
Reinforcement Learning Based Scheduling
Algorithm for Optimizing Age of Information in

Ultra Reliable Low Latency Networks
Anis Elgabli, Hamza Khan, Mounssif Krouka, and Mehdi Bennis

Center of Wireless Communications
University of Oulu, Oulu, Finland

Abstract—Age of Information (AoI) measures the freshness of
the information at a remote location. AoI reflects the time that is
elapsed since the generation of the packet by a transmitter. In this
paper, we consider a remote monitoring problem (e.g., remote
factory) in which a number of sensor nodes are transmitting
time sensitive measurements to a remote monitoring site. We
consider minimizing a metric that maintains a trade-off between
minimizing the sum of the expected AoI of all sensors and
minimizing an Ultra Reliable Low Latency Communication
(URLLC) term. The URLLC term is considered to ensure that
the probability the AoI of each sensor exceeds a predefined
threshold is minimized. Moreover, we assume that sensors toler-
ate different threshold values and generate packets at different
sizes. Motivated by the success of machine learning in solving
large networking problems at low complexity, we develop a low
complexity reinforcement learning based algorithm to solve the
proposed formulation. We trained our algorithm using the state-
of-the-art actor-critic algorithm over a set of public bandwidth
traces. Simulation results show that the proposed algorithm
outperforms the considered baselines in terms of minimizing the
expected AoI and the threshold violation of each sensor.

Index Terms—AoI, URLLC, Stochastic Optimization, Rein-
forcement Learning

I. INTRODUCTION

Cyber-Physical Systems (CPS), Internet of Things (IoT),
Remote Automation, and Haptic Internet are all examples
for systems and applications that require real-time monitoring
and low-latency constrained information delivery. The growth
of time sensitive information led to a new data freshness
measure named Age of Information (AoI). AoI measures
packet freshness at the destination accounting for the time
elapsed since the last update generated by a given source [1].

Consider a cyber-physical system such as an automated fac-
tory where a number of sensors are located at a remote site and
they are transmitting time sensitive information to a remote
observer through the internet (multihop wired and wireless
network). Each sensor’s job is to sample measurements from
a physical phenomena and transmit them to the monitoring
site. Due to the variability of the network bandwidth because
of many reasons such as the resource competition, packet
corruptions, and wireless channel variations, maintaining fresh
data at the monitoring side become challenging problem.

Recently, there were few papers tackling the problem of
minimizing the AoI of number of sources that are competing

for the available resources. [2] considers the problem of many
sensors connected wirelessly to a single monitoring node
and formulates an optimization problem that minimizes the
weighted expected AoI of the sensors at the monitoring node.
Moreover, the authors of [3] also consider the sum expected
AoI minimization problem when constraints on the packet
deadlines are imposed. In [4], sum expected AoI minimization
is considered in a cognitive shared access.

However, the problem of AoI minimization for ultra reliable
low latency communication (URLLC) systems should pay
more attention to the tail behavior in addition to optimizing
on average metrics [5]. In URLLC, the probability that the
AoI of each node sharing the resources exceeds a certain
predetermined threshold should be minimized. Therefore, the
AoI minimization metric for URLLC should account for the
trade-off between minimizing the expected AoI of each node
and maintaining the probability that the AoI of each node
exceeding a predefined threshold at its minimum. Therefore, in
this paper, we consider optimizing a metric that is a weighted
sum of two metrics (i) Expected AoI, and (ii) probability of
threshold violation.

Introducing the second metric in the object function, ac-
counting for the fact that different nodes are generating packets
at different sizes, and different nodes can tolerate different
threshold violation percentages. Moreover, accounting for the
non-causality knowledge of the available bandwidth, and in-
cluding the non zero packet drop that might be encountered in
the network. All these factors, contribute to the complexity of
the problem. In other words, the proposed scheduling problem
is a stochastic optimization problem with integer non convex
constraint which is in general hard to solve in polynomial time.

Therefore, motivated by the success of machine learning in
solving many of the online large scale networking problem
when trained offline. In this paper, we propose an algorithm
based on Reinforcement Learning (RL) to solve the proposed
formulation. RL is defined by three components (state, action,
and reward). Given a state, the RL agent is trained in offline
manner to choose the action that maximizes the system reward.
The RL agent interacts with the environment in a continuous
way and tries to find the best policy based on the reward/cost
fed back from that environment [6]. In other words, the RL
agent tries to choose the trajectory of actions that leads to

ar
X

iv
:1

81
1.

06
77

6v
4

 [
cs

.N
I]

 1
1

M
ay

 2
01

9

Fig. 1. System Model

maximum average reward.
The rest of the paper is organized as follows, In section II,

we describe our system model and problem formulation. In
section III, we explain our Reinforcement Learning based ap-
proach that we propose for solving the proposed formulation.
In section IV, we describe in details our implementation and
we also discuss the results. Finally, in section V, we conclude
the paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

The system model considered in this work focuses on a
remote monitoring/automation scenario (Fig 1) in which the
monitor/controller resides in a remote site and allows one
sensor at a time to update its state by generating fresh packet
and send it to the monitor/controller. We assume that there
are N sensors, and only one sensor n ∈ {0, 1, · · · , N − 1} is
chosen to update its state at job number k ∈ {0, 1, · · · ,K−1}
by sending a packet of size Ln Bytes at a rate r(k) to the
controller. Where r(k) is the average rate at the time of job
number k.

Let xn(k) be an indicator variable that indicates the selec-
tion of sensor n by the controller at job id k, i.e. xn(k) = 1
if the controller selects sensor n at job id k, and 0 otherwise.
When xn(k) = 1, sensor n samples a new state, generates a
packet accordingly, and sends it to the controller. The packet
is successfully received by the controller with probability
p ∈ (0, 1]. Therefore, the packet is corrupted with probability
1 − p. Let dn(k) be the indicator function that is equal to
the number of times sensor n retransmits its packet at the
job id k before it is successfully received at the controller.
For example, if the packet fails at the first transmission and
then successfully received at the second transmission then
dn(k) = 2. Since, the controller selects only one sensor at
any job id k ∈ {0, 1, · · · ,K − 1}, the following constraints
must hold for xn(k),∀n, k:

N∑
n=1

xn(k) = 1,∀k ∈ {0, 1, · · · ,K − 1} (1)

xn(k) ∈ {0, 1},∀n ∈ {0, 1, · · · , N−1}, k ∈ {0, 1, · · · ,K−1}
(2)

Finally, let an(k) be the age of the n-th sensor’s information
in seconds at the time of controller’s job k. For example, if the

n-th sensor has successfully transmitted a packet to the con-
troller at the job k−1, the age of the n-th sensor’s information
at the controller will be

∑dkn
i=1 Ln/ri(k). Mathematically, the

AoI of sensor n at the time of job k + 1, an(k + 1) evolves
according to the following equation:

an(k + 1) = xn(k) ·
dkn∑
i=1

Ln
ri(k)

+ (1− xn(k)) ·
(
an(k) +

N∑
m=1,m6=n

xm(k) ·
dkm∑
i=1

Lm
ri(k)

)
(3)

Equation (3) simply states that, the AoI for sensor n at the time
of job k + 1 is equal to the time that is spent transmitting a
packet from sensor n to the controller if sensor n was selected
in job k. Otherwise, if another sensor m 6= n was selected in
job k, the AoI of sensor n at the controller side at time of
job k + 1 is equal to the AoI at the time of job k plus the
time that is spent transmitting a packet from sensor m to the
controller.

To account for latency and reliability, we minimize an
objective function that is a weighted sum of two terms. The
first term is the sum average AoI, and the second term is the
sum of the probability that AoI of each sensor n at any job
k exceeds a predefined threshold. Therefore, the overall AoI
minimization problem is:

Minimize: lim
K→∞

1

KN

N−1∑
n=0

K−1∑
k=0

an(k)

+

N−1∑
n=0

λn

K−1∑
k=0

Pr{an(k) > τn} (4)

subject to (1)-(3)

where τn is the predefined threshold of sensor n. In our
objective function (4), we assume that different sensors can
tolerate different AoI thresholds. λn is the weight of sensor n;
higher the weight more is the penalty of exceeding the AoI’s
threshold. Finally, In order to optimize the tail performance,
we should choose λn � 1, so that exceeding τn has a very
high penalty and reduces the performance significantly.

Structure of the problem: The proposed problem is
a stochastic optimization problem with integer (non-convex)
constraints. Integer-constrained problems even in the determin-
istic settings are known to be NP hard in general. Very limited
problems in this class of discrete optimization are known to
be solvable in polynomial time. Moreover, neither the packet
drop probability nor the available bandwidth are known non-
causally. Furthermore, all the sensors are competing over the
available bandwidth. Therefore, we propose a learning based
algorithm in order to learn and solve the proposed problem. In
particular, we investigate the use of Reinforcement Learning
(RL). In the next section, we describe our proposed algorithm
for solving our formulated problem using RL.

III. PROPOSED ALGORITHM BASED ON REINFORCEMENT
LEARNING

In this paper, we consider a learning-based approach to find
the scheduling policy from real observations. Our approach
is based on reinforcement learning (RL). In RL, an agent
interacts with an environment. At each job, the agent observes
some state sk and performs an action ak. After performing the
action, the state of the environment transitions to sk+1, and
the agent receives a reward Rk. The objective of learning is to
maximize the expected cumulative discounted reward defined
as E{

∑K
k=0 γ

kRk}. The discounted reward is considered to
ensure a long term system reward of the current action.

Our reinforcement learning approach is described in Fig.2.
As shown, the scheduling policy is obtained from training a
neural network. The agent observes a set of metrics including
the current AoI of every sensor an(k),∀n, k, and the through-
put achieved in the last j jobs and feeds these values to the
neural network, which outputs the action. The action is defined
by which sensor to choose for the next job. The reward is then
observed and fed back to the agent. The agent uses the reward
information to train and improve its neural network model. We
explain the training algorithms later in the section. Our reward
function, state, and action spaces are defined as follows:
• Reward Function: The reward function at the end of job
k, Rk is defined by the following equation which is a sum
of two terms. The first term is the sum of all sensors’ AoIs
at the end of job k, and the second term is a weighted
sum of the penalties encountered when exceeding AoI
thresholds.

Rk = −
N−1∑
n=0

an(k)−
N−1∑
n=0

λn · 1(an(k)>τn) (5)

Where 1(·) is an indicator function.
• State: The state at job number k is.

– The age of every sensor n at job k, an(k),∀n, k
– The throughput that was achieved for the last j

assigned jobs r(k − j + 1), · · · , r(k − 1).
– The time that was spent in downloading the last

packet αk−1. which reflects the packet size as well
as the current network conditions (packet drop and
throughput).

• Action: The action is represented by a probability vector
of length N such that if the n-th element is the maximum,
sensor n ∈ {0, · · · , N − 1} will be scheduled for job id
k.

The first step toward generating the scheduling algorithm
using RL is to run a training phase in which the learning agent
explores the network environment. In order to train our RL
based system, we use A3C [7] which is the state-of-art actor
critic algorithm. A3C involves training two neural networks.

Given state sk as described in Fig 2, the RL agent takes an
action ak which corresponds to choosing one sensor for job
k. The agent selects a certain action based on a policy which
is defined as a probability over actions π : π(sk, ak)← [0, 1].
Specifically, π(sk, ak) is the probability of choosing action ak

𝑟(𝑘 − 𝑖 + 1)

𝑎(0,𝑘 − 1)

𝑎(𝑁 − 1,𝑘 − 1)

State 𝑠𝑘

Past 𝑖 job throughputs

1D-CNN

AoI sensor 0

𝑟(𝑘 − 1)

Actor network

Policy

AoI sensor N-1

Transmission time of last packet

𝛼𝑘−1

1D-CNN Critic network

Value

Fig. 2. The Actor-Critic Method that is used in our Proposed Scheduling
Algorithm

given state sk. The policy is a function of parameter θ, which
is referred to as policy parameter in reinforcement learning.
Therefore, for each choice of θ, we have a parametrized policy
πθ(sk, ak).

After performing an action at job id k, a reward Rk is
observed by the RL agent. The reward reflects the performance
of each action (sesnor selection) in the metric we need to
optimize. Policy gradient method [8] is used to train the
actor-critic policy. Here, we describe the main steps of the
algorithm. The main job of policy gradient methods is to
estimate the gradient of the expected total reward. The gradient
of the cumulative discounted reward with respect to the policy
parameters θ is computed as:

∇Eπθ{
K−1∑
k=0

K−1∑
t=0

γtRk+t} = Eπθ{∇θlogπθ(s, a)Aπθ (s, a)}

(6)
where Aπθ (s, a)} is the advantage function [7]. Aπθ (s, a)}
reflects how better an action compared to the average one
chosen according to the policy. Since the exact Aπθ (sk, ak)}
is not known, the agent samples a trajectory of scheduling
decisions and uses the empirically computed advantage as an
unbiased estimate of Aπθ (sk, ak)}. The update of the actor
network parameter θ follows the policy gradient which is
defined as follows:

θ ← θ + α

K−1∑
k=0

∇θlogπθ(sk, ak)Aπθ (sk, ak) (7)

where α is the learning rate. In order to compute the advantage
A(sk, ak) for a given action, we need to estimate the value
function of the current state Vπθ (s) which is the expected
total reward starting at state s and following the policy πθ.
Estimating the value function from the empirically observed

rewards is the task of the critic network. To train the critic net-
work, we follow the standard temporal difference method [9].
In particular, the update of θv follows the following equation:

θv ← θv+α
′
K−1∑
k=0

(
Rk+γV

πθ (sk+1, θv)−V πθ (sk, θv)
)2

(8)

Where α′ is the learning rate of the critic, and V πθ is the
estimate of Vπθ . Therefore, for a given (sk, ak, Rk, sk+1),
the advantage function, A(sk, ak) is estimated as Rk +
γV πθ (sk+1, θv)− V πθ (sk, θv)

Finally, we would like to mention that the critic is only used
at the training phase in order to help the actor converge to the
optimal policy. The actor network is then used to make the
scheduling decisions.

IV. SIMULATION

A. Implementation

To generate our scheduling algorithm, we modified and
trained the RL agent architecture described in [13] to serve
our purpose. The RL agent consists of an actor-critic pair.
Both actor and critic network uses the same NN structure,
except that the final output of the critic network is a linear
neuron with no activation function. We pass the throughput
that was achieved in the last 5 jobs to a 1D convolution
layer (CNN) with 128 filters, each of size 4 with stride 1.
The output of this layer is aggregated with all other inputs in
a hidden layer that uses 128 neurons with a relu activation
function. At the end, the output layer (10 neurons) applies
the softmax function. To account for discounted reward, we
choose γ = 0.9. Moreover, we set the learning rates of both
the actor and critic to 0.001. We implemented this architecture
in python using TensorFlow [10]. Moreover, we used real
bandwidth traces [11], [12], [13] to train our RL agent, and
we set the packet drop probability to be 10%. One final thing,
to ensure that the RL agent explores the action space during
training, we added an entropy regularization term to the actor?s
update as described in [13], and we initially set the entropy
weight to 5 in order to explore different policies. However,
we kept generating models, pass them again to start over the
training while reducing the entropy weight until we reached
zero weight. We used the model that was generated with
entropy weight being equal to zeros to generate the results.

We assume that there are 10 sensors (N = 10) generating
packets of sizes, 50 to 500 bytes, with step size of 50 bytes.
The sensors have their AoI thresholds ranging from 30 to
210ms with a step size of 20ms. Therefore, the first sensor
(sensor 0) imposes a stricter AoI threshold, and the last one
(sensor 9) has the much looser threshold value and higher
packet size. We set λn to be equal to 1000 · (N − n)/N ,
where n = 0, · · · , N − 1 represents the sensor ID. Therefore,
we get more penalty when the AoI of the sensor that has the
tighter threshold exceeds its target.

For comparison, we considered two baselines, baseline 1
always chooses the sensor that has EDF to transmit which

reflects the Earliest deadline First strategy. We refer to this
baseline by “EDF” algorithm. In the other hand, baseline 2 is
a modified version of Optimal Stationary Randomized Policy
(OSRP) proposed in [2] that considers minimizing the prob-
ability of exceeding AoI thresholds. i.e, it randomly selects
a sensor for job k, ∀k with a probability of selection that
is inversely proportional to its AoI threshold. Therefore, the
sensor that has a stricter deadline is chosen more frequently.
We refer to this baseline by “OSRP” algorithm

B. Discussion

Now we report our results using the test traces. throughout
this section, we refer to our proposed algorithm by “RL”
algorithm. The results are described in both table I and
Fig 3. We clearly see from the total normalized objective
function shown in table I, which is computed as per equation
(4) and normalized with respect to the “RL” algorithm, that
our proposed RL based algorithm significantly outperforms
baselines. The RL algorithm achieves the minimum objective
value among the three algorithms. Its objective is around 50%,
and 100% lower than EDF (baseline 1) and OSRP (baseline 2)
algorithms respectively. Moreover, RL algorithm achieves the
minimum threshold violation for each sensor. For example, the
AoI of the 0-th sensor is not exceeding its threshold at any time
using the proposed algorithm. However, the AoI of the same
sensor exceeds its threshold 16% of the time using baseline
1 and 2. Furthermore, the RL algorithm totally eliminates
the violations for the sensors 4 onward. In the other hand,
baseline 2 continues to experience considerably high threshold
violation for all sensors.

We also notice that the RL algorithm maintains a trade-
off between minimizing the average AoI of each user and
minimizing the threshold violation which is very important
requirement for URLLC. For example, for the first 3 sensors
(sensors 0, 1, and 2), RL algorithm achieves the minimum
AoI and minimum threshold violation. Note that the penalty
of AoI violation is inversely proportional to the sensor’s index.
i.e, sensor 0’s threshold violation degrades the performance of
the algorithm much higher than sensor 1’s violation and so on.
We see for some sensors that EDF based approach (baseline 1)
achieves a lower average AoI. However, that comes at the cost
of having more threshold violation for sensors that have stricter
AoI threshold and higher threshold violation penalty weight
(e.g, sensor 0). Consequently, it degrades the performance
more significant than the higher average AoI. Therefore, for
the considered objective function which gives higher penalty
to violating threshold AoI, our proposed RL based algorithm
is able to learn that and to significantly outperform the other
two algorithms.

Fig 3(a-j) plots the CDF of each sensor’s AoI for the three
algorithms. The CDF plots along side the results reported
in table I show that RL algorithm outperforms the baselines
in both average AoI and probability of exceeding the AoI
threshold for the sensors with stricter deadlines Fig. 3(a-c).
For example, in Fig. 3-(a), the CDF of the AoI of sensor 0
is plotted, which has the stricter threshold among all sensors.

Fig. 3. CDF plots of the AoI of all sensors (a) sensor 0, · · · , (j) sensor 9

We see that RL algorithm achieves the minimum AoI for this
sensor all the time compared to baseline 1 and 2. The RL
algorithm runs into higher average AoI than “EDF” algorithm
(baseline 1) for sensors with looser AoI threshold, but that
comes at the gain of achieving minimum threshold violation
for most of the sensors. In conclusion, we clearly see that the
RL based approach that is proposed in this paper learns how
to consider minimizing the average AoI of every sensor while
maintaining the probability of exceeding the AoI threshold
of each sensor as low as possible. Moreover, it learns how
to respect the weights specified by the objective function
which gives much higher penalty to violating thresholds than
achieving lower average AoI.

V. CONCLUSION AND FUTURE WORK

In this paper, we investigated the use of machine learning
in solving network resource allocation/scheduling problems.
In particular, we developed a reinforcement learning based
algorithm to solve the problem of AoI minimization for
URLLC networks. We considered the system in which a
number of sensor nodes are transmitting a time sensitive
data to a remote monitoring side. We optimize a metric that
maintains a trade-off between minimizing the sum of the
expected AoI of all sensors and minimizing the probability
of exceeding a certain AoI threshold for each sensor. We
trained our reinforcement learning algorithm using the state-
of-the-art actor-critic algorithm over a set of public bandwidth
traces with non zero probability of packet drop. Simulation
results show that the proposed algorithm outperforms the

TABLE I

RL Baseline 1
(EDF)

Baseline 2
(OSRP)

Normalized
Objective
Eq(4)

1 1.53 2.1

Pr AoI0 > τ0 0% 16.24% 16.18%
Pr AoI1 > τ1 0.06% 6.04% 7.80%
Pr AoI2 > τ2 0.016% 2.46% 7.02 %
Pr AoI3 > τ3 0.06% 0.04% 5.55%
Pr AoI4 > τ4 0% 0% 3.98%
Pr AoI5 > τ5 0% 0% 4.32%
Pr AoI6 > τ6 0% 0% 3.21%
Pr AoI7 > τ7 0% 0% 3.63%
Pr AoI8 > τ8 0% 0% 3.82 %
Pr AoI9 > τ9 0% 0% 4.42%
Avg sensor 0 9.82 16.93 15.89
Avg sensor 1 14.39 19.12 19.34
Avg sensor 2 17.30 20.83 26.31
Avg sensor 3 22.53 22.05 30.90
Avg sensor 4 20.07 22.82 35.35
Avg sensor 5 23.86 23.12 41.90
Avg sensor 6 22.90 22.83 45.09
Avg sensor 7 27.25 22.08 51.75
Avg sensor 8 24.28 20.83 61.27
Avg sensor 9 24.14 19.09 67.14

considered baselines in terms of optimizing the considered
metric. Investigating the switching between sensors at time slot
level to minimize the Maximum Allowable Transfer Interval
(MATI) for control over wireless is an interesting direction for
future work.

REFERENCES

[1] S. Kaul, R. Yates, and M. Gruteser, “Real-time status: How often should
one update?” in 2012 Proceedings IEEE INFOCOM, March 2012, pp.
2731–2735.

[2] I. Kadota, A. Sinha, and E. Modiano, “Optimizing age of information
in wireless networks with throughput constraints,” in IEEE INFOCOM
2018 - IEEE Conference on Computer Communications, April 2018, pp.
1844–1852.

[3] C. Kam, S. Kompella, G. D. Nguyen, J. E. Wieselthier, and
A. Ephremides, “On the age of information with packet deadlines,” IEEE
Transactions on Information Theory, vol. 64, no. 9, pp. 6419–6428, Sept
2018.

[4] A. Kosta, N. Pappas, A. Ephremides, and V. Angelakis, “Age of Infor-
mation and Throughput in a Shared Access Network with Heterogeneous
Traffic,” ArXiv e-prints, Jun. 2018.

[5] M. K. Abdel-Aziz, C.-F. Liu, S. Samarakoon, M. Bennis, and W. Saad,
“Ultra-Reliable Low-Latency Vehicular Networks: Taming the Age of
Information Tail,” ArXiv e-prints, nov 2018.

[6] Y. Sun, M. Peng, Y. Zhou, Y. Huang, and S. Mao, “Application of
Machine Learning in Wireless Networks: Key Techniques and Open
Issues,” ArXiv e-prints, Sep. 2018.

[7] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep rein-

forcement learning,” in International conference on machine learning,
2016, pp. 1928–1937.

[8] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour, “Policy
gradient methods for reinforcement learning with function approxima-
tion,” in Advances in neural information processing systems, 2000, pp.
1057–1063.

[9] R. S. Sutton and A. G. Barto, “Reinforcement learning: An introduction,”
2011.

[10] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: a system for large-
scale machine learning.” in OSDI, vol. 16, 2016, pp. 265–283.

[11] H. Riiser, P. Vigmostad, C. Griwodz, and P. Halvorsen, “Commute
path bandwidth traces from 3g networks: analysis and applications,” in
Proceedings of the 4th ACM Multimedia Systems Conference. ACM,
2013, pp. 114–118.

[12] “Federal Communications Commission. 2016. Raw Data -
Measuring Broadband America. (2016).” https://www.fcc.
gov/reports-research/reports/measuring-broadband-america/
raw-data-measuring-broadband-america-2016.

[13] H. Mao, R. Netravali, and M. Alizadeh, “Neural adaptive video stream-
ing with pensieve,” in Proceedings of the Conference of the ACM Special

Interest Group on Data Communication. ACM, 2017, pp. 197–210.

https://www.fcc.gov/reports-research/reports/ measuring- broadband- america/raw- data- measuring- broadband- america- 2016
https://www.fcc.gov/reports-research/reports/ measuring- broadband- america/raw- data- measuring- broadband- america- 2016
https://www.fcc.gov/reports-research/reports/ measuring- broadband- america/raw- data- measuring- broadband- america- 2016

	I Introduction
	II System Model and Problem Formulation
	III Proposed Algorithm Based on Reinforcement Learning
	IV Simulation
	IV-A Implementation
	IV-B Discussion

	V Conclusion and Future Work
	References

