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Abstract—Information freshness is crucial in a wide range
of wireless applications where a destination needs the most
recent measurements of a remotely observed random process.
In this paper, we study the information freshness of a single-
server multi-source M/M/1 queueing model under a first-
come first-served (FCFS) serving policy. The information
freshness of the status updates of each source is evaluated
by the average age of information (AoI). We derive an exact
expression for the average AoI for the multi-source M/M/1
queueing model. Simulation results are provided to validate
the derived exact expression for the average AoI.

Index Terms– Information freshness, age of information
(AoI), multi-source queueing model.

I. INTRODUCTION

There has been a growing interest in services that re-
quire time-sensitive information updates of a random pro-
cess such as temperature of a specific environment (room,
greenhouse, etc.) [1], and a vehicular status (position,
acceleration, etc.) [2]. To enable these services, various
sensors may be assigned to send status updates about
a random process to intended destinations [1], [3]–[5].
One critical factor for these services is high freshness of
the sensors’ information at the destination. The traditional
metrics such as throughput and delay cannot fully charac-
terize the information freshness [3], [6]. Recently, the age
of information (AoI) was proposed as a destination-centric
metric to measure the information freshness [6], [7]. A
status update packet contains the measured value of a
monitored process and a time stamp representing the time
when the sample was generated. Due to wireless channel
access, fading, etc., communicating a status update packet
through the network experiences a random delay. If at a
time instant t, the most recently received status update
packet contains the time stamp U(t), AoI is defined as the
random process ∆(t) = t−U(t). Thus, the AoI measures
for each sensor the time elapsed since the last received
status update packet was generated.

The first queueing theoretic work on AoI is [6] where
the authors derived the average AoI for a single-source
M/M/1 first-come first-served (FCFS) queueing model.
The work [8] was the first to investigate the average AoI
in a multi-source setup. The authors of [8] derived the

average AoI for a multi-source M/M/1 FCFS queueing
model. The closed-form expressions for the average AoI in
a multi-source M/G/1/1 preemptive queueing model were
derived in [9].

In this paper, we analyze the average AoI of the different
sources in a single-server multi-source M/M/1 queueing
model under an FCFS service policy. We derive an ex-
act expression for the average AoI for the multi-source
M/M/1 queueing model. The setup was earlier addressed
in [3], [8], where the authors derived an approximate
expression for the average AoI by neglecting the statistical
dependency between certain random variables (see Section
III-C). In [10], we made a first attempt to correct the
error in [3], [8]. Unfortunately, the average AoI expression
derived there is still inaccurate (see Remark 2 in Section
III-C). Thus, this paper provides the first exact expression
of the average AoI in a multi-source M/M/1 queueing
model. We present simulation results to validate the exact
average AoI expression derived here.

II. SYSTEM MODEL AND DEFINITIONS

We consider a system consisting of a set of independent
sources denoted by C = {1, . . . , C} and one server.
Each source observes a random process, representing,
e.g., temperature, vehicular speed or location at random
time instants. A remote destination is interested in timely
information about the status of these random processes.
Status updates are transmitted as packets, containing the
measured value of the monitored process and a time stamp
representing the time when the sample was generated.
We assume that the packets of source c are generated
according to the Poisson process with rate λc, c ∈ C,
and the packets are served according to an exponentially
distributed service time with mean 1/µ.

Definition 1 (AoI). Let tc,i denote the time instant at
which the ith packet of source c was generated, and t′c,i
denote the time instant at which this packet arrives at the
destination. At a time instant τ , the index of the most
recently received packet of source c is given by Nc(τ) =
max{i′|t′c,i′ ≤ τ}, and the time stamp of the most recently
received packet of source c is Uc(τ) = tc,Nc(τ). The AoI
of source c at the destination is defined as the random
process ∆c(t) = t− Uc(t).978-1-7281-4490-0/20/$31.00 c© 2020 IEEE



From here onwards, we refer to the ith packet from
source c simply as packet c, i. Let Xc,i denote the ith
interarrival time of source c; Wc,i denote the waiting time
of packet c, i; Sc,i denote the service time of packet c, i;
and Tc,i denote the system time of packet c, i, i.e., the time
interval the packet spends in the system which consists of
the sum of the waiting time and the service time, Tc,i =
Sc,i + Wc,i. Then, the average AoI of source c, denoted
as ∆c, is given as [6]

∆c = λc

(E[X2
c,i]

2
+ E[Xc,iTc,i]

)
(1)

= λc

(E[X2
c,i]

2
+ E[Xc,i(Sc,i +Wc,i)]

)
.

III. AVERAGE AOI IN A MULTI-SOURCE M/M/1
QUEUEING MODEL

To evaluate the AoI of one source in a queueing model
with multiple sources of Poisson arrivals, we can consider
two sources without loss of generality. Thus, we proceed
to evaluate the AoI of source 1 by aggregating the other
C − 1 sources into source 2 having the Poisson arrival rate
λ2 =

∑
c′∈C\{c} λc′ . Let ρ1 = λ1/µ and ρ2 = λ2/µ be the

load of source 1 and 2, respectively. Since packets of each
source are generated according to the Poisson process and
the sources are independent, the packet generation in the
system follows the Poisson process with rate λ = λ1+λ2,
and the overall load in the system is ρ = ρ1 + ρ2 = λ/µ.

In the following, we derive the average AoI (1) for
source 1, denoted as ∆1. The first term in (1) is
easy to compute. Namely, since the interarrival time of
source 1 follows the exponential distribution with pa-
rameter λ1, we have E[X2

1,i] = 2/λ21. However, be-
cause the random variables X1,i and T1,i are depen-
dent, the most challenging part in calculating (1) is
E[X1,iT1,i] = E[X1,i(W1,i+S1,i)] which is derived next.

Since the interarrival time and service time of the packet
1, i are independent, we have

E[X1,i(W1,i+S1,i)] = E[X1,iW1,i]+
1

µ
E[X1,i]. (2)

To calculate E[X1,iW1,i], we follow the approach of [8]
and characterize the waiting time W1,i by means of two
events EB

1,i and EL
1,i as

EB
1,i =

{
T1,i−1 ≥ X1,i

}
, EL

1,i =
{
T1,i−1 < X1,i

}
. (3)

Here, brief event EB
1,i is the event where the interarrival

time of packet 1, i is shorter than the system time of packet
1, i − 1. On the contrary, long event EL

1,i refers to the
complementary event where the interarrival time of packet
1, i is longer than the system time of packet 1, i− 1.

Under the event EB
1,i, the waiting time of packet 1, i

(W1,i) contains two terms: 1) the residual system time to
complete serving packet 1, i−1, and 2) the sum of service
times of the source 2 packets that arrived during X1,i and

must be served before packet 1, i according to the FCFS
policy. Under the event EL

1,i, the waiting time of packet 1, i
contains two terms: 1) the possible residual service time
of a source 2 packet that is under service at the arrival
instant of packet 1, i, and 2) the sum of service times of
source 2 packets in the queue that must be served before
packet 1, i according to the FCFS policy. Thus, by means
of the two events in (3), the waiting time for packet 1, i
can be expressed as

W1,i =

{
T1,i−1 −X1,i +

∑
i′∈MB

2,i
S2,i′ , EB

1,i∑
i′∈ML

2,i
S2,i′ +RL

2,i, EL
1,i,

(4)

where MB
2,i is the set of indices of queued packets of

source 2 that must be served before packet 1, i under
the event EB

1,i, where |MB
2,i| = MB

2,i; ML
2,i is the set

of indices of packets of source 2 that are in the queue
(but not under service) at the arrival instant of packet 1, i
conditioned on the event EL

1,i and, thus, must be served
before packet 1, i, where |ML

2,i| = ML
2,i; R

L
2,i is a random

variable that represents the possible residual service time
of the packet of source 2 that is under service at the arrival
instant of packet 1, i conditioned on the event EL

1,i.

For the case EB
1,i, let us further divide the waiting time

W1,i in (4) into two terms RB
1,i and SB

1,i as follows. Let

RB
1,i = T1,i−1 −X1,i (5)

represent the residual system time to complete serving
packet 1, i− 1 and let

SB
1,i =

∑
i′∈MB

2,i
S2,i′ (6)

represent the sum of service times of source 2 packets that
arrived during X1,i and must be served before packet 1, i.
Similarly for the event EL

1,i, let

SL
1,i =

∑
i′∈ML

2,i
S2,i′ (7)

represent the sum of service times of source 2 packets that
must be served before packet 1, i. Based on (5), (6), and
(7), E[X1,iW1,i] in (2) can be expressed as

E[X1,iW1,i]=

(
E[RB

1,iX1,i|EB
1,i] + E[SB

1,iX1,i|EB
1,i]

)
P (EB

1,i) + E[(SL
1,i +RL

2,i)X1,i|EL
1,i]P (EL

1,i), (8)

where P (EB
1,i) and P (EL

1,i) denote the probabilities of the
events EB

1,i and EL
1,i, respectively.

Next, we derive the expressions for P (EB
1,i) and

P (EL
1,i) in (8). Then, by referring to E[RB

1,iX1,i|EB
1,i],

E[SB
1,iX1,i|EB

1,i], and E[(SL
1,i + RL

2,i)X1,i|EL
1,i] in (8) as

the first, the second, and the third conditional expectation
terms of (8), we derive the first, second, and the third terms
in Sections III-A, III-B, and III-C respectively.

Lemma 1. The probabilities of the events EB
1,i and EL

1,i



in (3) are calculated as follows:

P (EB
1,i) =

ρ1
(1− ρ2)

, P (EL
1,i) =

(1− ρ)

(1− ρ2)
. (9)

Proof. See Appendix A.

A. The First Conditional Expectation in (8)

Let us now focus on the first conditional expectation
term E[RB

1,iX1,i|EB
1,i] in (8). According to (5), this term

is expressed as follows:

E[RB
1,iX1,i|EB

1,i] = E[T1,i−1X1,i|EB
1,i]− E[X2

1,i|EB
1,i]

=

∫ ∞
0

∫ ∞
0

xtfX1,i,T1,i−1|EB
1,i

(x, t)dxdt−∫ ∞
0

x2fX1,i|EB
1,i

(x)dx, (10)

where fX1,i|EB
1,i

(x) is the PDF of the interarrival time X1,i

given the event EB
1,i and fX1,i,T1,i−1|EB

1,i
(x, t) is the joint

PDF of X1,i and system time T1,i−1 given the event EB
1,i.

They are given by the following two lemmas.

Lemma 2. The conditional PDF fX1,i|EB
1,i

(x) is given by

fX1,i|EB
1,i

(x) = µ(1− ρ2)e−µ(1−ρ2)x. (11)

Proof. See Appendix A.

Lemma 3. The PDF fX1,i,T1,i−1|EB
1,i

(x, t) is given by

fX1,i,T1,i−1|EB
1,i

(x, t)

=

{
0 x > t

µ2(1− ρ)(1− ρ2)e−λ1xe−µ(1−ρ)t x ≤ t.

Due to the space limitations, the proof is given in [11].
Now, having introduced the conditional PDFs in Lemma

2 and Lemma 3, we have

E[RB
1,iX1,i|EB

1,i] =

∫ ∞
0

∫ ∞
0

xtfX1,i,T1,i−1|EB
1,i

(x, t)dxdt−∫ ∞
0

x2fX1,i|EB
1,i

(x)dx =
1

µ2(1− ρ2)(1− ρ)
. (12)

B. The Second Conditional Expectation in (8)

Next, we derive the second term E[SB
1,iX1,i|EB

1,i] in (8).
First, let us elaborate the quantity MB

2,i which is an integral
part of calculating (8). Recall that MB

2,i is defined as the
number of queued packets of source 2 that must be served
before packet 1, i according to the FCFS policy under the
event EB

1,i = {T1,i−1 ≥ X1,i}. Thus, MB
2,i is equal to the

number of arrived (and thus, queued) packets of source 2
during the (brief) interarrival time X1,i. Consequently, we
have a Markov chain T1,i−1 ↔ X1,i ↔MB

2,i conditioned
on the event EB

1,i, i.e., MB
2,i is independent of T1,i−1 given

X1,i under the event EB
1,i. Accordingly, the expectation

E[SB
1,iX1,i|EB

1,i] is given as

E[SB
1,iX1,i|EB

1,i]=

∫ ∞
0

xE
[∑

i′∈MB
2,i
S2,i′ |EB

1,i, X1,i=x
]

fX1,i|EB
1,i

(x)dx

(a)
=

1

µ

∫ ∞
0

xE
[
MB

2,i|X1,i = x
]
fX1,i|EB

1,i
(x)dx (13)

(b)
= ρ2

∫ ∞
0

x2µ(1− ρ2)e−µ(1−ρ2)xdx =
2ρ2

µ2(1− ρ2)2
,

where equality (a) follows because (i) the service time
S2,i′ is independent of all other random variables in
the system and (ii) by the Markov chain property
T1,i−1 ↔ X1,i ↔MB

2,i conditioned on EB
1,i, M

B
2,i is inde-

pendent of T1,i−1 given X1,i = x under the event EB
1,i;

equality (b) comes from Lemma 2 and the fact that
E[MB

2,i|X1,i = x] = λ2x.

C. The Third Conditional Expectation in (8)

The third term E[(SL
1,i+R

L
2,i)X1,i|EL

1,i] in (8) can be
calculated as

E[(SL
1,i+R

L
2,i)X1,i|EL

1,i]=

∫ ∞
0

∫ ∞
0

xE
[∑

i′∈ML
2,i
S2,i′ | · · ·

X1,i = x,T1,i−1 = t,EL
1,i

]
fX1,iT1,i−1|EL

1,i
(x, t)dxdt (14)

+

∫ ∞
0

∫ ∞
0

xE
[
RL

2,i|X1,i = x, T1,i−1 = t, EL
1,i

]
· · ·

fX1,iT1,i−1|EL
1,i

(x, t)dxdt,

where the first term on the right hand side is calculated as∫ ∞
0

∫ ∞
0

xE
[∑

i′∈ML
2,i
S2,i′ |X1,i = x, T1,i−1 = t,EL

1,i

]
· · ·

fX1,iT1,i−1|EL
1,i

(x, t)dxdt
(a)
=

1

µ

∫ ∞
0

∫ ∞
0

xE
[
ML

2,i| · · ·

X1,i = x, T1,i−1 = t, EL
1,i

]
fX1,iT1,i−1|EL

1,i
(x, t)dxdt

=
1

µ

∫ ∞
0

∫ ∞
0

x
∑∞
m=0mPr[ML

2,i=m|X1,i = x, · · ·

T1,i−1 = t, EL
1,i]fX1,iT1,i−1|EL

1,i
(x, t)dxdt, (15)

where equality (a) follows because the service time S2,i′

is independent of all other random variables in the system.
Due to the memoryless property of the exponentially

distributed service time, the possible residual service time
of the packet of source 2 that is under service at the arrival
instant of packet 1, i for event EL

1,i is also exponentially
distributed; thus, the waiting time is the sum of M̂L

2,i

exponentially distributed random variables, where M̂L
2,i is

the total number of source 2 packets in the system (either
in the queue or under service) at the arrival instant of
packet 1, i conditioned on the event EL

1,i [12, p. 168].
Therefore, the waiting time W1,i can be expressed as

W1,i = SL
1,i +RL

2,i =
∑
i′∈M̂L

2,i
S2,i′ , (16)

where M̂L
2,i is the set of indices of source 2 packets that

are in the system at the arrival instant of packet 1, i for
event EL

1,i, with |M̂L
2,i| = M̂L

2,i. By (16), E[W1,iX1,i|EL
1,i]



(cf. (14)) can be calculated as

E[W1,iX1,i|EL
1,i] =

∫ ∞
0

∫ ∞
0

xE
[∑

i′∈M̂L
2,i
S2,i′ | · · ·

X1,i = x, T1,i−1 = t, EL
1,i

]
fX1,iT1,i−1|EL

1,i
(x, t)dxdt

=
1

µ

∫ ∞
0

∫ ∞
0

xE
[
M̂L

2,i|X1,i = x, T1,i−1 = t, EL
1,i

]
· · ·

fX1,iT1,i−1|EL
1,i

(x, t)dxdt

=
1

µ

∫ ∞
0

∫ ∞
0

x
∑∞
m=0mPr[M̂L

2,i = m|X1,i = x, · · ·

T1,i−1 = t, EL
1,i]fX1,iT1,i−1|EL

1,i
(x, t)dxdt. (17)

Next, we calculate Pr[M̂L
2,i = m|X1,i = x, T1,i−1 =

t, EL
1,i] in (17) by introducing an auxiliary random variable

JL
2,i that represents the number of source 2 packets in the

system at the departure instant of packet 1, i− 1 for event
EL

1,i. Using the law of total expectation, we have

Pr[M̂L
2,i = m|X1,i = x, T1,i−1 = t, EL

1,i] =
∑∞
j=0 · · ·

Pr[M̂L
2,i = m|JL

2,i = j,X1,i = x, T1,i−1 = t, EL
1,i] · · ·

Pr[JL
2,i = j|X1,i = x, T1,i−1 = t, EL

1,i], (18)

where

Pr[JL
2,i = j|X1,i = x, T1,i−1 = t, EL

1,i] (19)

(a)
= Pr[JL

2,i = j|T1,i−1 = t, EL
1,i]

(b)
= e−λ2t

(λ2t)
j

j!
,

where equality (a) follows because JL
2,i is conditionally

independent of X1,i given T1,i−1 and EL
1,i; equality (b)

follows because (i) under the long event EL
1,i, all JL

2,i

source 2 packets that are in the system at the departure
instant of packet 1, i − 1 must have arrived during the
system time T1,i−1, and (ii) the probability of having
j Poisson arrivals of rate λ2 during the time interval
T1,i−1 = t is e−λ2t (λ2t)

j

j! [12, Eq. (2.119)].
Note that during the time interval between the departure

of packet 1, i− 1 and the arrival of packet 1, i the queue
receives packets only from source 2 and, therefore, the
system behaves as a single-source M/M/1 queue. Thus,
Pr[M̂L

2,i = m|JL
2,i = j,X1,i = x, T1,i−1 = t, EL

1,i] in (18)
represents the probability that a single-source M/M/1
queueing system with arrival rate λ2 and which initially
holds j packets (either in the queue or under service) ends
up holding m packets after τ = x− t seconds. We denote
this probability compactly by P̄m|j(τ) and it is given by
the transient analysis of an M/M/1 queueing system as
[12, Eq. (2.163)]

P̄m|j(τ) = e−(λ2+µ)τ

[
ρ
(m−1)/2
2 Im−1(2

√
µλ2τ) (20)

+ ρ
(m−j−1)/2
2 Im+j+1(2

√
µλ2τ)

]
+ ρm2 (1− ρ2) · · ·(

1−Qm+j+2(
√

2λ2τ ,
√

2µτ)

)
,

where Ik(·) is the modified Bessel function of the first kind
of order k, and Qk(a, b) is the generalized Q-function.
Substituting (18), (19), and (20) into (17), we have

E[W1,iX1,i|EL
1,i]=

1

µ

∫ ∞
0

∫ ∞
0

x
∑∞
m=0

∑∞
j=0m · · ·

P̄m|j(x− t)e−λ2t
(λ2t)

j

j!
fX1,iT1,i−1|EL

1,i
(x, t)dxdt

(a)
=

λ1(1− ρ)

P (EL
1,i)

∫ ∞
0

∫ ∞
0

(t+τ)e−µ(t+ρ1τ) · · ·(∑∞
m=0

∑∞
j=0mP̄m|j(τ)

(λ2t)
j

j!

)
dτdt (21)

,
λ1(1− ρ)

P (EL
1,i)

Ψ(µ, ρ1, λ2),

where (a) follows substitution τ = x− t and
Lemma 4 below which derives the conditional PDF
fX1,i,T1,i−1|EL

1,i
(x, t). Note that the integral in Ψ(µ, ρ1, λ2)

needs to be in general numerically calculated.

Lemma 4. The PDF fX1,i,T1,i−1|EL
1,i

(x, t) is given by

fX1,i,T1,i−1|EL
1,i

(x, t)

=

{
0 x < t

µ2ρ1(1− ρ2)e−λ1xe−µ(1−ρ)t x ≥ t.

Due to the space limitations, the proof is given in [11].

By substituting the probabilities P (EB
1,i) and P (EL

1,i)
given by Lemma 1 and the three derived conditional
expectation terms (12), (13), and (21) into (8), E[X1,iW1,i]
is calculated. Finally, by substituting the result of
E[X1,iW1,i] and (2) into (1), the average AoI of source 1
can be expressed as:

∆1 = λ21(1− ρ)Ψ(µ, ρ1, λ2)+ (22)
1

µ

(
1

ρ1
+

ρ

1− ρ
+

(2ρ2 − 1)(ρ− 1)

(1− ρ2)2
+

2ρ1ρ2(ρ− 1)

(1− ρ2)3

)
.

Remark 1. Note that (22) does not coincide with the prior
result [3, Theorem 1] and [8, Eq. (16)]. The dissimilarity
is explained in the following. The authors of [3], [8]
considered a similar two-source FCFS M/M/1 queueing
model, with the aim of deriving a closed-form expression
for the average AoI of source 1 (∆1). Let us focus
on relation (33) of [8] where the authors compute a
conditional expectation equivalent to our E[W1,iX1,i|EL

1,i]
given by (21), which by (16) can be expressed as

E[W1,iX1,i|EL
1,i] = E

[∑
i′∈M̂L

2,i
S2,i′X1,i|EL

1,i

]
. (23)

The authors of [8] tacitly assumed conditional indepen-
dency between

∑
i′∈M̂L

2,i
S2,i′ and X1,i under the event

EL
1,i = {T1,i−1 < X1,i}, and calculated (23) as a multipli-

cation of two expectations as

E[W1,iX1,i|EL
1,i] = E

[∑
i′∈M̂L

2,i
S2,i′ |T1,i−1 < X1,i

]
· · ·
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Fig. 1: The average AoI of source 1 as a function of λ1 with
µ = 1.

E
[
X1,i|T1,i−1 < X1,i

]
. (24)

The critical point is that even if X1,i is independent
of T1,i−1, they become dependent when conditioned on
the event EL

1,i = {T1,i−1 < X1,i}, as in (23). This con-
ditional dependency is violated by the separation of the
expectations in (24) because the quantity M̂L

2,i in general
depends on both T1,i−1 and X1,i, and, thus, the multi-
plicative quantities

∑
i′∈M̂L

2,i
S2,i′ and X1,i are depen-

dent under the event EL
1,i. Note that we incorporate this

conditional dependency in calculating E[W1,iX1,i|EL
1,i] by

using fXc,i,Tc,i−1|EL
c,i

(x, t).
Remark 2. It is worth to note that (22) neither coincides

with our prior result [10, Eq. (25)]. The dissimilarity
comes from the fact that in [10], we wrongly used
steady-state properties of a queueing system in calculating
E[M̂L

2,i|X1,i = x, T1,i−1 = t, EL
1,i] in (17).

IV. VALIDATION AND SIMULATION RESULTS

In this section, we evaluate the average AoI in a multi-
source M/M/1 queueing model and compare our exact
expression in (22) with the results in existing works [8]
and [10]. Fig. 1 depicts the average AoI of source 1 (∆1)
as a function of λ1 with λ2 = 0.6 and µ = 1. As it can
be seen, the simulation result and our proposed solution
overlap perfectly. Due to the calculation errors in [8] and
[10], both curves have a gap to the correct average AoI
value. In addition, this figure illustrates that generating the
status update packets too frequently or too rarely does not
minimize the average AoI.

Fig. 2 depicts the average delay of source 1 as a function
of λ1 for different values of λ2 with µ = 1. The average
delay is defined as the summation of the average waiting
time and average service time i.e., E[W ] + 1/µ. As the
number of arrivals of source 2 packets increases, the
queue becomes more congested and the average delay of
source 1 increases. By comparing Figs. 1 and 2 one can
see that the delay does not fully capture the information
freshness, i.e., minimizing the average system delay does
not necessarily lead to a good performance in terms of
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Fig. 2: The average delay of source 1 as a function of λ1 for
different values of λ2 with µ = 1.

AoI and, reciprocally, minimizing the average AoI does
not minimize the average system delay.

V. CONCLUSIONS

We considered a single-server multi-source M/M/1
queueing model with FCFS serving policy and analyzed
the average AoI of each source. We derived an exact
expression for the average AoI for a multi-source M/M/1
queueing model. The simulation results validated the exact
expression for the average AoI for the considered queueing
model. In addition, the simulations illustrated that gener-
ating the status update packets too frequently or too rarely
does not minimize the average AoI.

ACKNOWLEDGEMENTS

The authors would like to thank Prof. Roy Yates for
pointing out an error in our calculations in [10] and
providing invaluable suggestions for calculating the exact
average AoI expression.

This research has been financially supported by the In-
fotech Oulu, the Academy of Finland (grant 323698), and
Academy of Finland 6Genesis Flagship (grant 318927).
M. Codreanu would like to acknowledge the support of
the European Union’s Horizon 2020 research and in-
novation programme under the Marie Skłodowska-Curie
Grant Agreement No. 793402 (COMPRESS NETS). The
work of M. Leinonen has also been financially supported
in part by the Academy of Finland (grant 319485). M.
Moltafet would like to acknowledge the support of Finnish
Foundation for Technology Promotion, HPY Research
Foundation, and Riitta ja Jorma J. Takanen Foundation.

APPENDIX A
PROOF OF LEMMA 1, 2, AND 3

A. Proof of Lemma 1

Using the facts that T1,i−1 and X1,i are independent
and fX1,i

(x) = λ1e
−λ1x, P (EB

1,i) can be written as

P (EB
1,i) =

∫ ∞
0

P (T1,i−1 ≥ X1,i|T1,i−1 = t)fT1,i−1
(t)dt



=

∫ ∞
0

FX1,i
(t)fT1,i−1

(t)dt = 1−
∫ ∞
0

e−λ1tfT1,i−1
(t)dt

(a)
= 1− E[e−λ1T ] = 1− LT (λ1), (25)

where equality (a) follows because the system times of
different packets are stochastically identical, i.e., T1,i =st

T2,i =st T , ∀i [8]; LT (λ1) = E[e−λ1T ] is the Laplace
transform of the PDF of the system time T at λ1. Be-
cause EL

1,i is the complementary event of EB
1,i, we have

P (EL
1,i) = 1 − P (EB

1,i) = LT (λ1). The relation between
the Laplace transforms of the system time T and service
time S is given as [13, Sect. 5.1.2]

LT (a) =
(1− ρ)aLS(a)

a− λ(1− LS(a))
, (26)

where LS(a) is the Laplace transform of the PDF of the
service time S at a; note that the service times of all
packets are stochastically identical as S1,i =st S2,i =st S,
∀i. Since the service time is an exponentially distributed
random variable with mean 1/µ, we have

LS(a) =

∫ ∞
0

µe−(µ+a)sds =
µ

µ+ a
. (27)

By substituting (27) into (26), LT (a) is given as

LT (a) =
µ(1− ρ)

µ(1− ρ) + a
. (28)

Finally, by substituting λ1 into (28) we have

P (EL
1,i)=LT (λ1)=

1− ρ
1− ρ2

, (29)

P (EB
1,i)=1− P (EL

1,i)=
ρ1

1− ρ2
.

B. Proof of Lemma 2

The conditional PDF fX1,i|EB
1,i

(x) can be
obtained by taking the derivative of the cumulative
distribution function (CDF) FX1,i|EB

1,i
(x), i.e.,

fX1,i|EB
1,i

(x) =
d(FX1,i|EB

1,i
(x))

dx
, such that we have

fX1,i|EB
1,i

(x) = lim
h→0

FX1,i|EB
1,i

(x+ h)− FX1,i|EB
1,i

(x)

h

= lim
h→0

P
(
(X1,i ≤ x+ h) ∩ EB

1,i

)
− P

(
(X1,i ≤ x) ∩ EB

1,i

)
P
(
EB

1,i

)
h

= lim
h→0

P
(
(x ≤ X1,i ≤ x+ h) ∩ (Tc,i−1 ≥ X1,i)

)
P
(
EB

1,i

)
h

(a)
= lim
h→0

∫ x+h
x

∫∞
x
fX1,i

(η)fT1,i−1
(t)dtdη

P (EB
1,i)h

=
1−FT1,i−1

(x)

P (EB
1,i)

lim
h→0

∫ x+h
x

fX1,i
(η)dη

h

(b)
=

(
1− FT1,i−1(x)

)
fX1,i(x)

P (EB
1,i)

, (30)

where equality (a) follows because X1,i and T1,i−1 are
independent, i.e., fX1,i,T1,i−1

(x, t) = fX1,i
(x)fT1,i−1

(t);
equality (b) follows from the definition of the derivative of
an integral [14, Sect. 6.3]. From (30), we need to calculate
FT1,i−1

(x) to obtain fX1,i|EB
1,i

(x). To derive FT1,i−1
(x),

first we calculate the PDF of the system time fT1,i−1
(x) by

calculating the inverse Laplace transform of the Laplace
transform of the system time T (28). Thus, the inverse
Laplace transform of (28) is given as [14, Sect. 13.5]

fT (x) = L−1(LT (a)) = µ(1− ρ)e−µ(1−ρ)x, (31)

where L−1(·) is the inverse Laplace transform. Conse-
quently, the CDF of the system time FT (x) is given as

FT (x) =

∫ x

0

fT (a)da = 1− e−µ(1−ρ)x. (32)

Finally, substituting (32), P (EB
1,i), and

fX1,i
(x) = λ1e

−λ1x in (30) gives (11).
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