
DYNAMIC TEXTURE RECOGNITION USING 3D RANDOM FEATURES

Xiaochao Zhao1, Yaping Lin1, Li Liu2,3

1Hunan Provincial Key Lab of Trusted System and Network, Hunan University, China
2Center for Machine Vision and Signal Analysis, University of Oulu, Finland

3College of System Engineering, National University of Defense Technology, China
{s12103017, yplin}@hnu.edu.cn, li.liu@oulu.fi

ABSTRACT

In this paper, we present a novel, simple but effective ap-
proach for dynamic texture recognition using 3D random fea-
tures. Compared with the existing dynamic texture recog-
nition approaches using carefully designed features for high
performance, our method use only a few 3D random filters
to extract spatio-temporal features from local dynamic tex-
ture blocks, which are further encoded into a low-dimensional
feature vector. To explore the representative power of the 3D
random features, we use two different encoding schemes, the
learning-based Fisher vector encoding and the learning-free
binary encoding. The proposed method is tested on the UCLA
and DynTex databases with various evaluation protocols. Ex-
perimental results demonstrate the high performance of our
method for dynamic texture recognition.

Index Terms— Dynamic texture recognition, random
features, Fisher vector encoding, binary encoding

1. INTRODUCTION

Dynamic textures (DTs) are textures with motion [1]. Typ-
ical examples of DT are sea-waves, swaying trees, drifting
smoke, etc. Studies related to dynamic textures include three
main aspects, segmentation, synthesis and classification. DT
analysis has various applications of visual processing, such as
fire detection[2] and facial analysis[3]. In this paper, we focus
on the recognition of DTs.

One prerequisite for effective DT recognition is that a
compact DT representation should be constructed. Accord-
ing to the techniques applied, Feature extraction methods for
DT recognition can be grouped into four classes: flow-based
methods, model-based methods, transform-based methods,
and discriminative methods. Many early works utilize optic
flow to characterize DTs (e.g., Peh and Cheong’s work [4]).

Model-based methods try to learn a parametric model that
generates the DTs. Ravichandran et al. [5] proposed to learn
linear dynamical system (LDSs) from local DT blocks, from
which a codebook is built. Transform-based methods extract
geometric properties for DT descriptor. Xu et al. [6] utilized
fractal dimension to describe DTs, resulting in a descriptor

called dynamic fractal spectrum (DFS). One extension of DF-
S is presented in [7].

Discriminative methods do not learn the underlying dy-
namic model and directly extract features from DTs. Many
works [3, 8, 9, 10, 11, 1] in this class are based on local binary
pattern (LBP) [12]. Besides LBP-based methods, dictionary-
learning-based and graph-based methods (e.g., [13, 14]) also
fall in this group. Additionally, deep learning has also been
utilized for DT recognition [15, 16].

Unlike the above mentioned methods that use either care-
fully designed features or those learned through complex
steps, inspired by the impressive work in Ref. [17], we pro-
pose to make use of random features for DT recognition.
Specifically, we use a few 3D random filters to extract spatio-
temporal features from local DT blocks. The filter responses
are encoded by Fisher vector (FV) encoding [18] and bina-
ry encoding. The binary representation shows comparable
performance while the other one outperforms many state-of-
the-art methods. As far as we know, this work is the first to
use random feature for DT recognition.

The rest of this paper is organized as follows. Section 2
provides the background of this paper. The proposed method
is detailed in Section 3. Experimental results are reported in
Section 4. Section 5 concludes this paper.

2. BACKGROUND

Random projection [17] means the mapping of a set of
high-dimensional data points to a randomly chosen low-
dimensional subspace. In the field of compressed sensing,
if a signal (audio, image or video) is known to be sparse or
compressible, a small number of nonadaptive measurements
in the form of random linear combinations of basis elements
could provide near-optimal reconstruction of the original sig-
nal, without any further knowledge about the signal [19, 20].
This implies that a small number of random projections can
well capture enough salient information in the signal. Ran-
dom projection has achieved great success for static texture
recognition [21, 22, 23, 17, 24, 25]. For example, Liu et al.
[22, 17, 24, 25] used random projections as an encoder to



extract local texture features. Their random features showed
great superiority over many state-of-the-art methods.

In the field of information retrieval [26], random projec-
tion has been used for local sensitive hashing, which can al-
leviate the curse of dimensionality for approximate nearest
neighbor searching in very high dimensional data.

In the field of deep learning, networks with random
weights have also shown preferable properties [27, 28, 29].
Giryes et al. [27] found networks with random Gaussian
filters can perform distance-preserving embedding of the o-
riginal data while training is to find hyperplanes to separate
different data points. Gilbert et al. [28] connected networks
with random Gaussian filters for compressed sensing and an-
alyzed the invertibility of networks, in which they observed
that networks with random Gaussian filters could achieve
good classification performance. Mongia et al. [29] applied
random weights for static texture generation.

3. THE PROPOSED METHOD

As DTs are videos that contain spatially and temporally
repetitive pattern, we argue that DTs are compressible, which
is backed by the success of video compression algorithms.
Therefore, we propose to extract spatio-temopral features
with 3D random filters, followed by two encoding schemes.

3.1. Random Features

For a given DT video of size X×Y ×T (X×Y is the spatial
size while T is the temporal size), we densely extract local
blocks of size s×s×s, resulting in a set of vectorized spatio-
temporal blocks {xi}Ni=1

, where xi ∈ R
d (d = s× s× s) and

N = (X −⌊ s
2
⌋)× (Y −⌊ s

2
⌋)× (T −⌊ s

2
⌋). Then, zero-mean

normalization is applied to {xi}Ni=1
, such that xi is replaced

by xi = xi − x, where x = 1

N

∑N

i=1
xi. Later, spatio-

temporal random features can be extracted from {xi}Ni=1
.

Similar to the work in Ref. [17], we draw L 3D filters
{wj}Lj=1

(wj ∈ R
d is vectorized) from the standard normal

distribution. By filtering a local block xi with {wj}Lj=1
,

we can get a L-dimensional random feature vector f i =
[fi1, fi2, . . . , fiL]

T ∈ R
L as

fij = wT
j xi . (1)

In the Sections 3.2-3.3, we will introduce how to encoding
those random feature vectors with FV encoding and binary
encoding, respectively.

3.2. FV encoding

FV encoding [18] is widely used to build a global descriptor
out of local visual features for image or video representation.
Specifically, it models the generative process of those local

descriptors as a Gaussian Mixture Model (GMM). After fit-
ting the GMM from training data, the global descriptor (i.e., a
FV) can be produced with the parameters of the GMM model.

For a training dataset of C DTs, we randomly sample S

local blocks from each of the C DTs and extract random fea-
tures from them, resulting in CS random feature vectors for
training. Then we can fit a GMM of K components from
those random features. The parameters of this model are de-
noted as Θ = (µk,σk, πk : k = 1, . . . ,K), in which µk,σk

and πk are the respectively the mean, covariance and weight
of the kth component.

After obtaining the GMM parameters Θ, we can use them
to encode the densely extracted random features {fn}Nn=1

of
a given DT into a global descriptor. Firstly, we compute the
soft assignment weight of each descriptor fn to the kth com-
ponent through

qnk =
πkPk(fn)

∑t=K

t=1
πtPt(fn)

(2)

where Pk(fn) is the kth Gaussian probability density func-
tion. Secondly, the gradients of the kth component with re-
spect to its mean and covariance are computed as

gu
k =

1

N
√
πk

N
∑

n=1

qnk

(

fn − µk

σk

)

, (3)

gv
k =

1

N
√
2πk

N
∑

n=1

qnk

[

(

fn − µk

σk

)2

− 1

]

, (4)

where gu
k and gv

k capture the first-order and second-order
differences of the local descriptors to the kth Gaussian
component, respectively. Thirdly, we concatenate these t-
wo types of differences as the global descriptor F fv =
[gu

1

T , gu
2

T , . . . , gu
K

T , gv
1

T , gv
2

T , . . . , gv
K

T ]T ∈ R
2KL. Final-

ly, the signed square-rooting and the L2 normalization are
sequentially applied to F fv for performance enhancement
[18].

3.3. Binary Encoding

The FV representation described in the previous section in-
volves a learning process. It is unfair to compare it with ex-
isting learning-free descriptors, such as VLBP, LBP-TOP, etc.
Therefore, we decide to encode the random features {fn}Nn=1

with binary encoding, which is adopted by many LBP-based
methods.

We first encode each random feature fn into an integer
code BRFn ∈ [0, 2L − 1] by

BRFn =
L
∑

l=1

2l−1S(fnl), (5)

where S(x) returns 1 if x > 0, otherwise 0. Then we build a
histogram of the BRF codes to represent the DT by



F b(m) =
∑

n

A(BRFn == m), (6)

where m ∈ [0, 2L − 1] is an integer and A(x) returns 1 if
x is true, otherwise 0. Considering that different DTs may
have different spatial or temporal sizes, L1 normalization is
applied to F b ∈ R

2
L

to build a coherent representation.

4. EXPERIMENTS

In this section, we experimentally evaluate the proposed two
types of representations and compare then with the sate-of-
the-art. When measuring dissimilarity, we use Euclidean dis-
tance for the FV feature, and Chi-square statistic for the bina-
ry feature. Additionally, the simple nearest neighbor classifi-
er is adopted for DT recognition. Unless otherwise stated, the
results of existing approaches are from the literature.

4.1. Dataset

We adopt two benchmark DT databases for experimental e-
valuation, i.e., the UCLA [30] and DynTex [31] databases.
Details about them are as follows.
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(a) FV encoding (K = 10)
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(b) FV encoding (K = 30)
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(c) FV encoding (K = 50)
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(d) Binary encoding

Fig. 1: Recognition rates as a function of parameter s with
various encoding schemes.

The UCLA database contains 200 DTs of size 160×110×
75. Ghanem cropped these DTs to have frame size 48 × 48,
capturing the key dynamical features1 and we use this version.
There are three commonly used evaluation protocols on this
database, i.e., 50-class, 9-class and 8-class breakdowns. As
the results under 50-class breakdown are tending to be sat-
urate, we only use the latter two protocols. In the 9-class
breakdown, 200 DTs are grouped into 9 classes. The 8-class

1Available at http://www.bernardghanem.com/datasets

breakdown contains the remaining data of 9-class version af-
ter excluding the plant class. In evaluation, half of the DTs
in each class are randomly chosen for training and the rest for
test (the recognition rates are averaged over 20 random splits).

The DynTex database contains more than 650 DTs.
There are five evaluation protocols (each with a recompiled
dataset) on this database, which are denoted by DynTex-
35[3], DynTex++[8], Alpha, Beta and Gamma, respectively.
The DynTex-35 dataset is an old version of the database,
containing 35 DTs of size 400 × 300 × 250. According to
Ref. [3], each of the 35 DTs are cropped into 10 sub-DTs of
various sizes and a leave-one-group-out evaluation scheme
is followed. The DynTex++ dataset is recompiled from 345
DTs, containing 100 DTs of size 50 × 50 × 50 from each of
the 36 classes. 50 DTs in each class are chosen for training
and the rest for test, and the recognition rates are averaged
over 10 trials. The Alpha, Beta and Gamma datasets are
consist of 60 DTs from 3 classes, 162 DTs from 10 classes
and 275 DTs from 10 classes, respectively. A leave-one-out
evaluation scheme is applied on this three datasets.

4.2. Parameter Setting

There are four parameters, the local block size (s), the number
of filters (L), the number of training blocks from each DT in
the training dataset (S) and the number of GMM components
(K). To make the GMM less dependent on the training data,
we empirically choose S = 500, which is less than 0.4% of
all the blocks in a DT of size 48× 48× 75. As the dimension
of F b is a power of 2, we choose L = 10 to avoid producing
high-dimensional feature vectors. To make our method effi-
cient, the values of s and K should be small. Therefore, we
test s ∈ {3, 5, 7, 9, 11, 13, 15, 17} and K ∈ {10, 30, 50} un-
der three relatively challenging protocols (i.e., UCLA 8-class,
DynTex++ and Gamma) of the two databases, to choose ap-
propriate values for s and K . The results are shown in Fig. 1.

From Fig. 1, it can be observed: 1) the Gama dataset is
more challenging than others while the UCLA 8-class break-
down is less challenging; 2) a smaller s (less than 9) general-
ly provides better performance; 3) The average recognitions
(black curves) clearly indicate that s = 5 is a good choice and
that further increasing s would degrade performance; 4) when
using FV encoding, results on the UCLA 8-class breakdown
is not sensitive to the value of K while a larger K could pro-
duce higher recognition rates on the DynTex++ and Gamma
datasets. As a result, we choose s = 5 and present results
with K being 10, 30 and 50 at the same time when compar-
ing the proposed method with other methods. In brief, we use
S = 500, L = 10, s = 5 and K ∈ {10, 30, 50}.

4.3. Comparison with Existing Methods

In this section, we compare our method with the state-of-
the-art methods for DT recognition. As the proposed method



Table 1: Performance comparison of the proposed method with other methods

Method Recognition Rate(%) Dim.9-class 8-class DynTex-35 DynTex++ Alpha Beta Gamma
BoS [5] 78.00 84.00 - - - - - 96
DL-PEGASOS [8] 95.60 - - 63.70 - - - -
DFS [6] 97.50S 99.00S 95.92 89.90S - - - 316
WMFS [7] 96.95 97.18 - 88.80S - - - 702
DNG [14] 98.10 97.00 - 90.20 - - - -
OTDL [13] 97.50 97.00 99.00 94.70S - - - 2700
High level feature [15] 92.67S 85.65S - 69.00 - - - -
VLBP [3] 96.30 91.96 - 87.35 - - - 16384
CVLBC [11] 99.20 99.02 98.86 91.31 - - - 11250
LBP-TOP [3] 96.00 94.34 91.43 89.50 86.67 80.86 81.44 768
MBSIF-TOP [9] 98.75 97.80 98.61 97.17 90.00 90.70 91.30 6144
ASF-TOP [32] - - 97.14 95.40 91.67 86.42 89.39 #class ×70
novel LBP [10] 98.35 97.50 98.57 96.28 - - - 1536
MPCAF-TOP [1] 99.15 98.26 - 96.52 - - - 3840
SOE-NET [16] - - 97.70 - - - - 1600
F fv (K=10) 99.35 98.34 99.14 91.09 98.33 84.57 87.88 200
F fv (K=30) 99.18 98.59 99.43 94.16 98.33 87.65 89.77 600
F fv (K=50) 99.24 98.59 99.43 94.80 98.33 89.51 89.77 1000
F b 98.40 97.72 98.57 93.93 93.33 84.57 85.61 1024
(Superscript ”S” means the result is obtained using SVM classifier.)

belongs to the discriminative group. we mainly compare our
method with other discriminative methods (VLBP/LBP-TOP
[3], CVLBC [11], MBSIF-TOP [9], ASF-TOP [32], novel
LBP [10], and MPCAF-TOP [1]). Performance of a few
methods belonging to other groups are also compared. The
results of various methods are presented in Table 1, in which
we include the dimensionality of feature vectors (if available).

The FV representation outperforms the binary one on ev-
ery dataset. Except for the DynTex++ and Beta datasets, the
former with K = 10 shows better performance than the lat-
ter, which indicates that learning does make random features
more discriminative. Increasing K from 10 to 30 would not
make significant difference on the UCLA 8-class, UCLA 9-
class and the DynTex-35 datasets, while improvements can be
observed on other datasets. This is because the former three
datasets are less challenging than other datasets and a GMM
with more components is needed to model the variation in
feature space.

On the UCLA 9-class dataset, the FV representation with
K = 10 provides the highest recognition rate (99.35%). The
binary achieves a high recognition rate of 98.40%, outper-
forming many other methods other than CVLBC (99.20%),
MBSIF-TOP (98.75%) and MPCAF-TOP (99.15%). Simi-
lar situation can be observed on the UCLA 8-class dataset.
CVLBC outperforms our FV and binary representations by
0.43% and 1.34%, respectively. Using SVM, DFS also out-
performs the proposed method. Once again, MBSIF-TOP and
MPCAF-TOP show marginal improvements over our binary
representation.

On the DynTex-35 dataset, our 600-dimensional FV rep-
resentation provides the highest recognition rate of 99.43%.
OTDL utilizes very complex techniques and achieves 99.00%.
Several other methods show marginal improvements over our

binary representation. On the DynTex++ dataset, the pro-
posed method only gives relatively good results, considering
its low dimensionality. MBSIF-TOP, MPCAF-TOP and nov-
el LBP show improvements higher than 1%. On the three
datasets of Alpha, Beta and Gamma, only three existing
methods (i.e., LBP-TOP, MBSIF-TOP and ASF-TOP) have
been tested with the same protocol we choose (results of LBP-
TOP are quoted from Ref. [32]). On the Alpha dataset, our
method is the best, achieving a recognition rate of 98.33%.
On the Beta and Gamma datasets, MBSIF-TOP outperforms
our methods by 1.19% and 1.53%, respectively.

All the methods that outperform our method, produce fea-
ture vectors with much higher dimensionality, while their im-
provements are marginal. Theirfore, the proposed method
shows the advantages of high performance and low dimen-
sionality, which makes it very practical for real-world video-
based applications.

5. CONCLUSION

We propose to utilize random projection to extract spatio-
temporal features for DT recognition. Fisher vector encoding
and binary encoding are utilized to provide fair comparisons
with existing learning-based and learning-free methods. Ex-
tensive experiments show the superiority of our method.
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