane, excluding ν = 1, which corresponds to
a simple pole [14]. Thus, so long as ν 6= 1, the formula (20)
is applicable for any Zipf’s exponent ν > 0. In Fig. 1, we
compare hit probability in (2) using the exact value of fHs,ν

from (35) and the asymptotic approximation for hit probability
in (20). It can be seen that when the size of cache is big, the
asymptotic approximation holds tight with the exact one.

V. SOLUTIONS AND TRADEOFF ANALYSIS

Since we have a closed form approximation for Phit(S),
as given by Lemma 2, we can now proceed to analyze the
tradeoffs between cache size and BS intensity. We will first
examine the case when either one of λ or S is held fixed; after
which, we will examine when both λ and S can vary.

A. When either λ or S is fixed.

Here we consider a modification of problem (12), where
instead of optimizing with respect to both λ and S, we hold

one of the term fixed. In Proposition 1, we will assume λ
to be fixed and performed the optimization with respect to S.
In Proposition 2, we will consider the case when S is held
fixed and λ is optimized. Since left-hand-side term in (17) is
a constant, let us denote it by C = 1− γDth−E[Dfh]

E[Dbh]
.

Proposition 1. For a fixed value of λ such that (19) is satisfied
and that ν 6= 1, the required cache size S∗ is at most

S∗ = [(ν − 1)(ζ(ν)− CHF,ν)]
1

1−ν − 1 (21)

Proof: By substituting the expression for Phit(S) from
(20) in Lemma 2 into (17), we can solve for S to obtain the
desired result.

Proposition 2. For given fixed size of cache, S, such that
ν 6= 1 and Phit(S) > 1− γDth

E[Dbh]
, the required BS intensity λ∗

is at least,

λ∗ =
ηξxf

G[γDth − E[Dbh](1− Phit(S))]
(22)

Proof: Substituting the expression for the expected fron-
thaul delay (9) into (17) and solving for λ, we obtain the
desired result. For the positivity of λ, the denominator of (22)
must be greater than zero, γDth−E[Dbh](1−Phit(S)) > 0. Re-
arranging the terms gives us the sufficient condition Phit(S) >
1− γDth

E[Dbh]
.

B. When both λ and S are variable

We will now solve the general case when both λ and
S is jointly optimized. For large S, we can recognize the
optimization problem (12) – (13) as a geometric programming
problem [15]. In the following, we will first express the primal
problem in (13) in the standard form a geometric program;
after which, we will give the solution to the problem via its
dual problem.

First, we expand E[D] in (11) using (9) and (20) in terms
of λ and S as

E[D] =
ηξxf
Gλ

+ E[Dbh]

[
1− 1

HF,ν

(
ζ(ν)− (S + 1)1−ν

ν − 1

)]
= C1 +

C2

λ
+ C3(S + 1)1−ν (23)

where C1 = E[Dbh]
(

1− ζ(ν)
HF,ν

)
, C2 =

ηξxf
G , and C3 =

E[Dbh]
(ν−1)HF,ν

. Substituting (23) in the constraint (16), E[D] ≤
γDth, we obtain,

C1 +
C2

λ
+ C3(S + 1)1−ν ≤ γDth

or,

(
C2

γDth − C1

)
1

λ
+

(
C3

γDth − C1

)
(S + 1)1−ν ≤ 1

∴Qλ−1 + V t1−ν ≤ 1 (24)

where Q = C2

γDth−C1
, V = C3

γDth−C1
and t = S + 1.

Since we consider the case when the storage size S is large,
we can approximate t ≈ S. Thus, substituting the transform



variable t in the objective function (12), substituting (24) in the
constraint (16), and substituting (19) in the constraint (14), we
can express the primal problem (13) as a geometric program:

Proposition 3. Assuming S to be large and that Q > 0, V > 0
and ν 6= 1, we can transform the problem (12) – (14) into an
equivalent geometric programming problem

minλ,t g = λt (25)

s.t. Qλ−1 + V t1−ν ≤ 1, (26)

Rλ−1 ≤ 1, (27)

where R = C2

γDth
.

In geometric programming, when the orthogonality and
normality conditions with dual variables δi are satisfied, the
maximum of dual function is equal to the minimum of
primal function g [15]. As such, we can express the dual
maximization problem as,

maxδ q =

(
1

δ1

)δ1(Q
δ2

)δ2(V
δ3

)δ3(R
δ4

)δ4
(δ2 + δ3)δ2+δ3(δ4)δ4

(28)
s.t. δ1 = 1 (29)

(
1 −1 0 −1
1 0 1− ν 0

)
δ1
δ2
δ3
δ4

 = 0, (30)

where δi ≥ 0 for i = 1, . . . , 4. The degree of difficulty of this
geometric program is 1. In our case, (29) gives the normality
condition while (30) gives the orthogonality condition. In
geometric programming, we are focused on finding the optimal
point of the dual variables δ∗ = (δ∗1 , δ

∗
2 , δ
∗
3 , δ
∗
4) that maximizes

the dual function q subject to the orthogonality and normality
conditions. Note that this dual problem is convex program with
a concave objective function and linear constraints.

Using (29) and (30), we can directly solve for δ∗. Here,
matrix multiplication from (30) yields δ1 − δ2 − δ4 = 0, and
δ1 − (1 − ν)δ3 = 0. Since δ1 = 1, we have δ3 = 1

ν−1 and
δ2 + δ4 = 1. Let δ2 = r, so that δ4 = 1− r. Since δ2 ≥ 0 and
δ4 ≥ 0, we then have a bound over r as 0 ≤ r ≤ 1.

Substituting the values of δ’s in the dual problem, we obtain
a simpler problem constrained over a single variable r as

maxr q =

(
Q

r

)r(
V

ν − 1

)ν−1(
r +

1

ν − 1

)r+ 1
ν−1

(1− r)1−r

(31)
s.t. 0 ≤ r ≤ 1. (32)

Finding an analytical solution to the above problem is not
possible. Hence, we must resort to numerical approaches. For

the optimal primal variables λ∗ and t∗, we have

λ∗t∗ = δ∗1q
∗ = q∗

Q(λ∗)−1 = δ∗2q
∗ = r∗q∗

V (t∗)1−ν = δ∗3q
∗ =

q∗

ν − 1
R(λ∗)−1 = δ∗4q

∗ = (1− r∗)q∗

Adding the second and fourth row we have Q(λ∗)−1 +
R(λ∗)−1 = q∗, which we can solve to obtain λ∗ = Q+R

q∗ .

Also, we have t∗ =
(
V (ν−1)
q∗

)1/(ν−1)

. Note that for t∗ to be
positive, we must have ν > 1. Hence we have the following
proposition:

Proposition 4. Assuming Q > 0, V > 0 and ν > 1,
the optimal solution to (12) – (14) is λ∗ = Q+R

q∗ and

S∗ =
(
V (ν−1)
q∗

)1/(ν−1)

, where q∗ is the optima of the one
dimensional problem (31) – (32).

Nonetheless, if (31) is monotonically increasing in 0 ≤ r ≤
1, then the maxima is at the boundary r = 1, and the optimal
value at r = 1 will be

q∗ = Q

(
V

ν − 1

)ν−1(
ν

ν − 1

) ν
ν−1

.

For the monotonicity of q within r ∈ [0, 1], it is sufficient to
check if q′(r) > 0 at r = 1. Since Q,R, ν are all positive, the
derivative of log(q) with respect to r is

d log(q)

dr
= log

(
Q

R

)
+ log

(
1 +

1

r(v − 1)

)
.

Evaluating at r = 1, if we have

d log(q)

dr

∣∣∣∣
r=1

= log

(
νQ

R(ν − 1)

)
> 0,

then we can conclude that r∗ = 1.

VI. NUMERICAL RESULTS

In this section, we evaluate the optimal size of cache
(S∗) from Proposition 1, the optimal BS intensity (λ∗) from
Proposition 2 and both of S∗ and λ∗ from Proposition 4.
We investigate the trade-offs between the size of cache, BS
intensity and the latency. The baseline setting of simulation
environments is as follows : the transmit power of BS is p =
10dBm, σ2 = −150 dBm, user intensity is ξ = 60/(π×5002),
number of video files in the cloud is F = 105; size of the file
requested from each UE is xf = 109 bit, pathloss exponent
is α = 5, the SINR threshold is T = 10 dB, the probability
that UE requests service from BS is η = 0.014 from [16].
Number of subbands L = 6. From (13), the delay threshold
Dth = 10−3 and γ = 0.1. We assume that there is a single
server in cloud where the mean arrival time φ = 0.8, mean
service time τ = 5×10−3, the coefficient of variation of inter-
arrival time and service time are ca = 2 and cs = 1 as such,
E[Dbh] = 0.0051 sec.
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Fig. 3. Optimal number of UEs per BS (ξ/λ∗) versus ν

The optimal average number of UE per BS, ξ/λ∗, versus
Zipf exponent, ν while varying the cache size, S from Propo-
sition 2 is plotted in Fig. 3 with W = 300× 106. We see that
when ν is increased ξ/λ∗ is also enhanced. This is because
when increasing ν, the number of files to be stored in the
cache becomes smaller. Therefore, while S∗ decreases with an
increasing of ν, the BS intensity λ∗ increases. As such, ξ/λ∗

also enhances. For given ν, when S increases, ξ/λ∗ becomes
higher. The optimal cache size, S∗, versus ν, from Proposition
4 is illustrated in Fig. 4.

In Fig. 4, the optimal cache size S∗ decreases when W is
decreased for a given ν. This is because a higher bandwidth
yields a greater throughput, , from G ∝ W in (7), and since
the constant Q ∝ C2 ∝ 1/G, we have q∗ ∝ Q ∝ 1/G. Thus,
following Proposition 4, we have S∗ ∝ (1/q∗)1/(ν−1) ∝
G1/(ν−1) ∝W 1/(ν−1). Hence, for ν > 1, increasing W leads
to a decrease in the cost q∗, which in turn leads to an increased
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Fig. 4. Optimal size of cache (S∗) versus ν

cache size S∗. On the other hand, since R ∝ 1/G, the G term
cancels out in the expression for λ∗, making λ∗ independent
of W . For increasing ν, S∗ decreases as such, λ∗ increases.

VII. CONCLUSION

We have modeled and analyzed the performance of large
scale cache-enabed cellular network. We have obtained the
downlink SINR coverage probability and thoughput based on
stochastic geometry analysis. Based on these results with the
proactive caching placement, we have analyzed the fronthaul
and backhaul delay. The minimization problem through the
reduction of the cache size and/or BS intensity constrain
on the probabilistic delay is proposed. We have solved the
optimization problem when either BS intensity or the cache
size is held fixed and also when both BS intensity and cache
size are vary. Then, the optimization problem when both
BS intensity and cache size are variable subject to latency
constraint is converted into a geometric program and the
closed-form solution is obtained. We have observed that the
Zipf exponent has significant effect on performance of MNO.
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APPENDIX

The generalized harmonic number HS,ν does not have a
closed form expression. Nevertheless, for analytical tractabil-
ity, we can make an asymptotic approximation1 in terms of S
and ν. To do so, we will relate the generalized harmonic num-
ber to the Hurwitz zeta function and then use the properties
of Hurwitz zeta function. The Hurwitz zeta function, ζ(s, a),
is defined as [17, Eqn 25.11.1]

ζ(s, a) =
∞∑
n=0

1

(n+ a)s
, (33)

1Here f(x) ∼ g(x) if and only if limx→∞
f(x)
g(x)

= 1.



where <(s) > 1 and a 6= 0,−1,−2, . . .. The Hurwitz zeta
function reduces to the Reimann zeta function when a = 1,
ζ(s, 1) = ζ(s), where ζ(s) is the Riemann zeta function. Also,
harmonic sums can be expressed in terms of Hurwitz zeta
function as [17, Eqn 25.11.4]

m−1∑
n=0

1

(n+ a)s
= ζ(s, a)− ζ(s, a+m). (34)

For our case, comparing (3) and (34), we can express the
generalized harmonic sum HS,ν in terms of the Hurwitz zeta
function as

HS,ν =
S−1∑
n=0

1

(n+ 1)ν
= ζ(ν)− ζ(ν, S + 1) (35)

Now, as S →∞, the asymptotic expansion of Hurwitz zeta
function is given by [17, Eqn 25.11.43]

ζ(ν, S + 1) ∼ (S + 1)1−ν

ν − 1
+

1

2
(S + 1)−ν

+
∞∑
k=1

B2k

(2k)!
(ν)2k−1(s+ 1)1−ν−2k, (36)

where B2k are Bernoulli numbers and (ν)2k−1 = ν(ν +
1) · · · (ν+2k−2) are Pochammer’s symbol for rising factorial.

Taking only the first dominant term from (36) and substi-
tuting it in (35), we obtain the asymptotic approximation for
the generalized harmonic number as

HS,ν ∼ ζ(ν)− (S + 1)1−ν

ν − 1
. (37)

Thus, from the above arguments, using (2) and (37), we
have desired lemma.
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