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Abstract. Recent CNNs based salient object detection approaches tend
to embed a fully connected Conditional Random Field (CRF) layer to
refine the saliency maps from CNNs for post processing. Due to the sig-
nificant performance enhancement by the CRF layer, in this paper, we
propose a more flexible CRF refinement framework by embedding the
CRF inference to multiple levels of side outputs from CNNs for multi-
scale saliency refinement. A fully convolutional neural networks based
on the simple yet effective encoder-decoder architecture with only three
scales of side output maps is pre-trained. Then, the CRF layers are em-
bedded to each scale of the side output respectively to complement the
defects of each side output maps. Finally, the refined side output maps
are fused and refined by another CRF inference for the final saliency
map. The proposed multi-scale CRFs model (MCRF) is trained with
low computational costs and shows competitive performance over four
datasets in comparison with the existing state-of-the-art saliency models.
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1 Introduction

Salient Object Detection (SOD) refers to the perceptual selective process that
highlights the most distinct regions on the scenes by the human vision sys-
tem. In practice, object-level saliency detection can be broadly applied as a
pre-processing technique for various computer vision tasks, such as image and
video segmentation [27], video compression [6], image cropping [28], video sum-
marizing [23], image fusion [7], etc.

Due to the prevalence of the convolutional neural networks (CNNs), the per-
formance of salient object detection has been largely improved [19, 33, 16, 5, 18,
9, 17, 32, 24, 13]. Further, the integration of fully convolutional neural networks
(FCNs) facilitates salient object detection tasks to an end-to-end phase [18, 34,
12, 30, 42]. However, current CNNs based SOD approaches still face with signifi-
cant challenges due to its network structures. Firstly, as salient object detection
is a pixel-level labelling task, the outputs from the convolutional layers with large
receptive fields can be rather rough after being restructured back to pixel-level
labelled maps [21]. Hence, the output saliency maps from CNNs may result in
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blob-like defects. Secondly, salient object detection emphasizes on recognizing
the salient regions in object-level. As the CNNs lacks smoothness constraints
for label agreement, the output saliency maps may consist poor object delin-
eation and spurious regions [25]. In summary, the output maps from CNNs are
relatively coarse and further refinement is needed to improve object boundary
division and saliency density smoothness.

One prevalent approach adopted by recent state-of-the-art saliency models
is to introduce a Conditional Random Field (CRF) layer, i.e. Dense-CRF [11],
fully connected to the FCNs [17, 14, 9] for coarse saliency map refinement. The
fully connected CRF layer does not participate in finetuning the front-end FCNs.
Instead, it acts as a post-processing layer to reconcile the spatial and appearance
coherence of the coarse saliency maps through cross validations. On one hand,
the CRF layer efficiently enhances the accuracy of the saliency maps in practice;
on the other hand, it makes the training stage of the front-end deep neural
networks compact and efficient.

However, existing saliency models only connect one CRF layer to the end of
the pre-trained deep neural networks for refinement. In this paper, we extend the
CRF layer as a more flexible integration to any of the side output layers of the
FCNs to enhance the quality of the intermediate outputs, and thus to further
improve the performance of the whole networks. Therefore, we propose the multi-
scale CRFs model (MCRF) based on multi-scale side outputs from FCNs for
salient object detection. Specifically, a fully convolutional neural network based
on the encoder-decoder architecture with three scales of side output maps is
trained with pixel-wise labels. Then, a CRF layer is connected to each side
output layer to refine the delineation and smoothness of the side output maps.
Finally, the refined side output maps are fused and then refined by another CRF
layer for the final saliency map. The contributions of the paper are two folds:

{ The proposed MCRF model integrates multiple CRF layers to refine the
multi-scale side output maps from FCNs, and thus to complement the defects
of each side outputs for a unified and refined saliency map. The multi-scale
CRFs refinement structure largely improves the refinement effectiveness than
integrating one CRF layer at the end of the network.

{ The multi-scale CRFs refinement structure results in highly competitive per-
formance based on the simple encoder-decoder networks with only three
scales of side outputs. Hence, the multi-scale CRFs structure is able to avoid
the over-fitting issues due to complex deep network architectures with lim-
ited training samples.

The rest of the paper is organized as follows. Section 2 summarizes the re-
lated works. Section 3 introduces the framework of the proposed multi-scale
CRFs saliency model. Section 4 presents the implementation details and the
experimental results and Section 5 concludes the work.
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Fig. 1. Framework of the proposed multi-scale CRFs model. Three scales of side out-
put maps are selected from the encoder-decoder networks. The encoder network is
based on the VGG-16 net [31]. Then, the decoder network is connected to the “pool5”
layer, which gradually unpools the features from the corresponding pooling layers. The
decoder convolutional layers are all followed by a BN layer and a ReLU layer. To up-
sample the three scales of side outputs from “Deconv1”, “Deconv2” and “Deconv3”, a
convolutional layer with 1 × 1 kernel size is used to compute the one channel feature
map and a deconvolutional layer followed with a crop layer is connected to upample the
feature maps to the image size respectively. To finetune the front-end encoder-decoder
networks, each side output map is connected with a side loss (L1, L2, L3) for opti-
mization. Then, one CRF layer is connected to each side output map for multi-scale
refinement and the refined side output maps are fused by element-wise production.
Finally, another CRF layer is connected to refine the fused map for the final saliency
map. The CRF layers are tuned by cross validations and all the CRF layers share the
same parameter settings.

2 Related Works

This section presents a brief review of representative network architectures of
FCNs and previous deep saliency models that adopt fully connected conditional
random field (CRF) for saliency refinement.

2.1 Saliency Detection via FCNs

Previous works [41] suggest that the convolutional layers of the CNNs can de-
scribe the high-level semantic features at different scales and maintain their spa-
tial information. To put the merits of convolutional layers into full use, Long et
al. [21] propose the fully convolutional networks (FCNs) for semantic segmenta-
tion. The FCNs addresses the advantages of the convolutional layers to get rid
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of the large parameter costs from the fully connected layers. Moreover, as the
convolutional layers keep the spatial information on the output maps, the side
outputs from different levels are able to produce multi-scale feature maps for
recognition tasks [2, 22].

A variety of network architectures are proposed to compute multi-scale fea-
ture maps of FCNs. The encoder-decoder network [40] proposes a simple yet effi-
cient fully convolution and unpooling structure for object contour detection. The
seminal FCNs [21] constructs skip connections to generate end-to-end prediction
at multiple scales. Similarly, the Hypercolumns FCNs [8] and the U-Net [29] ap-
ply multiple skip-connections through concatenations to capture the features
from multiple scales for precise localization. The holistically-nested edge detec-
tor (HED) model [35] employs skip-layer connections to construct even deeper
supervised structures, and fuses side outputs at various scales to resolve the
ambiguity in edge and object boundary detection. Further, the DSS model [9]
introduces short connections to the skip layers to construct an enhanced HED
structure that combines both deeper and shallower side outputs for multi-scale
contexts. Apparently, deeper network architectures are able to learn richer se-
mantic features for more accurate predictions. However, complex network ar-
chitectures may lead to the time consuming training process and may face with
over-fitting problems. Thus, constructing a compact yet efficient FCNs structure
for targeted tasks is crucial in balancing the accuracy and efficiency.

2.2 CRFs for Saliency Re�nement

Prior to the pervasive applications of the CNNs, most of the best performed
traditional saliency methods firstly compute a coarse saliency map and then re-
fine it by handcraft features from the input image. Such refinement is based on
some common context-aware assumptions and theories from graphical models.
As the conditional random fields (CRFs) is a flexible framework for incorpo-
rating various features and is capable to accommodate inference functions for
graphical models, it has been frequently adopted for labeling refinement tasks.
For instance, Qiu et al. [26] take advantages of handcraft image features and
spatially weighted distance to infer a CRF model to refine coarse saliency maps.

Deeplab [3] firstly implements the dense CRFs framework to deep neural
networks to refine the semantic segmentation results based on unary and pair-
wise potentials proposed by [11]. The proposed dense CRFs is fully connected
to CNNs as a post-processing step for end-to-end refinement. Later, several
works [44, 37, 36] unroll the CRF inference by [11] to an end-to-end trainable
feed-forward networks.

For efficient computation, existing saliency models tend to integrate the fully
connected CRFs on top of the deep neural networks for end-to-end post process-
ing. MDF saliency model [15] involves the CRFs from Deeplab [3] to integrate
multiple output saliency maps from CNNs with inputs of different contexts.
Later, the DCL model [16] incorporates the dense CRFs [3] to improve spa-
tial coherence and contour localization for the fused result from two streams of
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CNNs. The MSRNet [14] model and DSS [9] model both integrates the fully con-
nected dense CRFs [11] to refine the fused output maps from the CNNs. In this
work, a more flexible and efficient incorporation of dense CRFs will be explored
on top of the pre-trained CNNs.

3 Multi-scale CRFs Model

The Multi-scale CRFs Model is based on a simple yet effective encoder-decoder
architecture. Firstly, multi-scales of side output feature maps are computed from
the pre-trained encoder-decoder networks. Then, each side output maps are re-
fined by a fully connected CRF layer to enhance the delineation and smoothness.
Finally, the enhance feature maps are fused and refined by another CRF layer
for the final saliency map.

3.1 The Encoder-decoder Networks

Given the input image I = fIi; i = 1; � � � ; jIjg with three-dimensional size of
H �W � 3, and the ground truth G = fGi; i = 1; � � � ; jGjg, Gi 2 f0; 1g with the
size of H �W � 1, the encoder-decoder networks F is adopted to produce M =
fm = 1; � � � ;Mg scales of side output feature maps, denoted as sm respectively
as follow:

sm = F(W;wm); (1)

where W denotes the generic weights of the encoder-decoder networks and wm
denotes the scale specific weights. In the training phase, the cross-entropy loss is
utilized as the side objective function Lm(W;wm) to train the network weights:

Lm(W;wm)
= �

P
Sjm2Sm

[Sjm logP (Sjm = 1jI;W;wm) + (1� Sjm) logP (Sjm = 0jI;W;wm)]

(2)
where I = fIj ; j = 1; � � � ; jIjg denotes all the pixels in the training image set and
Sm = fSjm; j = 1; � � � ; jSmjg denotes all the saliency values from the side output
layer at the m-th scale of the encoder-decoder networks. P (Sjm = 1jI;W;wm)
represents the probability of the activation value at location j at the m-th scale
side output map.

3.2 Multi-scale CRFs Re�nement

Through the encoder-decoder networks, M scales of side output maps are com-
puted to primarily locate the salient objects. In order to further improve the
prediction accuracy, a fully connected CRF[11] layer is integrated to each side
output layer for refinement as follow:
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ŝm = Cm(sm; I; �m); (3)

where Cm(�) refers to the CRF layer at the m-th scale, �m refers to all the
parameters for the m-th CRF layer, and ŝm represents the refined side output
map at the m-th scale.

To each side output map ŝm, the energy function of the CRF is

E(G) =
X
i

�u(sim) +
X
i<k

�p(s
i
m; s

k
m): (4)

�u(sim) refers to the unary term, where the side output maps are directly
regarded as the input. �p(s

i
m; s

k
m) is the pairwise term, which accounts for the

coherence of the saliency information and image features between the current
pixel and its neighbors. Thus, the pairwise term is defined as:

�p(s
i
m; s

k
m) = �(sim; s

k
m)[�1 exp(�kpi � pkk

2

2�2
�

�kIi � Ikk
2

2�2
�

)+�2 exp(�kpi � pkk
2

2�2


)];

(5)
where �(sim; s

k
m) = 1 if sim = skm and otherwise 0. Ii represents the RGB image

features of the i-th pixel, while pi is the pixel position. The Gaussian kernel

exp(�kpi�pkk
2

2�2
�
� kIi�Ikk

2

2�2
�

) measures the appearance coherence which refines the

nearby pixels with similar features with similar saliency scores, while the Gaus-

sian kernel exp(�kpi�pkk
2

2�2


) measures the spatial coherence which reconciles close

pixels with similar saliency scores. Parameters �1 and �2 control the contribu-
tions of each Gaussian kernel respectively.

The energy minimization is based on the mean field approximation to the
CRF distribution proposed by [11], and high-dimensional filtering can be utilized
to speed up the computation.

Then, the refined saliency maps from each scale of the CRF layer are fused
by element-wise production:

s̃ =

MY
m=1

ŝm: (6)

Finally, another CRF layer is connected to further refine the fused map as
the final saliency map:

s̄final = Cfinal(s̃; I; �fuse) (7)

4 Experiment

4.1 Implementation

In this work, the fully convolutional encoder-decoder networks is adopted to ob-
tain the multi-scale side output maps. The network architecture is demonstrated
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Dataset Metric MDF+ RFCN DHS Amulet UCF DCL+ MSR+ DSS+ RA MCRF

MSRA-B F� 0.862 - - - - 0.898 0.880 0.917 0.901 0.917
MAE 0.066 - - - - 0.047 0.053 0.034 0.050 0.038

DUT- F� 0.677 0.693 - 0.668 0.630 0.716 0.695 0.757 0.719 0.726
OMRON MAE 0.092 0.095 - 0.098 0.120 0.080 0.078 0.063 0.076 0.074

HKU-IS F� 0.809 0.868 0.863 0.849 0.816 0.851 0.864 0.904 0.879 0.894
MAE 0.076 0.073 0.052 0.050 0.061 0.049 0.040 0.040 0.057 0.040

ECSSD F� 0.818 0.871 0.875 0.865 0.835 0.874 0.838 0.899 0.876 0.893
MAE 0.106 0.091 0.059 0.061 0.071 0.068 0.062 0.055 0.080 0.058

Table 1. Evaluation results over four datasets, with models including MDF [15],
RFCN [34], DHS [18], Amulet [42], UCF [43], DCL [16], MSR [14], DSS [9], RA [4]
and the proposed MCRF model. “+” marks the models utilizing dense CRF [11] for
post-processing. “-” means that the corresponding dataset is used as the training data.
The evaluation on MSRA-B is performed on the testing set. The best performances
are in bold while the second best results are underlined.

in Figure 1 with detailed layer descriptions. The encoder network is based on
the VGG-16 net [31]. The decoder network firstly unpools the features from the
corresponding maxpooling layers and properly upsample and crop the side out-
put maps to the image size. All the decoder convolutional layers are followed
by batch normalization and ReLU activation functions. We also add a dropout
layer after each ReLU layer in the decoder networks.

The hyper-parameters for the finetuning the encoder-decoder networks are
set as: a fixed learning rate (1e-8), weight decay (0.0005), momentum (0.9), loss
weight for each side output (1). The batch size is set as 12, and 100 epochs are
performed for tuning the encoder decoder network. The sigmoid cross entropy
loss layers are used for model optimization.

The fully connected dense CRF layers share the same parameter settings
and are tuned via cross validations on the validation set, and �1, �2, ��, �� , and
� are set to 3.0, 3.0, 60.0, 5.0, and 3.0, respectively. Only 3 iterations of the
meanfield approximation are set to each CRF layer.

All the implementation is based on the public Caffe library [10]. The CRF
is based on the the PyDenseCRF implementation [11]. The GPU for training
acceleration is the Nvidia Tesla P100 with 16 GB memory. Totally 100 epochs are
performed to train the encoder-decoder networks, which takes about 16 hours.
In the testing phase, it takes averagely 1.68s to compute the final saliency maps.

4.2 Datasets

We follow the training protocol as in [9, 16] by using the MSRA-B dataset [20]
as the training data for fair comparisons. The MSRA-B dataset consists of 2,500
training images, 500 validation images and 2000 testing images. The images are
resized to 240�320 as the input to the data layer. Horizontal flipping is used for
data augmentation such that the number of training samples is twice as large as
the original number.



8 Xu et al.

Maps s1 s2 s3 s123+CRF1 s123+CRF2 MCRF

F� 0.856 0.849 0.839 0.867 0.868 0.893
Table 2. Comparisons of Mean F-measure by implementing multi-scale CRFs versus
implementing single-scale CRF respectively. “s1, s2, s3” refer to the three scales of side
output maps from the encoder-decoder networks respectively. “s123+CRF1” fuses the
maps “s1, s2, s3” by elementwise production and then connect a single CRF layer with
3 meanfield iterations to compute the saliency maps. “s123+CRF2” also fuses the side
output maps and connect a single CRF layer with 10 meanfield iterations. Note that
the parameter settings of CRF layer for “s123+CRF2” are the same as DSS model. The
evaluations are performed on ECSSD dataset.

The proposed model is evaluated over four datasets, including: MSRA-B [20],
ECSSD [38], DUT-OMRON [39], and HKU-IS [17]. MSRA-B is the training
dataset. ECSSD contains a pool of 1000 images with even more complex salient
objects on the scenes. DUT-OMRON dataset contains a large number of 5168
more difficult and challenging images. HUK-IS consists of 4447 challenging im-
ages and pixel-wise saliency annotation.

4.3 Evaluation Metrics

We employ two types of evaluation metrics to evaluate the performance of the
saliency maps: mean F-measure and mean absolute error (MAE). When a given
saliency map is slidingly thresholded from 0 to 255, a precision-recall (PR) curve
can be computed based on the ground truth. F-measure is computed to count
for the saliency maps with both high precision and recall:

F =

�
1 + �2

�
� precision � recall

�2 � precision+ recall
; (8)

where �2 = 0:3 [1] to emphasize the precision. In this paper, the mean F-measure
is chosen for evaluation and the saliency maps are thresholded by twice of the
mean saliency values.

MAE measures the overall pixel-wise difference between the saliency map sal
and the ground truth gt as follow:

MAE =
1

H

HX
h=1

jsal(h)� gt(h)j; (9)

where H is the number of pixels on the map.

4.4 Experimental Results

We compare the proposed MCRF model with nine state-of-the-art deep saliency
models including MDF [15], RFCN [34], DHS [18], Amulet [42], UCF [43],
DCL [16], MSR [14], DSS [9], and RA [4]. All the models are CNN-based ap-
proaches. All the implementations are based on public codes and suggested set-
tings by the corresponding authors.
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Fig. 2. Comparisons of the mean precision and mean recall on MSRA-B testing set,
DUT-OMRON, HKU-IS and ECSSD datasets respectively.

Table 1 lists the mean F-measure and MAE of the nine saliency models and
the proposed MCRF model over four datasets. It is clearly observed that the
MCRF model surpasses most of the existing saliency models with much better
performances. Compared to MDF [15], DCL [16], MSR [14] that apply single
CRF [11] layers, the multi-scale CRF model results in superior performances.
Moreover, the proposed MCRF model receives comparable performances with
the DSS [9] model. Compared to the DSS [9] that uses the enhanced HED archi-
tecture with five scales of side outputs (totally 53 convolutional and deconvolu-
tional layers), the proposed MCRF model is based on the simple encoder-decoder
architecture and only three scales of side outputs (totally 31 convolutional and
deconvolutional layers) are fused for multi-scale integration. Thus, the multi-
scale CRF structure is proved to be efficient. We also evaluate the performances
of embedding multi-scale CRFs versus single-scale CRFs to the pre-finetuned
model as in Table 2. Clearly, multi-scale CRFs model receives the best perfor-
mances. Figure 3 presents saliency maps from the compared models and the
proposed MCRF model.
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Image GT DHS Amulet UCF DCL MSR DSS RA Ours

Fig. 3. Examples of saliency maps from DHS [18], Amulet [42], UCF [43], DCL [16],
MSR [14], DSS [9], RA [4] and the proposed MCRF model.

5 Conclusion

This paper proposes to refine the side outputs efficiently from multiple scales of
FCNs by embedding multi-scale CRF layers. Firstly, the front-end FCNs is based
on the simple yet efficient encoder-decoder networks which involves much fewer
convolutional layers and parameters such that the front-end network is easy to
train. Secondly, only three scales of side outputs from the FCNs are integrated
but competitive performances are received. In future, the side output refinement
based on CRF inference with upper level side output from the FCNs will be
further explored for a hierarchical refinement architecture.
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