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Abstract—Traditional distributed deep reinforcement learning (RL) commonly relies on
exchanging the experience replay memory (RM) of each agent. Since the RM contains all state
observations and action policy history, it may incur huge communication overhead while
violating the privacy of each agent. Alternatively, this article presents a communication-efficient
and privacy-preserving distributed RL framework, coined federated reinforcement distillation
(FRD). In FRD, each agent exchanges its proxy experience replay memory (ProxRM), in which
policies are locally averaged with respect to proxy states clustering actual states. To provide FRD
design insights, we present ablation studies on the impact of ProxRM structures, neural network
architectures, and communication intervals. Furthermore, we propose an improved version of
FRD, coined mixup augmented FRD (MixFRD), in which ProxRM is interpolated using the mixup
data augmentation algorithm. Simulations validate the effectiveness of MixFRD in reducing the
variance of mission completion time and communication cost, compared to the benchmark
schemes, vanilla FRD, federated reinforcement learning (FRL), and policy distillation (PD).
Keywords− Machine learning, Distributed Artificial Intelligence, Wireless Communication

LEARNING from collective experience is a
hallmark of intelligent agents powered by dis-
tributed deep reinforcement learning (RL), rang-
ing from autonomous drones1 to self-controlled
robots in smart factories.2 Policy distillation (PD)
is one of the most popular distributed RL meth-

ods.3 As shown in Fig. 1(a), in PD, each agent
has a neural network (NN) model and its local
replay memory storing the action policies taken
at the agent’s observed states. This local replay
memory is exchanged across agents. By replaying
the globally collected replay memory, every agent
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(a) Policy distillation.

(b) Federated reinforcement distillation with proxy replay memory.

Figure 1: A comprehensive structure of distributed deep RL frameworks.

trains its NN model while reflecting the experi-
ences of other agents.

However, in practice, local experience mem-
ories can be privacy-sensitive, which prohibits
their exchanges. As an example, for autonomous
surveillance drones operated by multiple opera-
tors, these drones are willing to train their NNs
collectively, but without revealing their private
observations and policy records. Furthermore, the
dimension of possible states can be large, as in
high-precision robot manipulation. This leads to
huge replay memory sizes, and exchanging them
is ill-suited for agents’ operations in real-time.

Alternatively, our prior work proposed a
privacy-preserving and communication-efficient
distributed RL framework, coined federated re-
inforcement distillation (FRD).4 As illustrated by
Fig. 1(b), in FRD, each agent exchanges its proxy
experience memory replay memory (ProxRM)
consisting of locally averaged policies with re-
spect to proxy states. Under this memory struc-
ture, policies are locally averaged over time,
while actual states are clustered into the nearest

proxy states. Exchanging proxy replay memory
can thereby preserve privacy while reducing the
communication payload size.

In this article, we aim to provide an FRD
design guideline, shedding light on how coarse
the proxy states are and how frequent the proxy
experience memories are exchanged under which
NN architectures. Furthermore, we propose an
improved version of FRD, named MixFRD, in
which the globally collected proxy replay mem-
ory is interpolated using the mixup data aug-
mentation algorithm.5 Finally, we demonstrate
the effectiveness of MixFRD by comparing it
with two baseline algorithms, PD and federated
reinforcement learning (FRL),6 in terms of mis-
sion completion time and communication payload
size.

Federated Reinforcement Distillation
(FRD)

In FRD, for a given environment and mission,
each agent locally updates its NN model by ob-
serving the states while taking actions, and stores
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(a) Setting 1. (b) Setting 2. (c) Setting 3. (d) Setting 4. (e) Setting 5.

Figure 2: Cartpole mission completion time under different settings provided in Table 1.

the average action policies per proxy state to con-
struct a ProxRM that is periodically exchanged
across agents. For the sake of explanation, here-
after, we focus on the Cartpole environment and
describe FRD operations as detailed next.

Environmental Settings
We evaluate the performance of FRD using

the Cartpole-v1 in the OpenAI gym environ-
ment.7 The objective of this game is to make the
pole attached to a cart upright as long as possible,
by moving the cart left or right. Each agent gets
a score of +1 for every time slot that the pole
remains upright during an episode. Every episode
ends if any of the agents has: (i) the pole fallen
down; (ii) the cart moved outside a pre-defined
range; or (iii) the score reaching 500. Playing
the game with multiple episodes, agents complete
their mission when any of them first reaches an
average score of 490, where the average is taken
across 10 latest episodes.

Standalone and Distributed RL Operations
Each agent under study runs the advantage

actor-critic (A2C) RL algorithm. In A2C, there is
a pair of NNs, in which a policy NN determines
the agent’s optimal action policies of input states,
and the value NN examines the optimality of the
policies. To this end, for each action decision,
the value NN produces value that is used for
calculating an advantage. When the advantage is
near zero, the determined action is closer to the
optimal action compared to other possible actions.
Therefore, the policy NN is trained by minimizing
the advantage produced by the value NN. While
running the aforementioned standalone RL oper-
ations, agents periodically exchange their policy
NN outputs and inputs through ProxRMs, whose
structures are elaborated in the next subsection.
Each agent replays the ProxRM similar to the

Table 1: Ablation study settings.

Setting # of sections for
state components (S)

communication
period (E)

# of weights
per layer (n)

# of hidden
layers (`)

1 100 25 24 2
2 100 25 100 2
3 50 25 100 2
4 100 10 24 1
5 100 50 24 1

training procedure of supervised learning.

Proxy Experience Replay Memory Structures
In the Cartpole environment, each state is

described by four components: cart location, cart
velocity, pole angle, and the angular velocity
of the pole. To construct a ProxRM, the state
is evenly divided into a number S of clustered
values per each component and give an index
number to each cluster. Along with the state
clusters, we categorize the RM following the
nearest distance rule and average out the policies.
The proxy states are defined by the middle value
of each state cluster. For example, the proxy
state is -45◦ if the state cluster is [-90◦, 0◦), as
illustrated in Fig. 1(b). Finally, we have ProxRM
with (proxy state, averaged policies) tuples.

Ablation Study on FRD
To provide FRD design insights, in this sec-

tion, we study the impact of ProxRM struc-
tures, NN architectures, and communication pro-
tocols. Specifically, we consider five parameters:
the number S of clusters per state component,
ProxRM exchanging period E, the number L of a
multi-layer perceptron (MLP) NN hidden layers,
and the number n of weights per layer.

Under the settings described in Table 1, Fig. 2
shows the following impacts of FRD design pa-
rameters.

• Too small number S of clusters makes FRD
fail to obtain federation gains. As opposed
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to Fig. 2(b), the mission completion time in
Fig. 2(d) does not decrease with the number
of agents due to too small S. Since S de-
termines the communication payload sizes in
FRD, there is a trade-off between communica-
tion efficiency and scalability.

• Too frequent ProxRM exchanges may be harm-
ful, as observed by Fig. 2(d) compared to
(e). Without a sufficient number of local RL
iterations, the observed states are hardly corre-
lated across agents, negating the effectiveness
of their federation. Since that E determines
the number of communication rounds, it is
important to balance the local RL iterations
and ProxRM communication interval.

• A larger NN often has higher sample com-
plexity, and does not always outperform a
smaller NN, as shown in Fig. 2(b) compared
to (a). Nonetheless, for a larger NN, federation
gain is higher, since exchanged ProxRMs more
overcomes the lack of training samples. It is
therefore crucial to optimize the number of
federating agents subject to their NN architec-
tures.

Mixup Augmented FRD (MixFRD)
In this section, we propose an enhanced ver-

sion of FRD coined MixFRD, which utilizes the
augmentation scheme to enrich ProxRM. With
few agents, the exploration of the environment
may be insufficient compared to that of many
agents. The lack of exploration of ProxRM causes
performance instability in the FRD framework.
We handle this problem by applying the data
augmentation algorithm by generating synthetic
ProxRM with downloaded global ProxRM at the
local agent.

A mixup5 algorithm is one of the most promis-
ing augmentation schemes. The main purpose of
mixup is to enhance the generalization capability
of NN by generating unseen data samples. The
mixup algorithm creates a new data sample and
its corresponding label by a linear combination of
the randomly picked two existing data samples.
In general, but not limited, the portion data sam-
ples follows the Beta distribution with coefficient
0 < α = β < 1. The portion is selected near 0
or 1 value in this setting.

To apply mixup to the FRD framework, there
is a consideration about selecting what kind of
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Figure 3: Mission completion time comparison
between FRD and MixFRD (S = 30, E = 25,
n = 50, l = 2).

two samples in ProxRM and the portion. If we
pick two memories randomly, the augmented
ProxRM lose the reality, in other word, proxy
state and averaged action policy are not correlated
anymore. This augmented sample may cause se-
vere performance degradation. On the other hand,
new ProxRM is similar to either original samples
in the general setting of mixup, which is no help
for expanding the ProxRM. Therefore, we need
to select highly correlated ProxRM samples and
the portion reflecting the samples equally.

In the Cartpole environment, the angle of
the pole is the most relevant information to
accomplish the group mission among the four
components. To ensure the correlation between
two memories, we sort the ProxRM along with
the angle of the pole and select two adjacent
replay memories. With this memory, we conduct
the mixup with a portion of 0.5. We can say that
the newly constructed ProxRM is an interpolated
version of the original one. In Fig. 3, the MixFRD
shows some gain in terms of variance as expected.

We can measure the correlation among the
ProxRM by measuring the distance between each
state clusters, e.g., Euclidean distance, cosine
distance, Jaccard distance, etc.
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Figure 4: Mission completion time comparisons
among MixFRD, PD, and FRL.

Performance Evaluation
We numerically compare the performance of

the proposed MixFRD framework with two base-
line distributed deep RL frameworks: policy dis-
tillation (PD)3 and federated reinforcement learn-
ing (FRL).6 Each framework uses a different
form of knowledge: each framework exchanges
ProxRM, RM, weight parameters of local NN and
the sizes of each knowledge are denoted by Mp,
M , W (n, l), respectively. The subscripts L,G
denote the local and global knowledge, respec-
tively. Note that agents using FRL reflect global
knowledge by exchanging the local weights to the
global weight parameters.

We evaluate the performance with two met-
rics: (i) mission completion time, (ii) payload
size per knowledge exchange. We conduct the
simulation under the following settings: S = 30,
E = 25, n = 50, l = 2. The lines represent
the median, and the colored area is between the
top-25 percentile and the top-75 percentile of
each case. In the latter evaluation, we conduct the
simulation for two agents and adjust n of policy
network only.

The ProxRM size Mp is determined by the
number of distinct state observations, and upper
bounded by the entire cluster dimension S4. As
S goes to infinity, ProxRM converges to RM, i.e.,
MixFRD is identical with PD. Note that ProxRM
size Mp increases with S only if the preceding
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Figure 5: Uplink and downlink payload size com-
parison for two agents with server.

Table 2: Communication payload sizes.

Cases Payload size (byte)

MixFRD-uplink bp ×Mp
L

MixFRD-downlink bp ×Mp
G

PD-uplink brm ×ML

PD-downlink brm ×MG

FRL bw ×W (n, l)

state observations are sufficiently diverse.

The communication payload sizes of each
framework are defined in Table 2. We define the
unit size of ProxRM, RM, and weights of FRL
as bp = 12, brm = 24, and bw = 4, respectively.
RM comprise of six float components, which are
four state components and two action policies,
respectively. ProxRM comprises of one signed
integer and two float components, which are
index of state cluster and two action policies,
respectively. The weight of FRL is float integer,
which is the weight parameter. In the case of
MixFRD, the server defines the ProxRM structure
in advance, in which all the agents and server
have information about the entire state cluster
index and corresponding proxy state. Therefore,
the agents in MixFRD share only the state cluster
index.
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Comparison with PD
In Fig. 4, the proposed MixFRD has a compat-

ible performance with the PD when the number of
cooperating agents are above two. Furthermore,
the MixFRD has far less payload size compared
to that of the PD, as in Fig. 5. Although the results
are captured in the two-agents case, the gap
between the two frameworks cannot be narrowed
as the number of cooperating agents increases.
The payload sizes of the MixFRD and PD have
a positive correlation with the exploration dura-
tion of learning agents. As the agents hold the
pole straight, the number of the state observa-
tions increases within similar bounds. By utilizing
MixFRD, the agents make these RMs with few
ProxRMs, which has far fewer number compared
to the RM. Furthermore, as the cooperating agents
increase, the number of global RM increases
exponentially. Therefore, MixFRD can replace
PD by exchanging the RM payload size.

Comparison with FRL
In Fig. 4, the performance of FRL overwhelms

that of the MixFRD. However, as the size of local
NN increases, the payload size of FRL increases
with the squared scale of the size, as presented
in Fig. 5. The MixFRD framework has an ad-
vantage in payload size constrained scenarios,
e.g., cooperating through wireless channels like
swarm of drones, automated process of smart
factories, etc. Furthermore, all the agents require
homogeneous local NN structure to use FRL,
which is a strong assumption due to the diversity
of computational capability of . The MixFRD
can provide compatible distributed RL framework
among agents which have heterogeneous local
NN structure.

Conclusions
In this article, we proposed a communication-

efficient and privacy-preserving distributed RL
framework, FRD, in which agents exchange
ProxRMs without revealing raw RMs. Further-
more, we proposed an improved version of FRD,
MixFRD, by leveraging the mixup data aug-
mentation algorithm to interpolate ProxRMs lo-
cally. Our ablation studies showed that improv-
ing the FRD performance hinges on ProxRM
structures, NN architectures, and communication
protocols. Co-designing these system parameters

could, therefore, be an interesting topic for future
research.
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