Spinel-olivine microwave dielectric ceramics with low sintering temperature and high quality factor for 5GHz Wi-Fi antennas

Huaicheng Xiang1,2,3, Joni Kilpijärvi3, Sami Myllymäki3, Haitao Yang2, Liang Fang1,*, Heli Jantunen3,*

1 Guangxi Key Laboratory of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, P. R. China

2 Shenzhen Key Laboratory of Special Functional Materials, Shenzhen Engineering Laboratory for Advanced Technology of Ceramics, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China

3 Microelectronics Research Unit, Faculty of Information Technology and Electrical Engineering, University of Oulu, FI-90014 Oulu, Finland

*: Corresponding Author, fanglianggl001@aliyun.com (L. Fang); Heli.Jantunen@oulu.fi (H. Jantunen)
Abstract

The patch antenna of spinel-olivine composite ceramic (Li₂ZnGe₃O₈-Li₂ZnGeO₄) is designed, which can realize power ratio (59%) and S₁₁ of -14 dB at 5.7 GHz. The low sintering temperature (< 960 °C), low relative permittivity (8.15) and good microwave dielectric properties (quality factor ~ 32,500 GHz, resonant frequency temperature coefficient ~ -74.8 ppm/°C) were obtained for spinel-olivine composite ceramic. Li₂ZnGe₃O₈-Li₂ZnGeO₄ composite microwave dielectric ceramics were synthesized at 900–980 °C using Li₂CO₃, ZnO and GeO₂, which can co-fire with silver electrodes without chemical reaction. These exceptional characteristics enable high-speed signal transmission application of spinel-olivine composite ceramics (Li₂ZnGe₃O₈-Li₂ZnGeO₄) in 5 GHz Wi-Fi antennas.

Keywords: Spinel-olivine ceramics; Microwave dielectric properties; 5GHz patch antenna; Low-temperature cofiring.
1. Introduction

Wireless communication technology as one of the fastest growing industries in the world, thus far, in which the application of microwave dielectric materials is indispensable [1-3]. Microwave dielectric ceramics have established their status in the field of wireless communication by reducing the size and cost of capacitors, filters, oscillators and antenna substrates. To save energy resources, their compatibilities with silver electrodes at low sintering temperatures (< 960 °C) have also become the focus of research [4-6]. The relative permittivity (εr), quality factor (Q × f) and temperature coefficient of resonance (τf) are fundamental parameters for evaluating microwave dielectric properties [7,8]. In the early research of microwave dielectric ceramics, the miniaturization of the devices was the main task. Therefore, the ABO3 type perovskites had been studied extensively because of their abundant crystal system types and simple oxide compositions, which were mainly high-temperature and high-permittivity, such as CaTiO3 (S.T. ~ 1300 °C, εr ~ 170) [9], SrTiO3 (S.T. ~ 1500 °C, εr ~ 200) [10]. However, the application of fifth generation (5G) mobile technology and the chip development of electronic equipment put forward new requirements for microwave dielectric ceramics: low relative permittivity (low εr for higher signal propagation speed, \(t_d = \sqrt{\varepsilon, l_e} / c \)) where \(t_d \), \(l_e \), and \(c \) denote signal delay time, transmission distance, and velocity of light) and low or ultralow temperature cofired ceramic (LTCC, ULTCC) technology [11-14]. In 2010, Sebastian and Fang et al.[15,16] reported a spinel Li2ZnTi3O8 microwave dielectric ceramic with low-medium permittivity, and its sintering temperature was lower than 1100 °C. Subsequently, a large number of new microwave dielectric materials with low-permittivity (10-22) for LTCC and ULTCC technology began to be widely reported,
such as Lithium-based rock salt, vanadium-based garnet $A_3B_2V_3O_{12}$, molybdenum-based scheelite $AMoO_4$, etc.\[17-24\] Recently, there have been new reports on the olivine-structured microwave dielectric ceramics A_2BO_4 ($A = Ca, Mg, Zn; B = Si, Ge$), which exhibited the characteristics of high temperature (1200-1600 °C) and lower permittivity (< 7) due to the introduction of $[BO_4]$ tetrahedra \[25-28\]. Microwave dielectric ceramics are undergoing the development process from high to low permittivity and high to low sintering temperature.

In modern communication engineering, the application of dielectric materials in antennas has always been an area of concern for researchers. The high gain, high transmission and wide frequency band of antennas are the focus of current development \[29-33\]. With the increasing number of mobile devices, the demand for Wi-Fi networks is also increasing. Wi-Fi signals are available in two different frequency bands: 2.4 GHz (2400–2484 MHz) and 5 GHz (4915–5875 MHz), the primary difference between them is speed \[34-38\]. The higher frequency requires a faster transmission speed, which is in line with the development of the low permittivity of microwave dielectric ceramics. From the perspective of crystal structure and ionic polarizability, microwave dielectric ceramics with olivine structure in $Li_2O-ZnO-GeO_2$ systems are suitable candidates for higher frequency Wi-Fi antennas, but high sintering temperature (1200 °C) limits their application in LTCC technology \[11\]. In the $Li_2O-ZnO-GeO_2$ phase diagram system (Fig. S1), low-temperature spinel $Li_2ZnGe_3O_8$ microwave dielectric ceramics have been reported with S.T. = 945 °C, $\varepsilon_r = 10.5$, $Q\times f = 47,400$ GHz, $\tau_f = -63.9$ ppm/°C \[39\]. Therefore, by adjusting the proportion of Li_2O, ZnO and GeO_2, it is expected to obtain microwave dielectric ceramics with low permittivity and low sintering temperature that can be applied to 5 GHz Wi-Fi antennas. In the present work, we mix Li_2O, ZnO, \[\ldots\]
and GeO$_2$ according to the molar ratio of 1:1:2, and use the solid-state reaction method to fabricate antenna substrate to realize the application of Wi-Fi signal in the 5 GHz–5.8 GHz frequency band. Moreover, the sintering temperature, phase composition after 4–16 h of sintering, microwave dielectric properties, and chemical compatibility with Ag electrode of the Li$_2$O-ZnO-2GeO$_2$ ceramics are investigated.

2. Experimental

Preparation of Li$_2$O-ZnO-GeO$_2$ dielectric ceramics: High purity (> 99%) raw materials of Li$_2$CO$_3$, ZnO and GeO$_2$ were mixed at a molar ratio of 1:1:2, and poured into a ceramic pot and milled in a high energy ball mill with ethanol and zirconia balls for 6 h with 150 rpm. After drying the ball-milled slurry in the oven at 80 °C for 48 h, the powder continued to be ground in an agate mortar, which was then placed in an alumina crucible and heated at 900 °C for 5 h with a rate of 5 °C/min. The purpose of this step was to synthesize the main phase of the Li$_2$O-ZnO-2GeO$_2$ materials. The calcined powder was milled for the second time, after which the 5wt% polyvinyl alcohol aqueous solution (PVA) was added as the binder and pressed the powder into cylinders with a height of 5 mm and a diameter of 10 mm. The Li$_2$O-ZnO-2GeO$_2$ green samples were heated to 500 °C for 10 h with a rate of 1 °C/min to remove the PVA binder. The Li$_2$O-ZnO-2GeO$_2$ samples were then sintered at 800–980 °C for 4 h for the measurement of dielectric properties. Further, 20wt% Ag powder was added to the sintered Li$_2$O-ZnO-2GeO$_2$ powder to be cofired at 940 °C for 4 h to test their chemical compatibility. The sintering temperatures of the samples were determined according to the TGA/DSC curves of the Li$_2$CO$_3$, ZnO and 2GeO$_2$ powders (Fig. S2).

Fabrication of Li$_2$O-ZnO-2GeO$_2$ antenna substrate: The ball-milled Li$_2$O-ZnO-2GeO$_2$ powder was pressed into a disc-shaped green sample with a diameter of 40
mm and a thickness of 1 mm, and the green sample was sintered at 960 °C for 4 h with a rate of 5 °C min⁻¹. Both sides of the sintered sample were polished with P2000 abrasive paper (Eco-Wet, KWH Mirka Ltd., Jepua, Finland), and the sample with a thickness of about 0.8 mm was finally obtained. The silver paste (DT1402) was screen printed on the surface of the sample and allowed to stand in an oven at 150 °C for 10 min to cure the silver paste, after which the sample was sintered at 600 °C for 20 min. Finally, the sintered sample was shaped by an LPKF ProtoLaser U3 laser and assembled through an SMA (SubMiniature version A) connector.

Characterization: The phase composition and crystal structure of the Li₂O-ZnO-2GeO₂ ceramics were identified by X-ray powder diffraction (XRD, Bruker D8, Germany) with a Cu Kα radiation source. The microstructures were determined by field emission scanning electron microscopy (FESEM, Zeiss Ultra Plus, Germany). The Raman spectra of the sintered ceramics were measured with a Raman spectrometer (Thermo Fisher Scientific, USA). The chemical reactions between Li₂O, ZnO, and GeO₂ were evaluated by Thermogravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC, NETZSCH, Germany). The sintered ceramics were characterized with a dilatometer (DIL 402 PC/4, NETZSCH, Germany) to measure the coefficient of thermal expansion (CTE). The εᵣ and Q×f were measured using the vector network analyzer (10 MHz-20 GHz, ZVB20, Rohde & Schwarz, Germany), and the τ values in the range of 25-85 °C were calculated by

\[\tau_f = \frac{f_{85} - f_{25}}{f_{25}(T_{85} - T_{25})} \]

The τ values in the range of 25-85 °C were calculated by

\[\tau_f = \frac{f_{85} - f_{25}}{f_{25}(T_{85} - T_{25})} \]

The design and analysis of antenna were performed by Computer Simulation Technology (CST) and Satimo StarLab near-field antenna measurement system.

3. Results and discussion
3.1 The phase composition of Li$_2$O-ZnO-2GeO$_2$ ceramics

The XRD patterns of Li$_2$O-ZnO-2GeO$_2$ ceramics sintered at 800–980 °C for 4 h are shown in Fig. 1, where the diffraction peaks of all the samples were mainly matched well with Li$_2$ZnGe$_3$O$_8$ (PDF#24-0673) and Li$_2$ZnGeO$_4$ (PDF#24-0675). When the sintering temperature is lower than 900 °C, a small amount of impurity phase is classified, and it is also detected that the sample still contains raw materials (Li$_2$O, ZnO, GeO$_2$), indicating that the reaction at this temperature range is incomplete. When the sintering temperature is higher than 900 °C, only two phases of cubic Li$_2$ZnGe$_3$O$_8$ and orthorhombic Li$_2$ZnGeO$_4$ are detected in the sample. To determine the phase content, the two-phase Rietveld refinement was performed on the room-temperature XRD data of Li$_2$O-ZnO-2GeO$_2$ samples using the structures of the cubic Li$_2$ZnGe$_3$O$_8$ and orthorhombic Li$_2$ZnGeO$_4$ phase (Fig. 2a). Phase compositions of Li$_2$O-ZnO-2GeO$_2$ ceramics sintered at 800–980 °C for 4 h, as listed in Table 1. Clearly, the content of the Li$_2$ZnGeO$_4$ phase decreased with the increase of sintering temperature, while the content of Li$_2$ZnGe$_3$O$_8$ increased gradually. The maximum sintering temperature of Li$_2$O-ZnO-2GeO$_2$ ceramics is 980 °C, which still maintains two-phase coexistence, and neither single phase Li$_2$ZnGe$_3$O$_8$ nor new phase Li$_2$ZnGe$_2$O$_6$ can be obtained. At 800-880 °C, the orthorhombic Li$_2$ZnGeO$_4$ accounts for the leading phase and its content is 71.31–52.03%. Conversely, in the temperature range of 920–980 °C the cubic Li$_2$ZnGe$_3$O$_8$ is the dominant phase, which is more than 70%, and when the sintering temperature exceeds 940 °C, the content of Li$_2$ZnGe$_3$O$_8$ increases relatively slowly and remains above 80%. Moreover, when the sintering temperature is 900 °C Li$_2$ZnGe$_3$O$_8$ content is about 45.15%, Li$_2$ZnGeO$_4$ content is about 47.34%, and their ratio is about 1:1. In the Li$_2$ZnGeO$_4$ phase with an orthorhombic olivine structure (space group of Pmn2$_1$), the [LiO$_4$], [ZnO$_4$], and
[GeO₄] tetrahedra are connected only by a corner, and all tetrahedra point to the c-axis direction. Li₂ZnGe₃O₈ belongs to the cubic spinel structure, in which the tetrahedral position is occupied by the random distribution of Li⁺ and Zn²⁺ (8c), and the octahedral position is filled by the 1:3 ordered of Li⁺ (4a) and Ge⁴⁺ (12d) cations (Fig. 2b).

It can be determined that when the molar ratio of Li₂O, ZnO and GeO₂ was 1:1:2, the single-phase compound Li₂ZnGe₂O₆ cannot be obtained after sintering at 800-980 °C for 4 h, but included the two phases Li₂ZnGe₃O₈ and Li₂ZnGeO₄, and the chemical reaction formula as follows:

\[
2[\text{Li}_2\text{O} + \text{ZnO} + 2\text{GeO}_2] \xrightarrow{\text{900°C}} \text{Li}_2\text{ZnGe}_3\text{O}_8 + \text{Li}_2\text{ZnGeO}_4
\]

(1)

However, Grins et al.[40] mixed K₂CO₃, ZnO, and GeO₂ in a molar ratio of 1:1:2, and after sintering at 752 °C for 15 h, a single-phase compound K₂ZnGe₂O₆ was obtained, which was similar to the Li₂ZnGe₂O₆ that we expected formerly. Therefore, to study whether the sintering time has a significant effect on the phase composition of Li₂O-ZnO-2GeO₂, the Li₂O-ZnO-2GeO₂ samples were sintered at 900 °C for 4 to 16 h and their XRD patterns are shown in Fig. 2c. Obviously, with the increase of sintering time, the content changes of Li₂ZnGe₃O₈ and Li₂ZnGeO₄ were no obvious, which indicated that the sintering time exhibited little effect on the composition of the Li₂O-ZnO-2GeO₂, due to the substantial difference of the radius of K⁺ (1.55 Å, CN = 9) and Li⁺ (0.59–0.92 Å).

The electron back-scattering micrograph and energy dispersion spectra of Li₂O-ZnO-2GeO₂ ceramics are shown in Fig. 2d. When the Li₂O-ZnO-2GeO₂ ceramic sintered at 900 °C for 4 h, two forms of grains can be clearly observed, and their grain sizes were also quite different. According to DES analysis, the larger grain size
belonged to Li₂ZnGeO₄, while the smaller grain size belonged to Li₂ZnGe₃O₈. Grain growth is one of the most important factors for densification in the sintering process. However, the grain sizes of the Li₂O-ZnO-2GeO₂ ceramics in low sintering temperatures (> 900 °C) are larger than those in high sintering temperatures (< 900 °C). From the perspective of two phases, the grain size of Li₂ZnGeO₄ and Li₂ZnGe₃O₈ increases with the increase of sintering temperature (Fig. S3). The densification of the Li₂O-ZnO-2GeO₂ ceramics was positively related to the sintering temperature. Some pores could be seen at 800 °C, and when the sintering temperature increased to 960 °C the Li₂O-ZnO-2GeO₂ sample exhibited a relatively dense microstructure with few visible pores. Fig. S4 shows the room Raman spectra of Li₂O-ZnO-2GeO₂ ceramics sintered at 800–980 °C for 4 h. Compared with Raman spectra of Li₂ZnGeO₄ and Li₂ZnGe₃O₈, it can be observed that Li₂O-ZnO-2GeO₂ ceramics contained these two vibration modes. According to group theory, the Raman active modes of Li₂ZnGe₃O₈ and Li₂ZnGeO₄ are as follows:

\[
\Gamma_{(Li_2ZnGe_3O_8)} = 7A_{1g} + 16E_g + 23F_{2g}
\]

\[
\Gamma_{(Li_2ZnGeO_4)} = 13A_{1g} + 10A_{2g} + 9B_{1g} + 13B_{2g}
\]

Since Raman spectroscopy is very sensitive to changes in phase composition, it can be seen from Fig. S4 that the Raman spectra of Li₂O-ZnO-2GeO₂ ceramics have changed considerably with the increase of sintering temperature. With the increase of temperature, the peak intensity of Li₂ZnGe₃O₈ increased gradually (i.e. F₂g, E₉), which indicated that the content of Li₂ZnGe₃O₈ phase increases with increasing temperature, while the content of Li₂ZnGeO₄ decreased, and the Raman results further confirm the XRD analysis results.
3.2 Microwave dielectric properties of Li$_2$O-ZnO-2GeO$_2$ and its chemical compatibility with silver electrodes

Fig. 3 shows the variation of bulk densities and microwave dielectric properties of the Li$_2$O-ZnO-2GeO$_2$ ceramics with different sintering temperatures. In the orthorhombic phase dominated range (800–900 °C), Li$_2$O-ZnO-2GeO$_2$ ceramics have a lower bulk density, which is because Li$_2$ZnGeO$_4$ has a low theoretical density of 4.08 g/cm3 [11]. With the increase of sintering temperature, the density of Li$_2$O-ZnO-2GeO$_2$ ceramics increased gradually (3.66–4.24 g/cm3), which was due to the decrease of Li$_2$ZnGeO$_4$ phase and the increase of Li$_2$ZnGe$_3$O$_8$ phase with the increase of sintering temperature. The Li$_2$ZnGe$_3$O$_8$ with cubic phase exhibited a high theoretical density of 5.13 g/cm3 [39]. Additionally, when the sintering temperature of Li$_2$O-ZnO-2GeO$_2$ ceramics exceeded 900 °C, the bulk density increased significantly, reaching the highest bulk density of 4.77 g/cm3 (relative density of 96.7%) at 960 °C. The theoretical density of Li$_2$O-ZnO-2GeO$_2$ ceramics can be evaluated by

$$\rho_{(Li_2O-ZnO-2GeO_2)} \approx (\text{Volume fraction of Li}_2\text{ZnGeO}_4 \times \text{its theoretical density}) + (\text{Volume fraction of Li}_2\text{ZnGe}_3\text{O}_8 \times \text{its theoretical density})$$

As seen in Fig. 3a, the theoretical density of Li$_2$O-ZnO-2GeO$_2$ ceramics increased gradually as well as the bulk density, and the difference between the measured and calculated values in the low temperature was large, while the difference reduced as the increase of sintering temperature. One of the reasons is that Li$_2$O-ZnO-2GeO$_2$ ceramics are transitioning from low-density Li$_2$ZnGeO$_4$ phase to high-density Li$_2$ZnGe$_3$O$_8$ phase with the increase of temperature. Another reason is that there are still a large number of pores inside the ceramic at low temperature, and it is difficult to achieve densification.

Generally, the dielectric properties of ceramics in the microwave band are mainly determined by phonon vibration, lattice defects, ionic polarizability,
densification, and secondary phases [41-43]. Since the Li$_2$O-ZnO-2GeO$_2$ ceramic mainly contains two phases of Li$_2$ZnGeO$_4$ and Li$_2$ZnGe$_3$O$_8$, the primary consideration is the effect of phase composition on its dielectric properties. The ε_r, $Q\times f$, and τ of composite ceramics can be estimated by the following logarithmic, series and parallel mixing rules [44,45]:

\[
\lg \varepsilon = \sum_{i=1}^n V_i \lg \varepsilon_i \quad (4)
\]

\[
Q^{-1} = \sum_{i=1}^n V_i Q_i \quad (5)
\]

\[
\tau = \sum_{i=1}^n V_i \tau_i \quad (6)
\]

In the equations, $\sum_{i=1}^n V_i = 1, n$ is the number of phases in the composite ceramics, and V_i is the volume fraction of phases. As the sintering temperature increases, both the measured and calculated values of ε_r increase. The measured ε_r gradually increased from 5.63 to 8.53 in the range of 800 to 980 °C (Fig. 3b). It is worth noting that the measured value of ε_r is about 1 less than the calculated value because the density and the ionic polarizability of the ceramics will affect the permittivity, which makes the measured ε_r tend to be smaller than the calculated value. As shown in Fig. 3c, the $Q\times f$ of Li$_2$O-ZnO-2GeO$_2$ ceramic also shows an increasing trend with the sintering temperature, and its $Q\times f$ value increased from 9,160 GHz to 32,500 GHz with a measurement frequency of 13.8 GHz. The Li$_2$O-ZnO-2GeO$_2$ ceramic in the range of cubic phase exhibited higher $Q\times f$ values than that of in the range of orthorhombic phase. The theoretical $Q\times f$ value of Li$_2$O-ZnO-2GeO$_2$ ceramic can be obtained by equation (5). There is a large error range between the measured and the theoretical values of $Q\times f$ at the sintering temperature below 900 °C, which may be
caused by the low density. When the sintering temperature is higher than 900 °C, the density of Li$_2$O-ZnO-2GeO$_2$ ceramics is relatively high, which results in a good agreement between the measured and the theoretical values. In addition, the highest $Q\times f$ of 41,000 GHz was observed when the ceramic was at the measurement temperature of -40 °C and it gradually decreased as the ceramic was further heated to 85 °C (Fig. S5), which is due to the lower phonon vibrations at sub-zero temperatures [46]. As shown in Fig. 3d, the τ_f was almost stable within the measured temperature ranges with a slightly decreasing tendency (-69 ~ -75 ppm/°C). The resonance frequency (f) showed a downward trend with increasing temperature, and Li$_2$O-ZnO-2GeO$_2$ ceramics sintered at 960 °C displayed a τ_f of -74.8 ppm/°C in the temperature range of -40 to 85 °C (Fig. S5). The sintered Li$_2$O-ZnO-2GeO$_2$ ceramics show linear coefficient of thermal expansion (CTE) of 10.63 ppm/°C measured in the temperature range of 25–700 °C (Fig. S6). Based on the τ_f and CTE value, the calculated temperature coefficient of relative permittivity (τ_ϵ) is about 128 ppm/°C using the equation of $\tau_\epsilon = -(\tau_f/2 + \text{CTE})$.

The application requires microwave dielectric ceramics should be compatible with metal electrodes, such as Ag, Au, Cu, and their alloys. In this work, 20 wt% Ag powder was mixed with the Li$_2$O-ZnO-2GeO$_2$ powder and co-fired at 940 °C for 4 h to investigate their chemical compatibility. Fig. 4 shows the XRD pattern and BSE image of Li$_2$O-ZnO-2GeO$_2$ ceramics with 20wt% Ag sintered at 940 °C for 4h. This is further supported by the BSE image in which three distinctive types of grains were observed with clear grain boundaries. The obviously larger and brighter grains represent pure silver particles. This proves that the Li$_2$O-ZnO-2GeO$_2$ ceramics is fully compatible with Ag electrode.
3.3 Design of 5 GHz Wi-Fi antenna for Li$_2$O-ZnO-2GeO$_2$

We simulated and designed the Li$_2$O-ZnO-2GeO$_2$ antenna substrate using CST Studio Suite software. The dimensions of the square patch antenna were obtained by the following equations [47,48]:

\[
W_p = \frac{c_0}{2f_r} \sqrt{\frac{2}{\varepsilon_r + 1}}
\] (7)

\[
L_p = \frac{c_0}{2f_r} \sqrt{\varepsilon_{eff}} - 2\Delta L
\] (8)

where, \(\varepsilon_{eff} = \frac{\varepsilon_r + 1}{2} + \frac{\varepsilon_r - 1}{2} \left(\frac{1}{\sqrt{1 + 12h/W_p}} \right)\)

(9)

in the equations, \(W_p\) and \(L_p\) are the width and length of the patch, \(f_r\) is the frequency (GHz) of the application, \(c_0\) is the speed of light in vacuum, and \(\varepsilon_{eff}\) is the effective permittivity, and \(h\) is the thickness (mm) of the substrate.

Due to the fringe field around the patch, the patch design is slightly larger than the theoretical value to account for the difference between simulation and manufacturing. The increment to the length \(\Delta L\) can be expressed as [49]:

\[
\Delta L = 0.412h \frac{\left(\varepsilon_{eff} + 0.3\right)\left(W_p/h + 0.264\right)}{\left(\varepsilon_{eff} - 0.258\right)\left(W_p/h + 0.8\right)}
\] (10)

The calculation formulas of the width \(W_G\) and the length \(L_G\) of the Li$_2$O-ZnO-2GeO$_2$ antenna substrate are as follows:

\[
W_G = W_p + 6h
\] (11)
A schematic diagram of the Li$_2$O-ZnO-2GeO$_2$ antenna substrate and its dimensions are shown in Fig. 5a. The patch length of the Li$_2$O-ZnO-2GeO$_2$ antenna substrate is $L_p = 16.20$ mm, the width W_p is 9.36 mm, and the substrate size is $(L_G \times W_G \times h) = 19.62$ mm \times 13.29 mm \times 0.8 mm. Fig. 5b shows the simulated and measured return loss values (S_{11}) for the Li$_2$O-ZnO-2GeO$_2$ antenna. The simulated antenna conforms to the expected properties, and the resonance frequency between the simulation result and the measurement result is in good agreement. The simulated resonance frequency is 5.69 GHz and the fabricated antenna shows 5.70 GHz. At $S_{11} = -10$ dB, the Li$_2$O-ZnO-2GeO$_2$ antenna exhibits an simulated bandwidth of 40 MHz and a measured bandwidth of 80 MHz. This difference may be due to the thickness of the patch during the manufacturing process, the ambient humidity, and the soldering of the SMA connector. Although there are differences in simulated and measured values for bandwidth, the 40-80 MHz bandwidth is still compatible with 5 GHz Wi-Fi applications.

Fig. 6 shows the measured and simulated radiation pattern at the center frequency of the 5 GHz (5-5.8 GHz) Wi-Fi band for the Li$_2$O-ZnO-2GeO$_2$ patch antenna. It can be observed that the measured and the simulated maximum antenna gain can match, but there are some differences in pattern shapes due to errors in the test environment and antenna manufacturing process. As can be seen from Fig. 6a and b, there is a similar pattern on the x-z plane (phi = 0) and the y-z plane (phi = 90) with an antenna gain of 4 dB, while antenna gain on the x-y plane (theta = 90) is the smallest. Fig. 6d shows the total efficiency of the Li$_2$O-ZnO-2GeO$_2$ patch antenna at different frequencies with a maximum of -2.3 dB at 5.7 GHz. Decibel (dB) is defined according to the power ratio:
\[dB = 10 \times \log_{10}(P_2/P_1) \]

where \(P_2 \) is the power being measured, and \(P_1 \) is the reference. According to equation (13), the \(\text{Li}_2\text{O}-\text{ZnO}-2\text{GeO}_2 \) antenna has a power ratio of 59% at 5.7 GHz. In addition to the errors of an antenna in the manufacturing process and test environment, the antenna efficiency losses are typically due to the conduction losses, dielectric losses impedance mismatch loss [50]. Mobile phone antennas, or Wi-Fi antennas in consumer electronics products, typically have efficiencies from 20% to 70% (-7 dB - 1.5 dB) [51,52]. Therefore, the spinel-olivine composite ceramics are suitable for 5 GHz Wi-Fi antenna applications.

4. Conclusion

The spinel-olivine composite ceramics were prepared at 800-980 °C by solid-state reaction. Two phases of cubic spinel \(\text{Li}_2\text{ZnGe}_3\text{O}_8 \) and orthorhombic olivine \(\text{Li}_2\text{ZnGeO}_4 \) were detected to coexist in the \(\text{Li}_2\text{O}-\text{ZnO}-2\text{GeO}_2 \) system, as confirmed by XRD, SEM and Raman spectroscopy. The good microwave dielectric properties (\(\varepsilon_r \sim 8.15 \), \(Q\times f \sim 32,500 \) GHz, \(\tau_f \sim -74.8 \) ppm/°C) and compatible with the Ag electrode revealed that the spinel-olivine composite ceramics (\(\text{Li}_2\text{ZnGe}_3\text{O}_8-\text{Li}_2\text{ZnGeO}_4 \)) ceramic is suitable for manufacturing 5 GHz Wi-Fi patch antenna through LTCC technology. A square patch antenna with compact dimensions of 19.62×13.29×0.8 mm was fabricated. Good agreement in terms of the radiation patterns and return loss. The measured and simulated \(S_{11} \) were obtained with the center frequency of 5.70 and 5.69 GHz and bandwidth 40 and 80 MHz, respectively. Furthermore, the spinel-olivine antenna has a power ratio of 59% at 5.7 GHz. Accordingly, the spinel-olivine antenna could be utilized for 5 GHz Wi-Fi applications.

Declaration of Competing Interest
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgments

The authors gratefully acknowledge the financial support from the Shenzhen Basic Research General Program (Award No. JCYJ20190808114618998), the National Natural Science Foundation of China (Award Nos. 21965009, 21761008 and 21561008) and the Natural Science Foundation of Guangxi Zhuang Autonomous Region (Award Nos. 2018GXNSFAA138175, 2018GXNSFBA281093, 2015GXNSFFA139003, and 2018GXNSFAA281093). H. Xiang and H. Jantunen acknowledge the financial support from the European Research Council Project (Award No. 24001893).
References

[8] J. Li, X. Lan, X. Song, W. Lu, X. Wang, F. Shi, W. Lei, Crystal structures, dielectric properties and ferroelectricity in stuffed tridymite-type BaAl\(_{2-2x}\)(Zn\(_{0.5}\)Si\(_{0.5}\))\(_{2x}\)O\(_4\) solid solutions, Dalton Trans. 48 (2019) 3625-3634.

[20] D. Wang, S. Zhang, D. Zhou, et al. Temperature stable cold sintered (Bi$_{0.95}$Li$_{0.05}$)(V$_{0.9}$Mo$_{0.1}$)O$_4$-Na$_2$Mo$_2$O$_7$ microwave dielectric composites, Mater. 12 (2019) 1370.

[37] A.V. Trukhanov, K.A. Astapovich, M.A. Almessiere, et al. Peculiarities of the magnetic structure and microwave properties in Ba(Fe$_{1-x}$Sc$_x$)$_{12}$O$_{19}$ (x<0.1) hexaferrites, J. Alloys Compd. 822 (2020) 153575.

[44] S.V. Trukhanov, I.O. Troyanchuk, N.V. Pushkarev, H. Szymczak, The influence of oxygen deficiency on the magnetic and electric properties of La$_{0.70}$Ba$_{0.30}$MnO$_3$-γ (0 ≤ γ ≤ 0.30) manganite with a perovskite structure, J. Exp. Theor. Phys. 95 (2002) 308-315.

Table 1 Phase compositions of Li$_2$O-ZnO-2GeO$_2$ ceramics sintered at 800–980 °C for 4 h

<table>
<thead>
<tr>
<th>S.T. (°C)</th>
<th>Li$_2$ZnGe$_3$O$_8$ (mol%)</th>
<th>Li$_2$ZnGeO$_4$ (mol%)</th>
<th>Li$_2$Ge7O${15}$ (mol%)</th>
<th>Li$_4$GeO$_4$ (mol%)</th>
<th>Li$_2$O (mol%)</th>
<th>ZnO (mol%)</th>
<th>GeO$_2$ (mol%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>800</td>
<td>14.64</td>
<td>71.31</td>
<td>3.78</td>
<td>2.27</td>
<td>1.49</td>
<td>3.04</td>
<td>3.47</td>
</tr>
<tr>
<td>820</td>
<td>16.93</td>
<td>70.90</td>
<td>3.33</td>
<td>2.07</td>
<td>1.32</td>
<td>2.87</td>
<td>2.58</td>
</tr>
<tr>
<td>840</td>
<td>18.54</td>
<td>69.53</td>
<td>3.19</td>
<td>2.06</td>
<td>1.71</td>
<td>3.08</td>
<td>1.89</td>
</tr>
<tr>
<td>860</td>
<td>29.47</td>
<td>59.49</td>
<td>2.15</td>
<td>1.75</td>
<td>1.21</td>
<td>2.70</td>
<td>3.23</td>
</tr>
<tr>
<td>880</td>
<td>37.43</td>
<td>52.03</td>
<td>1.55</td>
<td>1.49</td>
<td>1.17</td>
<td>2.62</td>
<td>3.71</td>
</tr>
<tr>
<td>900</td>
<td>45.15</td>
<td>47.34</td>
<td>0.97</td>
<td>1.70</td>
<td>1.10</td>
<td>2.28</td>
<td>1.46</td>
</tr>
<tr>
<td>920</td>
<td>71.43</td>
<td>28.57</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>940</td>
<td>80.58</td>
<td>19.42</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>960</td>
<td>81.17</td>
<td>18.83</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>980</td>
<td>81.20</td>
<td>18.80</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
</tbody>
</table>
FIGURE CAPTIONS:

Fig. 1 XRD patterns of the Li$_2$O-ZnO-2GeO$_2$ ceramics sintered at 800–980 °C for 4h.

Fig. 2 (a) the Rietveld refinement pattern of Li$_2$O-ZnO-2GeO$_2$ ceramics sintered at 980 °C, (c) crystal structure of Li$_2$ZnGeO$_4$ and Li$_2$ZnGe$_3$O$_8$, XRD patterns of the Li$_2$O-ZnO-2GeO$_2$ ceramics sintered at 900 °C for 4 to 16 h, and (d) BSE image of Li$_2$O-ZnO-2GeO$_2$ ceramics sintered at 900 °C for 4h.

Fig. 3 Dependence of measured and calculated (a) bulk densities, (b) ε_r, (c) $Q \times f$, and (d) τ_f on sintering temperature for the Li$_2$O-ZnO-2GeO$_2$ ceramics.

Fig. 4 XRD pattern of Li$_2$O-ZnO-2GeO$_2$+20wt% Ag sample sintered at 940 °C for 4h. The inset shows the BSE image of Li$_2$O-ZnO-2GeO$_2$ ceramics with 20wt% Ag cofired at 940 °C.

Fig. 5 (a) Patch antenna designed with CST Studio Suite software and the fabricated Li$_2$O-ZnO-2GeO$_2$ antenna. (b) Simulated and measured return loss (S_{11}).

Fig. 6 The radiation patterns of the Li$_2$O-ZnO-2GeO$_2$ patch antenna at 5.7 GHz for (a) phi = 0, x-z plane, (b) phi = 90, y-z plane, (c) theta = 90, x-y plane and (d) total efficiency of the Li$_2$O-ZnO-2GeO$_2$ patch antenna at different frequencies.
Fig. 1 XRD patterns of the Li$_2$O-ZnO-2GeO$_2$ ceramics sintered at 800–980 °C for 4h.
Fig. 2 (a) the Rietveld refinement pattern of Li$_2$O-ZnO-2GeO$_2$ ceramics sintered at 980 °C, (c) crystal structure of Li$_2$ZnGeO$_4$ and Li$_2$ZnGe$_3$O$_8$, XRD patterns of the Li$_2$O-ZnO-2GeO$_2$ ceramics sintered at 900 °C for 4 to 16 h, and (d) BSE image of Li$_2$O-ZnO-2GeO$_2$ ceramics sintered at 900 °C for 4h.
Fig. 3 Dependence of measured and calculated (a) bulk densities, (b) ε_r, (c) $Q\times f$, and (d) γ on sintering temperature for the Li$_2$O-ZnO-2GeO$_2$ ceramics.
Fig. 4 XRD pattern of Li$_2$O-ZnO-2GeO$_2$+20wt% Ag sample sintered at 940 °C for 4h.

The inset shows the BSE image of Li$_2$O-ZnO-2GeO$_2$ ceramics with 20wt% Ag cofired at 940 °C.
Fig. 5 (a) Patch antenna designed with CST Studio Suite software and the fabricated Li$_2$O-ZnO-2GeO$_2$ antenna. (b) Simulated and measured return loss (S_{11}).
Fig. 6 The radiation patterns of the Li$_2$O-ZnO-2GeO$_2$ patch antenna at 5.7 GHz for (a) phi = 0, x-z plane, (b) phi = 90, y-z plane, (c) theta = 90, x-y plane and (d) total efficiency of the Li$_2$O-ZnO-2GeO$_2$ patch antenna at different frequencies.
Declaration of interests

☒ The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

☐ The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: