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The dysfunction of FOXP3-positive regulatory T cells (Tregs) plays a key role in the
pathogenesis of autoimmune diseases, including type 1 diabetes (T1D). However,
previous studies analyzing the peripheral blood Treg compartment in patients with
T1D have yielded partially con�icting results. Moreover, the phenotypic complexity
of peripheral blood Tregs during the development of human T1D has not been
comprehensively analyzed. Here, we used multi-color �ow cytometry to analyze
the frequency of distinct Treg subsets in blood samples froma large cohort
comprising of 74 children with newly diagnosed T1D, 76 autoantibody-positive children
at-risk for T1D and 180 age- and HLA-matched control children. The frequency of
CD4CCD25CCD127lowFOXP3C Tregs was higher in children with T1D compared to
control children, and this change was attributable to a higher proportion of naïve
Tregs in these subjects. Further longitudinal analyses demonstrated that the increase
in Treg frequency correlated with disease onset. The frequencies of the minor subsets
of CD25CFOXP3low memory Tregs as well as CD25lowCD127lowFOXP3C Tregs
were also increased in children with T1D. Moreover, the ratio of CCR6-CXCR3C
and CCR6CCXCR3- memory Tregs was altered and the frequency of proliferating
Ki67-positive and IFN-g producing memory Tregs was decreased in children with T1D.
The frequency of CXCR5CFOXP3C circulating follicular T regulatory cells was not altered
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in children with T1D. Importantly, none of the alterations observed in children with T1D
were observed in autoantibody-positive at-risk children.In conclusion, our study reveals
multiple alterations in the peripheral blood Treg compartment at the diagnosis of T1D
that appear not to be features of early islet autoimmunity.

Keywords: autoimmunity, human, type 1 diabetes, immune regulati on, T cells, regulatory T cell,
immunophenotyping

INTRODUCTION

Type 1 diabetes (T1D) is an autoimmune disease characterized
by a T-cell-mediated destruction of insulin-producingb-cells
in the pancreas (1). In humans, the diagnosis of T1D is
typically preceded by a period of asymptomatic autoimmunity
characterized by the presence of islet autoantibodies, such
as insulin autoantibodies (IAA) and antibodies against GAD
(GADA), islet antigen 2 (IA-2A) and zinc transporter 8 (ZnT8A),
that are highly predictive of future disease (2, 3).

CD4CFOXP3C regulatory T cells (Tregs) are a specialized
subset of helper T cells that have a crucial role in preventing
autoimmunity in murine models, including the NOD mouse
model for T1D (4–6). In humans, the strongest evidence linking
Treg dysfunction and autoimmunity comes from patients with
the immunodysregulation polyendocrinopathy enteropathy X-
linked (IPEX) syndrome that have loss-of-function mutations
in the FOXP3gene (7). These patients develop a wide range
of autoimmune disorders, including T1D, at a very young age
(8). Moreover, among the T1D susceptibility loci identi�ed by
genome-wide association studies, several are likely to a�ect
molecules associated with Treg function (e.g.,IL2RA, IL2,
PTPN2, CTLA4, IL10) (9).

Multiple studies have set out to address the potential
dysregulation of Tregs in patients with T1D by analyzing whether
the frequency of Tregs is altered in peripheral blood. Although
some have reported both increased (10, 11) and decreased (12)
frequencies of Tregs, the majority of studies have concluded that
no di�erences in peripheral blood Treg frequencies exist (13–
19). It is, however, noteworthy that several of these studies have
used variable markers to de�ne Tregs, and only some have used
the most speci�c markers, CD25 in combination with CD127,
FOXP3, and HELIOS (20–23), to de�ne peripheral blood Tregs.
Furthermore, in many studies, the patients analyzed have had
variable disease duration and were compared to healthy controls
that were not stringently matched for age and HLA background.
Most studies have also analyzed a rather limited number of
individuals (typically< 30 per group), which, given the large
interindividual variation in Treg frequencies, reduces the power
to detect subtle changes in Treg frequencies. Finally, the data on
Treg frequencies during the preclinical phase of T1D is virtually
non-existent.

In recent years it has become increasingly clear that peripheral
blood FOXP3C Treg cells are not a uniform population, but
rather a heterogeneous mixture of cells of di�erent states of
maturation, di�erentiation and homing capabilities. A recent
study employing mass cytometry identi�ed more than 20 distinct
subpopulations within the FOXP3C Treg compartment (24).

The seminal study by Miyara et al. demonstrated that the
expression of CD45RA (or CD45RO) delineates Tregs into
naive, resting Tregs and antigen-experienced memory Tregs
(25). The memory Treg compartment can be further subdivided
into activated FOXP3hi Tregs that are highly suppressive, and
into FOXP3lo Tregs that are poorly suppressive and contain
T cells capable of producing proin�ammatory cytokines (25).
CD39 expression has been shown to identify highly suppressive
Tregs that preferentially inhibit Th17-type responses (26, 27).
Furthermore, the expression of chemokine receptors, such as
CXCR3, CCR6, and CXCR5 appears to identify subpopulations
of phenotypically polarized memory Tregs that may be able
to selectively suppress their e�ector T cell counterparts, Th1,
Th17 and follicular T helper (Tfh) cells, respectively (28–32).
Lastly, a subset of memory Tregs express CD161 which identi�es
cells capable of producing proin�ammatory cytokines, such as
IFN-g and IL-17A (33, 34). Importantly, the few studies that
have analyzed the above-mentioned Treg subsets more closely in
human T1D have reported subtle changes, such as an increased
frequency of naive Tregs (18), FOXP3lo memory Tregs (10) and
memory Tregs capable of producing IFN-g or IL-17A (10, 17).

In the present study, we revisited the question of whether
peripheral blood Tregs are altered during the development of
human T1D. To this aim, we analyzed Treg frequencies and
phenotypic heterogeneity using multi-color �ow cytometry and
utilizing samples from a large, well-strati�ed clinical cohort
comprising of children with newly diagnosed T1D, autoantibody-
positive at-risk children and healthy age- and HLA-matched
controls. We observed multiple changes in peripheral blood
Treg subsets in children with newly diagnosed T1D but none in
autoantibody-positive at-risk children, suggesting that deviation
of the peripheral blood Treg compartment is associated with
progression to clinical disease rather than being a feature of
earlier stages of T1D-associated autoimmunity.

MATERIALS AND METHODS

Study Subjects
The study cohort comprised 74 children with newly diagnosed
T1D (< 1 week after clinical diagnosis; mean age 7.8 years�
SD 4.1, age range 1–17 years), 76 auto antibody-positive at-
risk children (mean age 9.4 years� SD 4.7, age range 1–17
years), and 180 autoantibody-negative healthy children (mean
age 8.8 years� SD 4.0, age range 1–16 years). Blood samples for
the study were collected between November 2013 and February
2017. With the exception of children with newly diagnosed
T1D, all study subjects, including the autoantibody-negative
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healthy control children, participated in the Finnish Type 1
Diabetes Prediction and Prevention Project (DIPP) follow-up
study and had HLA genotypes associated with increased risk
for T1D. Autoantibody-positivity was analyzed in the subjects
at sampling, as previously described (2). Autoantibody-positive
at-risk subjects were de�ned based on positivity for one or
more biochemical autoantibodies (IAA, IA-2A, and/or GADA).
Subjects positive for GADA only were excluded from the
analyses, since these individuals have a relatively low risk for the
development of T1D (2). The study was approved by local ethics
committees in the participating university hospitals. All families
participating in the study provided written informed consent,as
mandated by the Declaration of Helsinki.

Peripheral Blood Mononuclear Cells
Sample Preparation
Peripheral blood mononuclear cells (PBMCs) were isolated
from peripheral blood samples by Ficoll gradient centrifugation,
resuspended in RPMI 1640 complete medium with 5% human
AB serum, and shipped overnight atC4� C from the DIPP
study center in Turku to the University of Eastern Finland
in Kuopio. Blood samples from healthy age-matched control
children were in most cases drawn on the same day and processed
in parallel with those from children with newly diagnosed
T1D and autoantibody-positive children, allowing us to control
for spurious results caused by di�erential sample preparation
through pairwise statistical testing. The viability of the PBMCs
before �ow cytometric assays was routinely> 97%, as assessed by
viability staining.

Flow Cytometric Analyses
Immunostaining for surface markers was performed on 106

PBMCs per staining by incubating the cells with a panel of
�uorochrome-labeled antibodies (Supplementary Table 1) for
20 to 30 min. For the determination of cytokine production,
PBMCs were �rst stimulated for 4 h with 20 ng/mL phorbol
myristic acid (PMA; Sigma-Aldrich), 500 ng/mL ionomycin
(Sigma-Aldrich), and 2mM monensin (Ebioscience).
Fixation and permeabilization were performed using the
Foxp3/Transcription Factor Staining Bu�er set (eBioscience),
followed by staining for intracellular cytokines and transcription
factors. The samples were acquired on a FACSCanto II �ow
cytometer (BD Biosciences), and the �ow cytometry data
were analyzed using FlowJo software (FlowJo). Coded samples
were used throughout, and the �ow cytometric analyses were
performed blinded to the clinical classi�cation of the sample.

CXCL10 ELISA
Soluble CXCL10 plasma concentrations were determined using
the Human CXCL10/IP-10 Quantikine ELISA Kit (R&D
Systems).

Statistical Analyses
Statistical analyses were performed using Prism software
(GraphPad). When comparing di�erences between multiple
groups, one-way ANOVA with Dunnett posttest to correct for
multiple comparisons was used. Paired Studentt tests were used

when analyzing paired samples. Relationships between di�erent
parameters were examined using Pearson correlation coe�cient.
P< 0.05 was considered to indicate statistical signi�cance.

RESULTS

The Frequency of
CD4CCD25CCD127lowCD45RA C Naive
Tregs Is Increased in Children With Newly
Diagnosed T1D
We �rst examined the frequencies of CD4CCD25CCD127low
total Tregs, as well as CD45RAC naive and CD45RA- memory
Treg subsets within the CD4C T-cell compartment in a
large pediatric cohort (Figure 1AandSupplementary Figure 1).
In total, peripheral blood samples from 74 children with
newly diagnosed T1D, 76 at-risk children positive for islet
autoantibodies (AAbC) and 180 age- and HLA-matched
autoantibody-negative healthy control children were analyzed.
We observed a small, but statistically signi�cant increase in
total Treg frequency in children with T1D compared to healthy
donors (6.3� 1.7% vs. 5.3� 1.7%,P < 0.0001;Figure 1B).
This increase in Treg frequency was, however, not seen in
AAbC children (Figure 1B). Interestingly, the higher frequency
of total Tregs in children with T1D was attributable to an
increase in the frequency of naive Tregs but not memory Tregs
(Figures 1C,D). Correlation analyses revealed that the frequency
of total Tregs within the CD4C T-cell compartment is largely
age-independent (Figure 1E). However, the proportion of naive
Tregs slowly decreases with age while that of memory Tregs
increases (Figures 1F,G). Importantly, the increased frequency
of total and naive Tregs in children with T1D was consistently
observed in children of all ages (Figures 1E,F). Finally, a strict
pairwise comparison with samples from age-matched healthy
children processed and analyzed on the same day con�rmed our
�ndings (Supplementary Figure 2).

The Increase of Naive Tregs Is Associated
With Progression to Clinical T1D but Not
With the Number of Autoantibodies at the
Presentation of the Disease
Ten autoantibody-positive children that we analyzed developed
clinical T1D during our sample collection period. When we
compared the Treg frequencies at the presentation of the disease
to the sample analyzed before the diagnosis (mean 13, range 3–
30 months earlier), we could clearly demonstrate an increase in
total and naive Treg frequencies during this period (Figure 2A).
This �nding supports the notion that the increase in Treg
frequency is not a feature of early islet autoimmunity but
rather a phenomenon associated with disease progression. As
a control, we analyzed two longitudinal samples (mean 18,
range 3–33 months apart) from 19 AAbC children that did not
progress to T1D during our study. No increases in total or naive
Treg frequencies were observed between these paired samples
(Figure 2B). We further analyzed whether the increase in the
frequency of Tregs is associated with the islet autoantibody status
at the diagnosis of the disease. For this, we strati�ed the children
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FIGURE 1 | Increased frequency of CD4CCD25CCD127low Tregs in children with newly diagnosed T1D. Representative examples of Treg stainings from healthy
control children, autoantibody-positive at-risk children (AAbC) and children with newly diagnosed T1D(A). Frequencies of total(B), naive(C), and memory (D) Tregs in
control, AAbC and T1D groups. Linear regression lines for total(E), naive(F), and memory (G) Treg frequencies against age were calculated for the control (black
lines), AAbC (blue lines) and T1D (red lines) groups. The elevations of the regression lines were signi�cantly different between the groups for total and naive Tregs
(P < 0.0001). Correlation with age was calculated by pooling allsamples analyzed and is expressed together withP values next to the individual plots.

with T1D into three groups based on their positivity for one or
more biochemical autoantibodies tested (IAA, GADA, and IA-
2A). However, no di�erences between the groups were observed
(Figure 2C).

FOXP3 and HELIOS Stainings Reveal
Additional Changes in the Memory Treg
Compartment in Children With Newly
Diagnosed T1D
In order to validate our observations, we performed additional
analyses utilizing the most speci�c markers to identify Tregs,
the transcription factors FOXP3 and HELIOS. We �rst
employed two commonly used gating approaches to de�ne

Tregs: (a) CD4CCD25CCD127lowFOPX3C (de�nition 1) and
b) CD4CHELIOSCFOXP3C (de�nition 2) ( 23) that were further
divided into naive (CD45RO-) and memory (CD45ROC) subsets
(Figure 3AandSupplementary Figure 1). The Treg frequencies
observed with both of these de�nitions strongly correlatedwith
the frequencies of CD4CCD25CCD127low cells (Figure 1B)
analyzed in parallel (Supplementary Figure 2). Consequently,
they permitted us to con�rm the increased frequencies of
total and naive Tregs in children with T1D (Figures 3B,Cand
Supplementary Figure 2). Interestingly, using these de�nitions
we also observed a subtle increase in the memory Treg
compartment (Figures 3B,C) that was not readily apparent
when using the CD4CCD25CCD127low de�nition for Tregs
(Figure 1D). In order to further investigate this phenomenon,
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FIGURE 2 | Increase in total and naive Treg frequencies is associated with progression to clinical T1D. Two samples from ten autoantibody-positive children that
progressed to T1D were analyzed 3–30 (mean 13) months apart for total (A, left) and naive (A, right) CD4CCD25CCD127low Treg frequencies. Two samples from 19
autoantibody-positive children that did not progress to T1D were analyzed as a control 3-33 (mean 18) months apart for total (B, left) and naive (B, right) Treg
frequencies.P values from pairedt-tests are indicated. The frequencies of total Tregs in children strati�ed by the number of biochemical autoantibodies (IAA, GADA, or
IA2A) at disease onset(C).

we analyzed the Tregs using a third approach (de�nition 3)
originally described by Miyara et al. (25), where FOXP3C
T cells are divided into FOXP3lowCD45RO- naive Treg,
FOXP3hiCD45ROC memory Treg and to non-suppressive
FOXP3lowCD45ROC memory Treg subsets (Figure 3A). This
gating strategy once again con�rmed the increased frequency of
naive Tregs in children with T1D (Figure 3D). Importantly, we
could also establish that the increase in FOXP3C memory Tregs
observed with de�nitions 1 and 2 (Figures 3B,C) was due to
an increase in the non-suppressive FOXP3low fraction whereas
the FOXP3hi fraction appeared unaltered in children with T1D
(Figure 3DandSupplementary Figure 2).

We also examined the frequency of CD39C Tregs (Figure 4A)
in our cohort. CD39 is exclusively expressed on highly
suppressive memory Tregs that are critical in suppressing Th17-
type responses, and the frequency of CD39C Tregs frequency
has been reported to be diminished in patients with multiple
sclerosis (26, 27). However, the frequency of CD39C Tregs was
not altered in children with T1D or AAbC children (Figure 4B
andSupplementary Figure 3).

Finally, we analyzed the frequency of the minor population
of CD25lowCD127lowFOXP3C Tregs (Figure 4A) that has
recently been shown to be increased in peripheral blood
of patients with autoimmune diseases, such as systemic
lupus erythematosus (SLE) and T1D (11). The frequency
of CD25lowCD127lowFOXP3C Tregs within the CD4C
compartment was slightly elevated in children with T1D (0.38
� 0.17% vs. 0.29� 0.13% in healthy children,P < 0.01)
but not in autoantibody-positive children (Figure 4C and
Supplementary Figure 3).

The Increased Frequency of Naive Tregs in
Children With Newly Diagnosed T1D Does
Not Result From Increased Thymic Output
or Homeostatic Proliferation
The increase in naive Treg frequency in children with newly
diagnosed T1D could result either from an enhanced thymic

output or an increase in homeostatic proliferation of naive
Tregs. To address these possibilities, we analyzed the expression
of CD31, which is preferentially expressed by recent thymic
emigrant T cells (35), and the proliferation marker Ki67 on
Tregs (Figure 5A). No increase in the frequency of CD31C
cells within the naive Treg compartment was observed in
children with newly diagnosed T1D (Figure 5B). Moreover, the
frequency of proliferating Ki67C cells within the naive Treg
compartment was low, and not altered in children with T1D,
even when the CD31C and CD31- naive Treg subsets were
separately analyzed (Figure 5C and Supplementary Figure 3).
Interestingly, the frequency of proliferating Ki67C cells within
the memory Treg compartment, and more speci�cally within the
FOXP3hiCD45ROC memory Treg subset, was lower in children
with T1D (Figure 5D and Supplementary Figure 3), providing
further evidence of alterations in the memory Treg compartment
in T1D. This phenomenon appears to be speci�c to the Treg
compartment as no changes in the frequency of proliferating
Ki67C conventional CD4CCD25- memory CD4C T cells (Te�)
were observed (Supplementary Figure 3). However, Ki67C
memory Treg and Ki67C memory Te� frequencies correlate
strongly (Supplementary Figure 3). Therefore, it is also possible
that the decrease in proliferating memory Tregs in children with
T1D re�ects a more global alteration in the T cell compartment,
but this defect is only apparent in the highly proliferative memory
Tregs, especially the FOXP3hiCD45ROC memory Treg subset.

The Frequencies of CCR6-CXCR3 C
Th1-Type Regulatory and Effector T Cells
as Well as CXCL10 Plasma Levels Are
Increased in Children With Newly
Diagnosed T1D
A proportion of memory Tregs display characteristics associated
with the Th1, Th2, Th17, or Tfh lineages that can be identi�ed
based on the expression of chemokine receptors as well as
lineage-speci�c transcription factors or cytokines (28–32).
To address this heterogeneity in our study cohorts, we �rst
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FIGURE 3 | Increased frequencies of FOXP3C naive and memory Tregs in children with newly diagnosed T1D by different strategies to de�ne Tregs. Tregs were
de�ned either as CD4CCD25CCD127lowFOXP3C (de�nition 1; A, left), CD4CHELIOSCFOXP3C (de�nition 2; A, middle) or as CD4CCD45RO-FOXP3low,
CD4CCD45ROCFOXP3low and CD4CCD45ROCFOXP3hi (de�nition 3;A, right). Frequencies of de�nition 1(B), de�nition 2 (C) and de�nition 3 (D) Tregs in control,
AAbC and T1D groups.

assessed the expression of the chemokine receptors CCR6
and CXCR3 on memory Tregs (Supplementary Figure 4).
Based on the expression of these markers, memory CD4C
T cells can be subdivided into subsets that are enriched

for Th2 (CCR6-CXCR3-), Th1 (CCR6-CXCR3C), Th17
(CCR6CCXCR3-), and Th1/17 (CCR6CCXCR3C) cells both
within the Te� (36–38) and Treg (30) compartments. We
observed that the proportion of Th1-type (CCR6-CXCR3C)
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FIGURE 4 | Increased frequency of CD25lowCD127low Tregs but not of CD39C Tregs in children with newly diagnosed T1D. A subset of
CD4CCD25CCD127lowFOXP3 Tregs expresses CD39 (A, left). A minor population of FOXP3C cells is both CD25low and CD127low (A, right). Frequencies of
CD39C (B) and CD25lowCD127lowFOXP3C (C) Tregs in control, AAbC, and T1D groups.

FIGURE 5 | Decreased frequency of proliferating memory Tregs in children with newly diagnosed T1D. Representative examples of CD31 (A, left) and Ki67 (A, right)
expression on CD4CCD25CCD127lowFOXP3C Tregs. Frequencies of CD31C naive Tregs(B), and Ki67C naive(C) and memory (D) Tregs in control, AAbC and T1D
groups.

Tregs was increased and that of Th17-type (CCR6CCXCR3-)
Tregs was decreased in children with T1D (Figures 6A–D
and Supplementary Figure 4). However, this phenomenon
was not speci�c to the Treg compartment, as the same
changes could be observed in the CD4CCD25- memory Te�
compartment of children with T1D (Supplementary Figure 4).
Moreover, the phenotype of memory Tregs and memory
Te�s appeared to correlate strongly within an individual
(Figure 6E). Interestingly, we could also demonstrate an
increased concentration of CXCL10, the chemokine ligand
for CXCR3, in plasma samples from children with newly
diagnosed T1D but not in AAbC children (Figure 6F and
Supplementary Figure 4).

We also examined the frequencies of CD161C and
CCR6CCD161C memory Tregs (Supplementary Figure 4), two

populations that have previously been shown to contain Tregs
with proin�ammatory potential (33, 34). No di�erences in these
subset frequencies were observed between the study groups
(Figures 6G,HandSupplementary Figure 4).

The Frequency of Circulating
CXCR5CFOXP3C T Follicular Regulatory
Cells Is Not Altered in Children With Newly
Diagnosed T1D
A subset of circulating Tregs expresses CXCR5 and is thought to
represent circulating T follicular regulatory cells (Tfr), although
the exact biological function of CXCR5C Tregs is currently
unclear (32). Importantly, alterations in the frequencies of
circulating Tfr have recently been reported in patients with
multiple sclerosis and SLE (32, 39). Using a similar gating
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FIGURE 6 | Increased frequency of CXCR3C memory Tregs and increased plasma CXCL10 levels in childrenwith newly diagnosed T1D. Frequencies of
CCR6-CXCR3C (A), CCR6CCXCR3- (B), CCR6CCXCR3C (C), and CCR6-CXCR3-(D) memory Tregs in control, AAbC and T1D groups. Linear regression lines of
CCR6-CXCR3C memory Tregs against Teffs were calculated for the control (black lines), AAbC (blue lines) and T1D (red lines) groups(E). Correlation was calculated
by pooling all samples analyzed and is expressed together with the P value next to the plot. Plasma CXCL10 levels(F), and CD161C (G) and CCR6CCD161C (H)
memory Treg frequencies in control, AAbC and T1D groups.

strategy, we con�rm that a subset of CD4CCD25CFOXP3C
Tregs expresses CXCR5 (Figure 7A). Moreover, consistent
with previous investigations (32), CXCR5C Tregs express
lower levels of CXCR5, PD-1, and CD45RO compared to
conventional circulating CXCR5C follicular helper T cells (Tfh;
Supplementary Figure 5). The frequency of CXCR5C Tregs also
increases strongly with age (Figure 7B). In accordance with
previous reports (40–42), we observed an increased frequency of
CXCR5CPD-1C circulating Tfh in children with T1D, especially
in those positive for multiple autoantibodies (Figure 7C and
Supplementary Figure 5). However, the frequencies of either
CXCR5C or CXCR5CPD-1C Tregs were not altered in
children with T1D or in AAbC children (Figure 7D and
Supplementary Figure 5).

The Frequency of IFN- g -Producing
Memory Tregs Is Decreased in Children
With Newly Diagnosed T1D
Finally, to investigate the capacity of Tregs to produce
proin�ammatory cytokines, we stimulated PBMCs with PMA
and ionomycin and analyzed the production of IFN-g and IL-
17A by FOXP3C memory Tregs (Figure 8A). In accordance
with previous reports (17, 41), the cytokine-producing Tregs
were exclusively contained in the HELIOS-negative subset of
memory Tregs (Figure 8A). Importantly, the frequency of IFN-
g-producing memory Tregs was reduced in children with

T1D but not in AAbC children compared to healthy controls
(Figure 8BandSupplementary Figure 6). No di�erences in the
frequency of IL-17A-producing memory Tregs were observed
between the di�erent study groups (Figure 8C). The decrease
in IFN-g-producing cells appeared to be speci�c for the Treg
compartment, as no di�erences in the frequencies of IFN-g or IL-
17A-producing memory Te�s were observed between the study
groups (Supplementary Figure 6).

DISCUSSION

Regulatory T cell dysfunction has long been suspected to play a
crucial role in the pathogenesis of T1D. Over the years, many
studies have assessed whether the frequency or phenotype of
peripheral blood Tregs is altered in patients with T1D. Here, we
add to these reports our current �ndings using samples from
a large and well-controlled natural history cohort of pediatric
T1D. We observed multiple subtle changes in the peripheral Treg
compartment of children with newly diagnosed T1D but none in
autoantibody-positive at-risk children.

Until recently, the general consensus from several studies
has been that there is no clear alteration in the frequency of
peripheral blood CD4CFOXP3C Tregs in patients with T1D
(13–19), although some studies have reported both elevated
(10, 11) and decreased frequencies (12). Here, we demonstrate
a subtle increase in the frequency of FOXP3C Tregs in children
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FIGURE 7 | Increased frequency of circulating Tfh but not Tfr cells in children with newly diagnosed T1D. Tfh cells were de�ned as CD4CCD25-FOXP3-CXCR5C and
Tfr cells as CD4CCD25CFOXP3CCXCR5C cells (A). Linear regression lines for CXCR5C Treg frequencies against age were calculated for the control (black lines),
AAbC (blue lines) and T1D (red lines) groups(B). Correlation was calculated by pooling all samples analyzed and is expressed together with theP value next to the
plot. Frequencies of CXCR5C and CXCR5CPD-1C Teffs (Tfh;C) and frequencies of CXCR5C and CXCR5CPD-1C Tregs (Tfr;D) in control, AAbC, and T1D groups.

FIGURE 8 | Decreased frequency of IFN-g-producing memory Tregs in children with newly diagnosed T1D. Representative example of IFN-g production by
CD4CCD25CFOXP3CHELIOS-CD45ROC memory Tregs(A). Frequencies of IFN-g- (B) and IL-17A-producing (C) memory Tregs in control, AAbC and T1D groups.

with T1D using multiple di�erent approaches to de�ne Tregs.
Our results also highlight the importance of examining speci�c
subsets of Tregs, as we can clearly demonstrate that the
increase in total Tregs is caused both by an increase in the
frequency of naive FOXP3C Tregs as well by an increase in
FOXP3lo memory Tregs. Importantly, both of these �ndings
have previously been reported in patients with T1D (10, 18)
as well as in patients with another autoimmune disease, SLE
(25, 43). In addition, we con�rmed here the results of a recent
report (11) that the frequency of the atypical population of
CD25lowCD127lowFOXP3C T cells is increased in patients
with T1D. Whether the observed increases in these three Treg
subsets are mechanistically linked with each other remainsan
open question. Moreover, it is possible that additional small

subsets could also be altered, given that there may be more
than 20 phenotypically distinct subsets within the FOXP3C Treg
compartment (24).

The most striking �nding of our study was the increase
in the frequency of naive Tregs at the presentation of T1D.
Using longitudinal samples, we could con�rm that this change
was associated with progression to clinical disease. Potential
explanations for this phenomenon include an increased thymic
output of naive Tregs or their increased proliferationin vivo.
However, we observed no increase in the expression of CD31, a
marker for recent thymic emigrant T cells, or the proliferation
marker Ki67 in naive Tregs from children with T1D. An
alternative explanation could be a change in the distribution
of naive Tregs between blood and lymphoid tissues due to the
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in�ammatory milieu at the manifestation of T1D. In line withthis
interpretation the increase in naive Treg frequency in patients
with SLE was shown to correlate with both the clinical activity
of the disease as well as with serum proin�ammatory cytokine
levels (43).

The increase in FOXP3lo memory Tregs in children with
T1D is an interesting �nding, since this population has
previously been shown to be largely non-suppressive and
capable of producing proin�ammatory cytokines (10, 25).
Therefore, we further analyzed the expression of chemokine
receptors and cytokine production within the memory Treg
compartment in samples from our clinical cohort. The frequency
of CCR6-CXCR3C (Th1-type) T cells was increased and that
of CCR6CCXCR3- (Th17-type) T cells decreased both in the
memory Treg and Te� compartments of children with newly
diagnosed T1D. Moreover, in accordance with previous reports
(44, 45), serum levels of CXCL10, the chemokine ligand for
CXCR3, were observed to be increased in children with T1D.

In murine models, CXCR3C Tregs have been shown to
migrate to sites of in�ammation in response to CXCL10 and
to speci�cally suppress Th1-type immune responses (29, 31).
Similarly, CCR6C Tregs appear to migrate to in�amed tissues in
response to their chemokine ligand CCL20 (28). Therefore, the
observed imbalance of CXCR3C and CCR6C T cells in children
with T1D can indicate disturbances in T-cell migration patterns.
The increase in circulating CXCR3-expressing T cells could result
from increased systemic CXCL10 levels in patients with T1D,
as observed here. The proportional decrease in CCR6C Tregs,
on the other hand, could be a result of increased migration of
CCR6C T cells into in�amed tissues.

Interestingly, using immunohistochemistry, both CXCL10
expression byb-cells and CXCR3 expression on T cells have been
observed to be increased in pancreatic islets of patients with
T1D (46–48). In murine models of T1D, CXCL10 production
by pancreaticb-cells has been shown to recruit pathogenic
autoreactive CXCR3C T cells to pancreatic islets (49, 50).
However, CXCR3 expression on Tregs appears also to be crucial
in protecting against autoimmune pathology, suggesting both
a pathogenic and protective role for CXCR3 in T1D (31).
Therefore, the increase in peripheral blood CXCR3C Tregs
observed here could also be associated with an attempt of
the immune system to harness Th1-type immunopathology at
the manifestation of T1D. Although inhibition of CXCR3 is
an attractive therapeutic strategy to prevent the in�ltration of
autoreactive T cells into pancreatic islets, caution has to be taken
with this approach, since it may also inhibit CXCR3C Tregs that
can have a protective e�ect on autoimmune pathology in human
T1D.

Previous studies have suggested that the frequency of Tregs
producing either IFN-g or IL-17A is increased in patients with
T1D (10, 17). CD161-expression can be used to identify the
subpopulation of memory Tregs with the capacity to produce
proin�ammatory cytokines (33, 34). However, we observed
no increase of CD161C memory Treg in children with T1D.
Importantly, we also did not observe a di�erence in the frequency
of IL-17A-producing memory Tregs and the frequency of IFN-
g-producing memory Tregs was lower in children with T1D.

The discrepancy between our current results and earlier reports
may be related to di�erences in the methodological approach
or the clinical cohorts analyzed. Notably, the original studies by
McClymont et al. and Marwaha et al. (10, 17) demonstrated an
increased frequency of IFN-g- and IL-17A-producing memory
Tregs after in vitro expansion in a rather small cohort of
subjects. In line with our current results, a more recent study
analyzing a larger cohort of patients did not observe an increased
frequency of IFN-g-producing memory Tregs directlyex vivo
(41).

Recent studies by us and others have demonstrated that
the frequency of circulating CXCR5C Tfh cells is increased
in patients with T1D (40–42). We corroborated these
�ndings here by demonstrating an increased frequency of
circulating CXCR5CPD-1C Tfh cells in children with T1D.
The frequency of CXCR5C Tregs, presumably re�ecting
circulating T follicular regulatory cells (Tfrs), however, was not
increased in children with T1D. These �ndings potentially
re�ect an imbalance between Tfh and Tfr responses in
T1D that could result in enhanced B cell autoimmunity.
Interestingly, T1D seems also to di�er in this aspect from
two other autoimmune diseases, multiple sclerosis and SLE,
where increased circulating Tfr frequencies have been reported
(32, 39).

An important open research question is whether in addition
to altered frequencies there are also functional defects within
the di�erent Treg subsets in children with T1D. Addressing
this key question is, however, technically challenging since
the isolation of su�cient numbers of rare Treg subsets for
functional assays is largely precluded by the limited volume
of blood obtainable from pediatric subjects. Another obvious
caveat of our study is that we could only analyze Treg frequency
and phenotype in blood samples, where the changes are likely
to be minor compared to those in pancreatic lymph nodes
(pLNs) and in�amed islets. In the NOD mouse model, there
appears to be an increased frequency of Tregs in pLNs but
a decreased frequency in in�amed islets of newly diabetic
mice (5), although the frequency of Tregs in pLNs possibly
decreases after disease onset (51). Moreover, a seminal study by
Ferraro et al. demonstrated a decreased frequency of FOXP3C
Tregs with concomitant increase in Th17 cells in pLNs of
patients with long-standing T1D, which was not accompanied
with similar changes in the peripheral blood (16). Although
technically challenging, more studies addressing Treg phenotype
and function in human pLNs and islets are obviously needed
in order to understand the potential contribution of Treg
dysfunction to T1D pathogenesis.

In summary, we demonstrate here multiple subtle di�erences
in peripheral blood Treg subsets in children with newly
diagnosed T1D that are not observable in autoantibody-positive
at-risk children. This strongly suggests that peripheral blood
Treg alterations are either associated with later stages ofthe
autoimmune progression to clinical T1D or are secondary to the
islet in�ammation or metabolic dysfunction at the presentation
of the disease. Our current work increases the understanding of
Treg dysfunction during the natural history of T1D, which can
be important both for improving current immunotherapeutic
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strategies to prevent or treat T1D through enhancing Treg
functionality, as well as for the development of better biomarkers
to monitor disease progression and immunotherapeutic e�cacy.
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