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The dysfunction of FOXP3-positive regulatory T cells (Trepplays a key role in the
pathogenesis of autoimmune diseases, including type 1 diadtes (T1D). However,
previous studies analyzing the peripheral blood Treg comptment in patients with
T1D have yielded partially conicting results. Moreover, hie phenotypic complexity
of peripheral blood Tregs during the development of human TR has not been
comprehensively analyzed. Here, we used multi-color ow cipmetry to analyze
the frequency of distinct Treg subsets in blood samples froma large cohort
comprising of 74 children with newly diagnosed T1D, 76 autoatibody-positive children
at-risk for T1D and 180 age- and HLA-matched control childra. The frequency of
CD4CCD25CCD127lowFOXPX Tregs was higher in children with T1D compared to
control children, and this change was attributable to a higér proportion of naive
Tregs in these subjects. Further longitudinal analyses deonstrated that the increase
in Treg frequency correlated with disease onset. The frequreies of the minor subsets
of CD25CFOXP3low memory Tregs as well as CD25lowCD127lowFOXIE3 Tregs
were also increased in children with T1D. Moreover, the rati of CCR6-CXCRX
and CCR6CCXCR3- memory Tregs was altered and the frequency of prolifating
Ki67-positive and IFNg producing memory Tregs was decreased in children with T1D.
The frequency of CXCREFOXP3C circulating follicular T regulatory cells was not altered
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in children with T1D. Importantly, none of the alterationstmserved in children with T1D
were observed in autoantibody-positive at-risk childrenln conclusion, our study reveals
multiple alterations in the peripheral blood Treg compartent at the diagnosis of T1D
that appear not to be features of early islet autoimmunity.

Keywords: autoimmunity, human, type 1 diabetes, immune regulati on, T cells, regulatory T cell,
immunophenotyping

INTRODUCTION The seminal study by Miyara et al. demonstrated that the
expression of CD45RA (or CD45RO) delineates Tregs into
Type 1 diabetes (T1D) is an autoimmune disease characterizedive, resting Tregs and antigen-experienced memory Tregs
by a T-cell-mediated destruction of insulin-producifgcells  (25). The memory Treg compartment can be further subdivided
in the pancreas 1). In humans, the diagnosis of T1D is into activated FOXP3hi Tregs that are highly suppressive, and
typically preceded by a period of asymptomatic autoimmunityinto FOXP3lo Tregs that are poorly suppressive and contain
characterized by the presence of islet autoantibodies, sughcells capable of producing proin ammatory cytokine®s).
as insulin autoantibodies (IAA) and antibodies against GADCD39 expression has been shown to identify highly suppressive
(GADA), islet antigen 2 (IA-2A) and zinc transporter 8 (ZNT8A  Tregs that preferentially inhibit Th17-type responsés, (27).
that are highly predictive of future diseas® §). Furthermore, the expression of chemokine receptors, such as
CDACFOXPX regulatory T cells (Tregs) are a specializedcXCR3, CCR6, and CXCR5 appears to identify subpopulations
subset of helper T cells that have a crucial role in pl‘eventlngf phenotypica”y polarized memory Tregs that may be able
autoimmunity in murine models, including the NOD mouse to selectively suppress their e ector T cell counterparts, Thi,
model for T1D ¢-6). In humans, the strongest evidence linking Th17 and follicular T helper (Tfh) cells, respectiveB8¢32).
Treg dysfunction and autoimmunity comes from patients with | astly, a subset of memory Tregs express CD161 which identi es
the immunodysregulation polyendocrinopathy enteropathy X-ce|ls capable of producing proin ammatory cytokines, such as
linked (|PEX) Syndrome that have loss-of-function mutaiso |FN_g and IL-17A 63, 34) |mp0rtant|y’ the few studies that
in the FOXP3gene {). These patients develop a wide rangenave analyzed the above-mentioned Treg subsets more closely i
of autoimmune disorders, including T1D, at a very young agg,yman T1D have reported subtle changes, such as an increased
(8). Moreover, among the T1D susceptibility loci identi ed by frequency of naive Tregd.§), FOXP3lo memory TregsL() and
genome-wide association studies, several are likely tmae?nemoryTregs capable of producing IFgNer IL-17A (10, 17).

molecules associated with Treg function (e..2RA, IL2, In the present study, we revisited the question of whether
PTPN2, CTLA4, IL1X9). _ peripheral blood Tregs are altered during the development of
Multiple studies have set out to address the potentlaﬁuman T1D. To this aim, we analyzed Treg frequencies and

dysregulation of Tregs in patients with T1D by analyzing wieeth ,nenotypic heterogeneity using muiti-color ow cytometry and
the frequency of Tregs is altered in peripheral blood. Althoug jjizing samples from a large, well-strati ed clinical cohort
some have reported both increased)(11) and decreasedll)  comprising of children with newly diagnosed T1D, autoantibedy
frequencies of Tregs, the majority of studies have condubat  ,sitive at-risk children and healthy age- and HLA-matched
no dierences in peripheral blood Treg frequencies exi58{  ¢onirols, We observed multiple changes in peripheral blood
19. Itis, however, noteworthy that several of these stud@eh Treq supsets in children with newly diagnosed T1D but none in
used variable markers to de ne Tregs, and only some have useglsantibody-positive at-risk children, suggesting thaviation

the most speci ¢ markers, CD25 in combination with CD127, ¢ the peripheral blood Treg compartment is associated with
FOXP3, and HELIOS20-23), to de ne peripheral blood Tregs. ragression to clinical disease rather than being a featdre o

Furthermore, in many studies, the patients analyzed have hagd, jier stages of T1D-associated autoimmunity.
variable disease duration and were compared to healthy ontr

that were not stringently matched for age and HLA background

Most studies have also analyzed a rather limited number q(/IATERIALS AND METHODS

individuals (typically< 30 per group), which, given the large

interindividual variation in Treg frequencies, reduceg fpower ~ Study Subjects

to detect subtle changes in Treg frequencies. Finally, #t@ dn  The study cohort comprised 74 children with newly diagnosed

Treg frequencies during the preclinical phase of T1D is vitfua T1D (<1 week after clinical diagnosis; mean age 7.8 years

non-existent. SD 4.1, age range 1-17 years), 76 auto antibody-positive at-
Inrecent years it has become increasingly clear that periphereisk children (mean age 9.4 years SD 4.7, age range 1-17

blood FOXPE Treg cells are not a uniform population, but years), and 180 autoantibody-negative healthy childreegm

rather a heterogeneous mixture of cells of dierent states ohge 8.8 years SD 4.0, age range 1-16 years). Blood samples for

maturation, di erentiation and homing capabilities. A reden the study were collected between November 2013 and February

study employing mass cytometry identi ed more than 20 distin  2017. With the exception of children with newly diagnosed

subpopulations within the FOXR3 Treg compartment ¥4).  T1D, all study subjects, including the autoantibody-négat
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healthy control children, participated in the Finnish Type 1when analyzing paired samples. Relationships between di erent
Diabetes Prediction and Prevention Project (DIPP) follop-u parameters were examined using Pearson correlation coetcien
study and had HLA genotypes associated with increased rigk< 0.05 was considered to indicate statistical signi cance.

for T1D. Autoantibody-positivity was analyzed in the subgect

at sampling, as previously describél). (Autoantibody-positve RESULTS

at-risk subjects were de ned based on positivity for one or

more biochemical autoantibodies (IAA, IA-2A, and/or GADA) The Frequency of

Subjects positive for GADA only were excluded from theCD4CCD25CCD127lowCD45RA C Naive

analyses, since these individuals have a relatively |&vfaighe Tregs Is Increased in Children With Newly
development of T1DZ). The study was approved by local ethiCSDiagnosed T1D

com_mﬂtegs n the parUapatm_g un|ve_r5|ty _hospltals. All s We rst examined the frequencies of CBALD25CCD127low
participating in the study provided written informed conseag .
mandated by the Declaration of Helsinki total Tregs, as well as CD45RAnaive and CD45RA- memory
y ' Treg subsets within the COBI T-cell compartment in a
Peripheral Blood Mononuclear Cells large pediatric cohortRigure 1Aand Supplementary Figure L
S le P fi In total, peripheral blood samples from 74 children with
ample Freparation newly diagnosed T1D, 76 at-risk children positive for islet

Peripheral blood mononuclear cells (PBMCs) were isc"ategutoantibodies (AAB) and 180 age- and HLA-matched
from peripheral blood samples by Ficoll gradient centrifugafi autoantibody-negative healthy control children were gmeti.

resuspended in RPMI 1640 complete medium with 5% humagye gnserved a small, but statistically signi cant increase i
AB serum, aqd shipped overnlght 31,4 C from the D!PP total Treg frequency in children with T1D compared to healthy
study center in Turku to the University of Eastern Finland donors (6.3 1.7% vs. 5.3 1.7%,P < 0.0001:Figure 1B).

in _Kuopio. B|9°d samples from healthy age-matched contiolrys jhcrease in Treg frequency was, however, not seen in
children were in most cases drawn on the same day and processgglpc children (Figure 18). Interestingly, the higher frequency

in parallel with those from children with newly diagnosed ¢ (45 Tregs in children with T1D was attributable to an
T1D and autoantibody-positive children, allowing us to carit increase in the frequency of naive Tregs but not memory Tregs

for spuriou_s r_esults ‘Fa‘ﬂsed by_ di erentia_l sa_mple preparatiortl:igures 1CD). Correlation analyses revealed that the frequency
through pairwise statistical testing. The viability of thBMCs ¢ o Tregs within the CD& T-cell compartment is largely

b.efo.r.e ow pytometric assays was routinel®7%, as assessed byage-independenﬂ:ﬁgure 1B. However, the proportion of naive
viability staining. Tregs slowly decreases with age while that of memory Tregs
increasesKigures 1F,G. Importantly, the increased frequency
of total and naive Tregs in children with T1D was consistently

bserved in children of all ageFigures 1E,F. Finally, a strict
ﬁairwise comparison with samples from age-matched healthy
children processed and analyzed on the same day con rmed our
' ndings (Supplementary Figure 2

Flow Cytometric Analyses
Immunostaining for surface markers was performed orf 10
PBMCs per staining by incubating the cells with a panel o
uorochrome-labeled antibodies Supplementary Table 1 for

20 to 30min. For the determination of cytokine production
PBMCs were rst stimulated for 4h with 20 ng/mL phorbol

myristic acid (PMA; Sigma-Aldrich), 500ng/mL ionomycin The Increase of Naive Tregs Is Associated
(Sigma-Aldrich), and 2™ monensin (Ebioscience). With Progression to Clinical T1D but Not

Fixation and permeabilization were performed using the , . . .
Foxp3/Transcription Factor Staining Bu er set (eBioscier,lce()e\NIth the Number of Autoantibodies at the

followed by staining for intracellular cytokines and tranigption ~ Presentation of the Disease
factors. The samples were acquired on a FACSCanto Il owen autoantibody-positive children that we analyzed depetb
cytometer (BD Biosciences), and the ow cytometry dateclinical T1D during our sample collection period. When we
were analyzed using FlowJo software (FlowJo). Coded samphsgnpared the Treg frequencies at the presentation of the diseas
were used throughout, and the ow cytometric analyses weréo the sample analyzed before the diagnosis (mean 13, range 3—
performed blinded to the clinical classi cation of the sample. 30 months earlier), we could clearly demonstrate an increase in
total and naive Treg frequencies during this periddgure 2A).
CXCL10 ELISA This nding supports the notion that the increase in Treg
Soluble CXCL10 plasma concentrations were determined usiritequency is not a feature of early islet autoimmunity but
the Human CXCL10/IP-10 Quantikine ELISA Kit (R&D rather a phenomenon associated with disease progression. As

Systems). a control, we analyzed two longitudinal samples (mean 18,
o range 3—-33 months apart) from 19 A@bchildren that did not
Statistical Analyses progress to T1D during our study. No increases in total or gaiv

Statistical analyses were performed using Prism softwaireg frequencies were observed between these paired samples
(GraphPad). When comparing dierences between multiple(Figure 2B). We further analyzed whether the increase in the
groups, one-way ANOVA with Dunnett posttest to correct for frequency of Tregs is associated with the islet autoantitstatus
multiple comparisons was used. Paired Studdests were used at the diagnosis of the disease. For this, we strati ed thikel@n
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FIGURE 1 | Increased frequency of CD£CD25CCD127low Tregs in children with newly diagnosed T1D. Represtative examples of Treg stainings from healthy
control children, autoantibody-positive at-risk childra (AABC) and children with newly diagnosed T1[¥A). Frequencies of total(B), naive (C), and memory (D) Tregs in
control, AAbC and T1D groups. Linear regression lines for tot4E), naive (F), and memory (G) Treg frequencies against age were calculated for the contidblack
lines), AAKC (blue lines) and T1D (red lines) groups. The elevations okthegression lines were signi cantly different between the mups for total and naive Tregs

(P < 0.0001). Correlation with age was calculated by pooling alamples analyzed and is expressed together wit® values next to the individual plots.

with T1D into three groups based on their positivity for one or Tregs: (a) CDZCD25CCD127lowFOPX@ (de nition 1) and
more biochemical autoantibodies tested (IAA, GADA, and IA-b) CDACHELIOSCFOXPXC (de nition 2) ( 23) that were further
2A). However, no di erences between the groups were observativided into naive (CD45R0-) and memory (CD45R)subsets

(Figure 20. (Figure 3Aand Supplementary Figure 1. The Treg frequencies
observed with both of these de nitions strongly correlatsih
FOXP3 and HELIOS Stainings Reveal the frequencies of CDACD25CCD127low cells Kigure 1B

.. . analyzed in parallel Supplementary Figure 2. Consequently,
Additional Changes in the Memory Treg they permitted us to conrm the increased frequencies of

Compartment in Children With Newly total and naive Tregs in children with T1CF{gures 3B,Cand
Diagnosed T1D Supplementary Figure 2 Interestingly, using these de nitions

In order to validate our observations, we performed addiiibn we also observed a subtle increase in the memory Treg
analyses utilizing the most speci ¢ markers to identify Tsgg compartment Figures 3B,G that was not readily apparent
the transcription factors FOXP3 and HELIOS. We rst when using the CD@CD25CCD127low de nition for Tregs
employed two commonly used gating approaches to de ndFigure 1D). In order to further investigate this phenomenon,
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FIGURE 2 | Increase in total and naive Treg frequencies is associated thiprogression to clinical T1D. Two samples from ten autoaitiody-positive children that
progressed to T1D were analyzed 3-30 (mean 13) months aparof total (A, left) and naive A, right) CDACCD25CCD127low Treg frequencies. Two samples from 19
autoantibody-positive children that did not progress to TD were analyzed as a control 3-33 (mean 18) months apart for tal (B, left) and naive B, right) Treg
frequencies.P values from pairedt-tests are indicated. The frequencies of total Tregs in cliifen strati ed by the number of biochemical autoantibodiesIAA, GADA, or
IA2A) at disease onse{(C).

we analyzed the Tregs using a third approach (de nition 3)output or an increase in homeostatic proliferation of naive
originally described by Miyara et al2%), where FOXPB  Tregs. To address these possibilities, we analyzed the sixpres
T cells are divided into FOXP3lowCD45RO- naive Tregof CD31, which is preferentially expressed by recent thymic
FOXP3hiCD45R@ memory Treg and to non-suppressive emigrant T cells §5), and the proliferation marker Ki67 on
FOXP3lowCD45RG memory Treg subsetd={gure 3A). This  Tregs Figure 5A). No increase in the frequency of CD31
gating strategy once again con rmed the increased frequeric cells within the naive Treg compartment was observed in
naive Tregs in children with T1DRigure 3D). Importantly, we  children with newly diagnosed T1OF{gure 5B). Moreover, the
could also establish that the increase in FORR8emory Tregs frequency of proliferating Ki6Z cells within the naive Treg
observed with de nitions 1 and 2Figures 3B,§ was due to compartment was low, and not altered in children with T1D,
an increase in the non-suppressive FOXP3low fraction whereaven when the CD31 and CD31- naive Treg subsets were
the FOXP3hi fraction appeared unaltered in children with T1Dseparately analyzedrigure 5C and Supplementary Figure 3.
(Figure 3D andSupplementary Figure 2 Interestingly, the frequency of proliferating Ki67cells within

We also examined the frequency of CII39regs Figure 4A)  the memory Treg compartment, and more speci cally within the
in our cohort. CD39 is exclusively expressed on highlyfFOXP3hiCD45R@ memory Treg subset, was lower in children
suppressive memory Tregs that are critical in suppressing Th1with T1D (Figure 5D and Supplementary Figure 3, providing
type responses, and the frequency of CD3®regs frequency further evidence of alterations in the memory Treg compantine
has been reported to be diminished in patients with multiplein T1D. This phenomenon appears to be specic to the Treg
sclerosis 46, 27). However, the frequency of CDB9Tregs was compartment as no changes in the frequency of proliferating
not altered in children with T1D or AAR children (Figure 4B  Ki67C conventional CDLCD25- memory CDZ T cells (Te )
andSupplementary Figure 3. were observed Supplementary Figure 3. However, Ki6T

Finally, we analyzed the frequency of the minor populatiormemory Treg and Ki6€ memory Te frequencies correlate
of CD25lowCD127lowFOXR3 Tregs Figure 4A) that has strongly Supplementary Figure 3 Therefore, it is also possible
recently been shown to be increased in peripheral bloodhat the decrease in proliferating memory Tregs in childrethwi
of patients with autoimmune diseases, such as systemiclD re ects a more global alteration in the T cell compartment,
lupus erythematosus (SLE) and T1D.1). The frequency butthisdefectis only apparentinthe highly proliferative mey
of CD25lowCD127lowFOXR3 Tregs within the CD&  Tregs, especially the FOXP3hiCD45&@emory Treg subset.
compartment was slightly elevated in children with T1D (0.38

0.17% vs. 0.29 0.13% in healthy childrenP < 0.01) The Frequencies of CCR6-CXCR3 C

but not in autoantibody-positive children Figure 4C and  Th1-Type Regulatory and Effector T Cells
Supplementary Figure 3 as Well as CXCL10 Plasma Levels Are

. . Increased in Children With Newly
The Increased Frequency of Naive Tregs in Diagnosed T1D

Children With Nery Dlagnosed T1D Does A proportion of memory Tregs display characteristics assodiate

Not Result From Increased Thymic Output with the Th1, Th2, Th17, or Tfh lineages that can be identi ed
or Homeostatic Proliferation based on the expression of chemokine receptors as well as
The increase in naive Treg frequency in children with newllineage-speci ¢ transcription factors or cytokine8¢32).
diagnosed T1D could result either from an enhanced thymicTo address this heterogeneity in our study cohorts, we rst
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FIGURE 3 | Increased frequencies of FOXP@ naive and memory Tregs in children with newly diagnosed T1Dykdifferent strategies to de ne Tregs. Tregs were
de ned either as CD4CCD25CCD127lowFOXPX (de nition 1; A, left), CDACHELIOSCFOXP3C (de nition 2; A, middle) or as CDAZCD45R0O-FOXP3low,
CD4CCD45ROCFOXP3low and CD4£ CD45ROCFOXP3hi (de nition 3;A, right). Frequencies of de nition 1(B), de nition 2 (C) and de nition 3 (D) Tregs in control,
AADC and T1D groups.

assessed the expression of the chemokine receptors CCRR6 Th2 (CCR6-CXCR3-), Thl (CCR6-CXCR3 Thl7
and CXCR3 on memory TregsS@pplementary Figure4  (CCRBCCXCR3-), and Th1l/17 (CCRBCXCRZX) cells both
Based on the expression of these markers, memory @CD4within the Te (36-38 and Treg (B0 compartments. We
T cells can be subdivided into subsets that are enrichedbserved that the proportion of Thl-type (CCR6-CXCR3
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FIGURE 4 | Increased frequency of CD25lowCD127low Tregs but not of CD3@ Tregs in children with newly diagnosed T1D. A subset of
CD4CCD25CCD127lowFOXP3 Tregs expresses CD39 left). A minor population of FOXP@ cells is both CD25low and CD127low A, right). Frequencies of
CD39C (B) and CD25lowCD127lowFOXPE (C) Tregs in control, AAKC, and T1D groups.

FIGURE 5 | Decreased frequency of proliferating memory Tregs in childn with newly diagnosed T1D. Representative examples of CI1 (A, left) and Ki67 A, right)
expression on CDACCD25CCD127lowFOXPX Tregs. Frequencies of CD3CT naive Tregs(B), and Ki67C naive (C) and memory (D) Tregs in control, AAKC and T1D
groups.

Tregs was increased and that of Th17-type (CCR&BCR3-) populations that have previously been shown to contain Tregs
Tregs was decreased in children with T1Bigures 6A-D  with proin ammatory potential 33 34). No di erences in these

and Supplementary Figure 3. However, this phenomenon subset frequencies were observed between the study groups
was not specic to the Treg compartment, as the samdFigures 6G,HandSupplementary Figure 3

changes could be observed in the GDED25- memory Te . .

compartment of children with T1D Supplementary Figure3 1 Nn€ Frequency of Circulating

Moreover, the phenotype of memory Tregs and memoryCXCR5CFOXP3C T Follicular Regulatory

Tes appeared to correlate strongly within an individual Cells Is Not Altered in Children With Newly

(Figure 68). Interestingly, we could also demonstrate anDjggnosed T1D

increased concentration of CXCL10, the chemokine ligang\ sypset of circulating Tregs expresses CXCR5 and is thought to
for CXCR3, in plasma samples from children with newlyrepresent circulating T follicular regulatory cells (Tfr),rdtgh
diagnosed T1D but not in AAB children (Figure 6F and the exact biological function of CXCRS Tregs is currently
Supplementary Figure 4. unclear @2). Importantly, alterations in the frequencies of
We also examined the frequencies of CDI6land circulating Tfr have recently been reported in patients with
CCRECCD161C memory Tregs$upplementary Figure 3, two  multiple sclerosis and SLE3%, 39). Using a similar gating
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FIGURE 6 | Increased frequency of CXCR8 memory Tregs and increased plasma CXCL10 levels in childremith newly diagnosed T1D. Frequencies of
CCR6-CXCRXC (A), CCR6CCXCR3-(B), CCR6CCXCR3C (C), and CCR6-CXCR3-(D) memory Tregs in control, AAIC and T1D groups. Linear regression lines of
CCR6-CXCR3C memory Tregs against Teffs were calculated for the controblack lines), AAKC (blue lines) and T1D (red lines) group&). Correlation was calculated
by pooling all samples analyzed and is expressed together thi the P value next to the plot. Plasma CXCL10 level§F), and CD161C (G) and CCR6CCD161C (H)
memory Treg frequencies in control, AAB and T1D groups.

strategy, we conrm that a subset of COCD25CFOXPX  T1D but not in AAbC children compared to healthy controls
Tregs expresses CXCRFidure 7A). Moreover, consistent (Figure 8Band Supplementary Figure §. No di erences in the
with previous investigations 3¢), CXCR% Tregs express frequency of IL-17A-producing memory Tregs were observed
lower levels of CXCR5, PD-1, and CD45RO compared tbetween the dierent study groups-{gure 8C). The decrease
conventional circulating CXCRGS follicular helper T cells (Tfh; in IFN-g-producing cells appeared to be specic for the Treg
Supplementary Figure 5. The frequency of CXCR5Tregs also  compartment, as no di erences in the frequencies of I§NF IL-
increases strongly with agd-igure 7B). In accordance with 17A-producing memory Te s were observed between the study
previous reports4{0-42), we observed an increased frequency ofyroups Supplementary Figure §.

CXCRZCPD-IC circulating Tfh in children with T1D, especially

in those positive for multiple autoantibodies-igure 7C and DISCUSSION

Supplementary Figure 5 However, the frequencies of either

CXCRX or CXCREPD-IC Tregs were not altered in gpegylatory T cell dysfunction has long been suspected to play a
children with T1D or in AALC children (Figure 7D and  crcial role in the pathogenesis of T1D. Over the years, many
Supplementary Figure 3 studies have assessed whether the frequency or phenotype of
. peripheral blood Tregs is altered in patients with T1D. Here, we
The Frequency of IFN- 9 'Pr,Od“C'_”g add to these reports our current ndings using samples from
Memory Tregs Is Decreased in Children a large and well-controlled natural history cohort of pediat
With Newly Diagnosed T1D T1D. We observed multiple subtle changes in the peripheral Treg
Finally, to investigate the capacity of Tregs to produceompartment of children with newly diagnosed T1D but none in
proin ammatory cytokines, we stimulated PBMCs with PMA autoantibody-positive at-risk children.
and ionomycin and analyzed the production of IFdNand IL- Until recently, the general consensus from several studies
17A by FOXP& memory Tregs Figure 8A). In accordance has been that there is no clear alteration in the frequency of
with previous reports 17, 41), the cytokine-producing Tregs peripheral blood CDEZFOXPI Tregs in patients with T1D
were exclusively contained in the HELIOS-negative subget ¢13-19), although some studies have reported both elevated
memory Tregs Figure 8A). Importantly, the frequency of IFN- (10, 11) and decreased frequencie?. Here, we demonstrate
g-producing memory Tregs was reduced in children witha subtle increase in the frequency of FOXPBregs in children
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FIGURE 7 | Increased frequency of circulating Tfh but not Tfr cells in dldren with newly diagnosed T1D. Tth cells were de ned as CD@CD25-FOXP3-CXCRE and
Tfr cells as CDAZCD25CFOXP3CCXCREC cells (A). Linear regression lines for CXCRG Treg frequencies against age were calculated for the conttdblack lines),
AADC (blue lines) and T1D (red lines) group@). Correlation was calculated by pooling all samples analyzeand is expressed together with theP value next to the
plot. Frequencies of CXCRE and CXCRECPD-1C Teffs (Tth;C) and frequencies of CXCRE& and CXCRECPD-1C Tregs (Tfr;D) in control, AAKC, and T1D groups.

FIGURE 8 | Decreased frequency of IFNg-producing memory Tregs in children with newly diagnosed T. Representative example of IFNy production by
CD4CCD25CFOXP3HELIOS-CD45RAC memory Tregs(A). Frequencies of IFNg- (B) and IL-17A-producing (C) memory Tregs in control, AAIC and T1D groups.

with T1D using multiple di erent approaches to de ne Tregs. subsets could also be altered, given that there may be more
Our results also highlight the importance of examining speci than 20 phenotypically distinct subsets within the FOXPBreg
subsets of Tregs, as we can clearly demonstrate that tlkempartment 24).

increase in total Tregs is caused both by an increase in the The most striking nding of our study was the increase
frequency of naive FOXR3 Tregs as well by an increase inin the frequency of naive Tregs at the presentation of T1D.
FOXP3lo memory Tregs. Importantly, both of these ndingsUsing longitudinal samples, we could con rm that this change
have previously been reported in patients with T1DO,(18) was associated with progression to clinical disease. Pdtentia
as well as in patients with another autoimmune disease, Sléxplanations for this phenomenon include an increased thymic
(25, 43). In addition, we con rmed here the results of a recentoutput of naive Tregs or their increased proliferatiam vivo.
report (11) that the frequency of the atypical population of However, we observed no increase in the expression of CD31, a
CD25lowCD127lowFOXR3 T cells is increased in patients marker for recent thymic emigrant T cells, or the proliferation
with T1D. Whether the observed increases in these three Tregarker Ki67 in naive Tregs from children with T1D. An
subsets are mechanistically linked with each other remaims alternative explanation could be a change in the distribution
open question. Moreover, it is possible that additional smalbf naive Tregs between blood and lymphoid tissues due to the
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in ammatory milieu at the manifestation of T1D. Inline witthis ~ The discrepancy between our current results and earlier tspor
interpretation the increase in naive Treg frequency in pasen may be related to di erences in the methodological approach
with SLE was shown to correlate with both the clinical atyivi or the clinical cohorts analyzed. Notably, the original sasdby
of the disease as well as with serum proin ammatory cytokinevicClymont et al. and Marwaha et alL@, 17) demonstrated an
levels ¢3). increased frequency of IFN- and IL-17A-producing memory
The increase in FOXP3lo memory Tregs in children withTregs afterin vitro expansion in a rather small cohort of
T1D is an interesting nding, since this population has subjects. In line with our current results, a more recent stud
previously been shown to be largely non-suppressive anahalyzing alarger cohort of patients did not observe an ineeea
capable of producing proin ammatory cytokinesl@ 25. frequency of IFNg-producing memory Tregs directlgx vivo
Therefore, we further analyzed the expression of chemokingll).
receptors and cytokine production within the memory Treg Recent studies by us and others have demonstrated that
compartment in samples from our clinical cohort. The frequgnc the frequency of circulating CXCR5 Tfh cells is increased
of CCR6-CXCRB (Thl-type) T cells was increased and thatin patients with T1D ¢0-42. We corroborated these
of CCR&CXCR3- (Thl7-type) T cells decreased both in thendings here by demonstrating an increased frequency of
memory Treg and Te compartments of children with newly circulating CXCREPD-1C Tth cells in children with T1D.
diagnosed T1D. Moreover, in accordance with previous report¥he frequency of CXCR5 Tregs, presumably re ecting
(44, 45), serum levels of CXCL10, the chemokine ligand forcirculating T follicular regulatory cells (Tfrs), howeverasvnot
CXCR3, were observed to be increased in children with T1D. increased in children with T1D. These ndings potentially
In murine models, CXCR3 Tregs have been shown to re ect an imbalance between Tfh and Tfr responses in
migrate to sites of in ammation in response to CXCL10 andT1D that could result in enhanced B cell autoimmunity.
to speci cally suppress Thl-type immune respons2g (B1). Interestingly, T1D seems also to dier in this aspect from
Similarly, CCRE& Tregs appear to migrate to in amed tissues intwo other autoimmune diseases, multiple sclerosis and SLE,
response to their chemokine ligand CCLZLB). Therefore, the where increased circulating Tfr frequencies have been tegor
observed imbalance of CXCR3and CCRE T cells in children (32, 39).
with T1D can indicate disturbances in T-cell migration paitts. An important open research question is whether in addition
The increase in circulating CXCR3-expressing T cells coddlte to altered frequencies there are also functional defecthinvit
from increased systemic CXCL10 levels in patients with T1Dthe di erent Treg subsets in children with T1D. Addressing
as observed here. The proportional decrease in GCReegs, this key question is, however, technically challengingcesin
on the other hand, could be a result of increased migration othe isolation of su cient numbers of rare Treg subsets for
CCR& T cells into in amed tissues. functional assays is largely precluded by the limited volume
Interestingly, using immunohistochemistry, both CXCL10of blood obtainable from pediatric subjects. Another obdou
expression bp-cells and CXCR3 expression on T cells have beecaveat of our study is that we could only analyze Treg frequenc
observed to be increased in pancreatic islets of patients witlind phenotype in blood samples, where the changes are likely
T1D (46-48). In murine models of T1D, CXCL10 production to be minor compared to those in pancreatic lymph nodes
by pancreaticb-cells has been shown to recruit pathogenic(pLNs) and in amed islets. In the NOD mouse model, there
autoreactive CXCR3 T cells to pancreatic islets49, 50). appears to be an increased frequency of Tregs in pLNs but
However, CXCR3 expression on Tregs appears also to be crucialdecreased frequency in inamed islets of newly diabetic
in protecting against autoimmune pathology, suggesting botimice (), although the frequency of Tregs in pLNs possibly
a pathogenic and protective role for CXCR3 in T1B1. decreases after disease onséj.(Moreover, a seminal study by
Therefore, the increase in peripheral blood CXCR3Jregs Ferraro et al. demonstrated a decreased frequency of FOXP3
observed here could also be associated with an attempt @fegs with concomitant increase in Thl7 cells in pLNs of
the immune system to harness Thl-type immunopathology apatients with long-standing T1D, which was not accompanied
the manifestation of T1D. Although inhibition of CXCR3 is with similar changes in the peripheral blood ). Although
an attractive therapeutic strategy to prevent the in ltratiof  technically challenging, more studies addressing Treg ptype
autoreactive T cells into pancreatic islets, caution hasttaken and function in human pLNs and islets are obviously needed
with this approach, since it may also inhibit CXCR&Jregs that in order to understand the potential contribution of Treg
can have a protective e ect on autoimmune pathology in humardysfunction to T1D pathogenesis.
T1D. In summary, we demonstrate here multiple subtle di erences
Previous studies have suggested that the frequency of Treigs peripheral blood Treg subsets in children with newly
producing either IFNg or IL-17A is increased in patients with diagnosed T1D that are not observable in autoantibody-passiti
T1D (10, 17). CD161-expression can be used to identify theat-risk children. This strongly suggests that peripheraloblo
subpopulation of memory Tregs with the capacity to producelreg alterations are either associated with later stagetheof
proin ammatory cytokines 83, 34). However, we observed autoimmune progression to clinical T1D or are secondary to the
no increase of CD1&1 memory Treg in children with T1D. islet in ammation or metabolic dysfunction at the presentati
Importantly, we also did not observe a di erence in the freqagn of the disease. Our current work increases the understandin
of IL-17A-producing memory Tregs and the frequency of IFN-Treg dysfunction during the natural history of T1D, whichrca
g-producing memory Tregs was lower in children with T1D. be important both for improving current immunotherapeutic
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strategies to prevent or treat T1D through enhancing TreFUNDING
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