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Abstract
The increasing amount of variable electricity generation
has brought world to investigate various flexibility sources
to provide power network balancing through demand side
management. Therefore, it is important to create new,
more thorough models that allow using smart functions to
control the various electricity loads. In this paper a model
to simulate a fully mixed domestic hot water tank’s be-
havior in 60, 30 and 15 min time resolution, and its control
mechanisms were created. The model will be integrated to
another smart house model to enable studying more com-
bined smart controls and functions. Additionally, the flex-
ibility of the hot water storage tank was investigated with
the help of 4 different heating scenarios, showing its suit-
ability for Demand Side Management, and the operation
of the model was confirmed with lower time resolutions.
Keywords: domestic hot water, demand side management,
smart building, exploratory scenario

1 Introduction
The increasing electricity generation from variable renew-
able energy sources creates new requirements for balanc-
ing the demand and supply of electricity. To prevent im-
balance issues on the network, new kinds of balancing
mechanisms are being studied, one of which is to utilize
the flexible loads on the demand side to shift electricity
consumption according to its supply status. In residen-
tial buildings deferrable and thermal loads, like domes-
tic hot water (DHW) storages, are generally considered as
good sources for providing flexibility to the network (Lu,
2012). These loads can be used to participate in Demand
Side Management (DSM) programs where electricity con-
sumers adjust their electricity consumption to match the
status of power network either through price-signals, like
Time-of-Use (ToU) or Real-time price (RTP), or by re-
ceiving an incentive payment when reacting to a request
to reduce electricity consumption (US Department of En-
ergy, 2006). Additionally, combining local electricity gen-
eration from e.g. Photovoltaic-panels with flexible elec-
tricity loads can help in increasing self-consumption from
local electricity generation and provide monetary benefits
(Salpakari and Lund, 2016). Therefore, there is a need
to identify and study the flexibility in buildings to deter-
mine suitable sources and their potentials in participating

in DSM programs, through programs like IEA EBC An-
nex 67 Energy Flexible Buildings (Jensen et al., 2017).

1.1 Domestic Hot Water
Domestic hot water (DHW) is an important part of having
a good living quality and technology to produce and store
it are essential in today’s world. Hot water is commonly
mixed with colder tab water to create thermally comfort-
able water to be used in shower or as tab water to wash
hands. As the consumption of DHW is not constant, it is
important to study both their load profiles and the behavior
and sizing of DHW storage systems (Ahmed et al., 2016)
considering that it needs to be available for use when re-
quested. Fuentes et al. (2018) highlighted the importance
of having relevant information about DHW withdrawal
profiles and to consider them as a foundation on designing
novel control strategies for DHW storage tanks. In addi-
tion to having representative load profiles, it is also impor-
tant to model the thermal behavior of DHW tanks, so that
it is possible to simulate these new control strategies, espe-
cially on different temporal resolutions. Currently there is
an abundance in created DHW models, e.g. (Paull et al.,
2010; Baeten et al., 2016; Jack et al., 2018) with differ-
ent levels of detail (e.g. is stratification taken into ac-
count) (Jack et al., 2018). Additionally, there are also lot
of different control strategies already created for utilizing
DHW in DSM programs (Atikol, 2013; Jack et al., 2018;
Paull et al., 2010). As there starts be more interest to-
wards smart houses and full building control on smaller
time resolutions, it is important to develop DHW mod-
els that can be integrated with other building-level models
to ensure the potential for developing full building level
control schemes and enable better participation to DSM
programs.

1.2 Aims and objectives
The aim of the work is to create a DHW model with elec-
tric heating to be integrated into an existing Markov-Chain
smart house model1 (Louis et al., 2016) and study the
impacts of various DSM programs to the electricity load
profile of the heating of DHW tank. Therefore, the inter-
operability of the created DHW and existing smart house
models need to be kept in mind during the creation of the
model. Also, load shifting and other DSM tools are tested

1(https://github.com/jeanlouisnico/SBuM)

SIMS 61

DOI: 10.3384/ecp201761 Proceedings of SIMS 2020
Virtual, Finland, 22-24 September 2020

1

https://github.com/jeanlouisnico/SBuM


Hot Water
Withdrawal

profile

Storage
characteristics

Price
information

Information
from step t-1

Heating
Controls

Created DHW
model

Inputs

Hot Water
Withdrawal

Temperature of 
the DHW in

storage

Electricity
load profile

Outputs

Figure 1. Basic description of the DHW model

to investigate the flexibility of electrically heated hot wa-
ter storage tank. Finally, the results from the smart house
model (Louis et al., 2016) and the created DHW model are
investigated and compared on their load profiles as well as
the potential to integrate the models.

2 Methodology

The created DHW model includes three separate parts:
draw-off profile of hot water from the storage tank, tem-
perature of hot water in the tank and heating schedules
of the DHW. These parts allow modeling the behavior
of the DHW tank to determine the electricity load pro-
file and apply the control methods for various DSM pro-
grams. The model is created to be integrated in an existing
smart house model (Louis et al., 2016) to study the elec-
tricity load management and potential DSM methods on
building-level. Moreover it should provide more informa-
tion about the building’s thermal behavior and append the
model’s thermal part (Pulkkinen et al., 2019), while even-
tually enabling a more thorough control of electric heating
in the building. There is also an on-going work to develop
the smart house model to operate on a temporal resolution
of 30, 15, 1 minute and even in 10 s timesteps. There-
fore, it is important to follow this development to ensure
the interoperability of these models.

The basic principle of the DHW model is presented in
Figure 1. Basically, the model includes information on
hot water demand, storage characteristics, price informa-
tion and heating controls as separate inputs, while contain-
ing information about the previous simulation step (DHW
temperature, heating load, etc.) for the use of the model.
This provides the wanted outputs on the hot water with-
drawal, temperature of the hot water and electricity load
profile.
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Figure 2. Mean hourly draw-off profiles of the created 3 dif-
ferent 60 min load profiles (Default, 4 Categories option from
Jordan and Vajen (2001) and load profile created from standard
EN 12831-3).

2.1 Hot Water Demand Profile
The hot water demand profiles for the model were cre-
ated with using DHWcalc program, which creates realis-
tic DHW load profiles using statistical methods on various
temporal resolutions (Jordan and Vajen, 2001). Therefore,
it was selected as a suitable tool for testing the created
DHW model and its capability in running simulation on
the created 60, 30 and 15 min timesteps. To ensure the
capabilities of the DHW model, 3 different load profiles
were created for each timestep, all for the length of one
year. The first profile is the default profile created with
default values from the program, while the second profile
is created by inserting the hourly test profile for single-
family houses from standard EN 12831-3 (2017) as step-
function to the program. The third profile is created with
the values from the 4 different categories option from the
software, presenting default distribution per IEA-Task 26.
The average daily DHW draw-off is 200 litres in each sce-
nario and the mean hourly draw-offs for the created 60
min profiles are presented on Figure 2. The created pro-
files seem to have different characteristics as the Default
load profile varies more on hourly basis and creates higher
peaks than the other 2. Conversely, the load profile by
the values from the standard has more balanced consump-
tion during the day and has lower peaks. Additionally, the
average 30 and 15 min draw-off profiles are presented in
Figure 3, showing their different characteristics, and im-
portance in simulating different time resolutions. In all
cases, there were high morning peaks and 2 lower demand
peaks, one around midday and the second in the evening.

2.2 Hot Water Tank
The model for DHW tank is created based on standards
EN 15316-5 (2017) and EN 12831-3 (2017), and it is
used to calculate the temperature of the hot water in the
tank, stand-by heat losses and energy demand by utiliz-
ing energy balance method. The simplified calculation
procedure with single volume and constant temperature
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Figure 3. Mean draw-off profiles of the created 3 different 30
and 15 min load profiles

throughout the tank was selected as the tank is assumed
to be constantly mixed having therefore a uniform tem-
perature profile throughout the tank.

The average temperature of the water TDHW in the
DHW tank is calculated with Equation 1:

TDHW = TDHW,0 +
PDHW × tci −QDHW,out −Qsto,ls

ρw ×Cp;w ×Vsto;tot
(1)

where TDHW,0 is the water temperature from last simula-
tion step [°C], PDHW is the heating power [W], tci is the
calculation interval [h], QDHW,out is the energy amount
withdrawn from the tank [Wh], Qsto,ls is the stand-by heat
loss from the tank [Wh], ρw is the density of water [ kg

l ],
Cp;w is the specific heat capacity of water [ Wh

kg×C ] and
Vsto,tot is the total volume of the DHW storage tank [l]
(EN 15316-5, 2017). Heating power for the DHW tank
is determined according to the DHW heating part of the
model, while energy withdrawn QDHW,out from the DHW
tank is calculated with Equation 2 and the stand-by energy
loss Qsto,ls is calculated with Equation 3:

QDHW,out =Vd,t ×Cp;w ×ρw × (TDHW,re f −Tin)× tci
(2)

Qsto,ls = fbac,acc × fdis,ls ×Hsto,ls × (TDHW −Tamb)× tci
(3)

where Vd,t is the volume of the draw-off at time t [l],
TDHW,re f is the reference hot water temperature needed to
create correct tab water temperature [°C] Tin is the tem-
perature of the inlet water to the tank [°C], fbac,acc is the
weighting factor for control and size of the tank [-], fdis,ls
is weighting factor to correct the additional heat losses
due to thermal bridges from the connecting pipes [-] and
Tamb is the ambient temperature [°C] (modified from EN
15316-5 (2017) and EN 12831-3 (2017)).

2.3 Heating Demand
The basic principle for calculating the heating demand of
the DHW tank and the resulting hot water temperature is
presented in Figure 4. The model starts with calculating
the temperature of the hot water in the tank if no heating

Temperature DHW
tank in t-1 

Calculate
Temperature without

any heating

QDHW,out
Qsto-ls

Heating Control

Calculate the
according water

Temperature

PDHW = 0

Figure 4. The calculation procedure for the created DHW model

would be used. That information, among with the other
inputs, is then delivered to the control part of the model
to determine the heating profile of the tank. After that,
the temperature of the hot water in the tank is calculated
according to the heating power assigned to the tank from
the previous step.

2.4 Heating Control
The heating of the DHW tank is determined in a separate
part of the model according to the rules of the selected
heating scenario. There are currently 4 different heating
scenarios available on the model, which each has their
own control mechanism and rules. The available scenar-
ios are Constant Temperature Set-point, On-Off Control,
Time-of-Use Control and Linear Optimization, of which
the control rules of the first three are presented in Figure 5.
All the scenarios take into account upper and lower tem-
perature limits (Tmin and Tmax) as well as maximum heat-
ing power (Pmax) as constrains in determining the heating
profile. The lower temperature limit Tmin is considered to
be the minimum healthy temperature of water to prevent
the growth of Legionella bacteria. All these variables can
be determined by the user allowing the possibility to study
the impact of them to the heating profile.

2.4.1 Constant Temperature Set-point

The first studied heating scenario is Constant Temperature
Set-point, which control options aim in keeping a steady
temperature inside the DHW tank. The rules for the con-
troller are explained in Figure 5a) where the temperature
set-point is called Tmin and the maximum heating capacity
Pmax is considered as the second constrain.

2.4.2 On-Off Controller

The second heating scenario is On-Off Controller, which
represents a control relay with 2 temperature set-points.
The control rules for this scenario are presented in Fig-
ure 5b) and it operates only with full heating power un-
til the upper temperature set-point Tmax is reached, after
which the heating only turns on after the hot water temper-
ature drops under the lower temperature set-point Tmin. In
case the temperature set-points are reached in the on-going
simulation time-frame, the power needed to meet them is
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Figure 5. Presentation of the used rules in Constant (a), On-Off
(b) and ToU (c) scenarios

calculated by solving PDHW from equation 1 when TDHW
is TDHW,min or TDHW,max depending on the heating period,
and the resulting power PDHW is considered as the heating
power for the time-step. This is a simplified representa-
tion of the real world On-Off controller as here the tem-
perature set-points are always reached in the simulation
time-steps (e.g. full hour) whereas in real-world the tem-
perature could have already dropped under or increased
over the temperature set-points when the measurement for
the time-step is conducted. Therefore, this type of On-Off
controller would be required to have an embedded smart-
ness in it that would make the system meet the temperature
set-point exactly at the simulation time period.

2.4.3 Time-of-Use Heating

The third heating scenario is Time-of-Use Heating, which
participates in DSM by optimizing heating with a ToU
price signal and using water as an energy storage medium.
Generally, ToU represents a scenario where electricity
price is divided to high and low price periods according
to the times of high and low electricity demand periods,
guiding electricity users to consume electricity during the
lower price times. This is also the used rule in the heat-
ing scenario presented in Figure 5c). The main idea is that
hot water is heated to and kept on the upper temperature
set-point on the time of the lower electricity price, and not
heated during the higher price period unless the hot water
temperature drops under the lower temperature set-point,
after which it is only heated up to keep the hot water tem-
perature at the lower temperature set-point.

2.4.4 Linear Optimization
The fourth studied heating scenario is Linear Optimiza-
tion of the electrically heated hot water tank according to
hourly RTP signal and heat demand. This is another type
of DSM action where the electricity load profile is varied
according to the real time situation of the electricity net-
work while maintaining an acceptable hot water tempera-
ture in the storage tank to ensure comfort and health of the
user. The optimization goal is to minimize the electricity
cost (Equation 4) with the constrains from Equation 5.

min∑Cost1−n = EDHW,1−n ×Price1−n (4)

Constrains : Tmin ≤ TDHW ≤ Tmax;0 ≤ PDHW ≤ Pmax (5)

where Cost1−n is the cost from electricity usage from
timesteps 1-n [C], EDHW,1−n is the energy used in
timesteps 1-n [MWh] and Price1−n is the real time price
of electricity during the same timesteps [C/MWh]. The
TDHW is calculated with Equation 1, to which also fore-
casted hot water demand is added. The optimization pe-
riod n can be determined by the user, but values of over
4 timesteps start to become slow computing-wise. For in-
stance, linear optimization simulation with optimization
period of 4 timesteps takes 495s for hourly values for a
year (8760 simulation steps), whereas optimization peri-
ods of 3 and 5 timesteps take 377s and 663s respectively
for the same input data. This would still allow optimizing
the system on real-time with the optimization period of 4
or 5 timesteps, but the difficulty in applying it to practice
comes from the uncertainty in determining the draw off
profile from the DHW tank as estimating the energy draw
off correctly is vital to the correct optimization.

2.5 Inputs
The inputs values for testing the DHW behavior and DSM
potential are defined on Table 1 underneath from the De-
cree 1010/2018 2, and the international standards EN
15316-5 (2017). Some input values vary depending on
the heating scenario, while others stay the same during all
the simulations.

The minimum requirement for the DHW in EN 15316-
5 (2017) is considered as 55 °C, which is also the lower
temperature setpoint used in the simulation, except for the
Constant Temperature Set-point scenario where a temper-
ature set-point of 60 °C was used to balance the other-
wise occurring lower average temperature. The hourly
Elspot price for Finnish transmission area in 2016 (Nord
Pool, 2018) was selected as the price signal and the fore-
casted Hot Water Demand was created based on the test
profile for single-family houses from EN 12831-3 (2017).
The stand-by heat losses were calculated according to EN
15316-5 (2017), EN 60379 (2004) and EN 50440 (2015)
by assuming a vertically adjusted and electrically heated
DHW tank.

2Ympäristöministeriön asetus uuden rakennuksen energiatehokku-
udesta 1010/2018, Decree of the Ministry of the Environment on the
energy efficiency of new building 1010/2018
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Table 1. Input values for the simulation (EN 15316-5, Decree
1010/2018)

Variable Value

Hot Water Tank Volume 300 l
Max Power 3 kW
Inhabitants 4
Average DHW demand 50 l

inh
Inlet Water Temperature 10 °C
Ambient air temperature 16 °C
Default TDHW and Tin difference 45 °C
Tmin for Constant Temp Set 60 °C
Tmin for On-Off, ToU and Optimization 55 °C
Tmax for On-Off 65 °C
Tmax for ToU and Optimization 85 °C
ToU heating hours 22-6
LP optimization period (timesteps ahead) 4

3 Results
The results firstly investigate the suitability of integrat-
ing the created model to the existing Markov-Chain smart
house model by presenting the capability of operating in
similar time resolutions and providing useful and robust
results. Secondly, the behaviour of the DHW heating con-
trols are examined in the 4 hourly heating scenarios. After
that, the flexibility of DHW heating is investigated and the
effectiveness of various control and DSM mechanisms are
presented. The final part shows the combined effect of the
two models in order to present the importance in integrat-
ing the smart house and DHW models.

3.1 Robustness of the results
The robustness of the results is looked into by investigat-
ing similar thermal behaviors of the DHW tank and by
comparing annual results to each other when using Con-
stant Temperature Set-point scenario. The annual results
from the simulations are available at Table 2.

The results from Table 2 indicate that there are very lit-
tle differences on annual level on the results with DHW

Table 2. Results from the Constant temperature heating scenario

Total
Heating
[MWh]

Average
Temperature
[°C]

Total
Costs
[C]

Default 60min 7.19 59.74 251.44
Default 30min 7.20 59.75 251.28
Default 15min 7.19 59.73 251.25
Cat 60min 7.20 59.78 245.42
Cat 30min 7.19 59.66 244.98
Cat 15min 7.18 59.60 244.84
Standard 60min 7.22 60.00 245.08
Standard 30min 7.21 60.00 244.78
Standard 15min 7.21 59.97 244.48

60, 30 and 15 min withdrawal profiles. As the DHWcalc
uses statistical methods in withdrawal profile creation, it
is understandable that there are small differences on the
results, but this could be considered as noise in the simu-
lation as well.

3.2 Behaviour of DHW heating controls
This sections investigates the behaviour of the created
DHW heating controls by looking into the DHW heat-
ing power frequency and cumulative frequency distribu-
tions on hourly heating scenarios. These results are pre-
sented in Figure 6 showing firstly the similarities between
Constant Temperature Set-point and Linear Optimization
scenarios, which rarely use maximum heating power and
have more lower power consumption hours. This resem-
blance comes from the short optimization time in Linear
optimization scenario, which makes both of them aim for
lower water temperature in the DHW tank. Secondly,
Figure 6 shows similarities of On-Off and ToU scenar-
ios, which are more prone to have more maximum and
minimum power periods and less intermediate power con-
sumption. This relates to their control rules, as they both
utilize maximum power until they reach the upper temper-
ature limit, after which they do not use heating until they
have reached the lower temperature set-point. The differ-
ence between these 2 control strategies lie in the maximum
heating time-periods. On-Off scenario starts the maxi-
mum heating immediately once it has reached the lower
temperature limit while ToU control keeps the DHW tank
at the lower temperature point until the start of the cheaper
night-time heating period. This is also the reason of their
variations in 0-0.5 kW and 0.5-1.0 kW power consump-
tion.

3.3 Flexibility of DHW
This section investigates the flexibility of DHW and the vi-
ability of few control mechanisms to provide DSM. First,
the reference values for the flexibility are visible on Ta-
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Figure 6. Frequency (bar) and cumulative frequency distribu-
tions (line) of the DHW heating scenarios in hourly time-scale
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Table 3. Annual results from On-Off, Time of Use and Linear optimization scenarios

On-Off
Control

Time of
Use

Linear
Optimization

Total
Heating
[MWh]

Average
Temperature
[°C]

Total
Costs
[C]

Total
Heating
[MWh]

Average
Temperature
[°C]

Total
Costs
[C]

Total
Heating
[MWh]

Average
Temperature
[°C]

Total
Costs
[C]

Default 60min 7.27 60.70 255.22 7.88 68.44 222.89 6.87 55.52 230.55
Default 30min 7.23 60.22 253.84 7.81 67.53 219.60 6.83 55.07 234.04
Default 15min 7.22 60.03 254.29 7.80 67.50 219.26 6.82 54.97 236.58
Cat 60min 7.27 60.62 249.50 7.96 69.53 219.70 6.87 55.53 224.47
Cat 30min 7.23 60.11 248.58 7.88 68.44 216.28 6.83 55.01 227.77
Cat 15min 7.21 59.89 248.80 7.87 68.35 215.78 6.82 54.93 230.37
Standard 60min 7.28 60.87 248.44 7.94 69.23 218.87 6.88 55.74 223.93
Standard 30min 7.25 60.41 246.88 7.90 68.73 216.80 6.84 55.17 226.84
Standard 15min 7.23 60.21 245.85 7.90 68.72 216.42 6.83 55.08 229.25
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Figure 7. Comparison of the electricity load profiles of different heating scenarios with 60, 30 and 15 min time resolution.

ble 2. The annual values for the other heating scenarios
are available on Table 3 and the average hourly power for
the DHW tank in Figure 7. The results from Table 3 in-
dicate that changes between the time resolutions are gen-
erally small generating difference of less than 2% in heat
demand or average hot water temperature, while the dif-
ference between cost can be slightly higher varying from
-1.8 to 2.6%.

Comparing different scenarios to each other, reveals the
flexibility of the DHW source and the potential to partic-
ipate in DSM programs. On annual level, the cheapest
option seems to be night time charging with ToU sce-
nario, which is 13.5-16% cheaper than On-Off Control
scenario and 2.1-7.3% cheaper than linear optimization
scenario, while having 7.4-15.9% higher electricity con-
sumption and 10.8-24.8% higher average hot water tem-
perature. This reveals the potential of storing energy to

DHW tank during the night-time. The higher hot water
temperature is also beneficial in terms of comfort as ToU
scenario was the only one where the temperature of DHW
tank was always over the lower temperature set-point, be-
ing able to provide enough hot water to use.

Looking into the average hourly heating loads from Fig-
ure 7 the night time charging of the DHW tank is clearly
visible as it has higher electricity consumption during
night hours and low consumption during the day. Simi-
larly, the morning peak in the draw-off of hot water cre-
ates a heating peak in all scenarios, but ToU. Otherwise,
Constant temperature set-point and Linear optimization
scenarios had pretty similar load profiles, only difference
being the occurring peaks with Linear optimization sce-
nario in shorter time resolutions. These peaks will occur
as the electricity price will remain the same for the whole
hour, so the controller aims at increasing the temperature
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Figure 8. Comparison of various building loads

of the hot water on the earliest available time slot. On-Off
control then had a delay on the heating compared to Con-
stant and Linear optimization scenarios, as with On-Off
controller the temperature of the water needs to drop un-
der the lower temperature set-point before it applying the
maximum heating power.

3.4 Load profiles
This part investigates the importance of integrating DHW
model into the existing smart house model (Louis et al.,
2016), with which it is possible to simulate appliance’s
load profiles, thermal behavior of the building and elec-
tric space and ventilation heaters. An example simula-
tion was conducted with the smart house model and the
achieved load profiles were compared to the load profile
of the DHW heater (hourly constant temperature scenario)
in Figure 8 and annual values in Table 4. The simulated
building was a detached house, with building character-
istics similar to 2018 building type from (Pulkkinen et
al., 2019) with randomly generated appliances.

Results from Table 4 show that the DHW heating has
the highest electricity consumption in the example build-
ing, and from Figure 8 it becomes evident that DHW has

Table 4. Annual results from the example simulation

Annual Energy
Consumption [MWh]

Appliances 2.91
Electric space heating 7.08
Electric ventilation heating 1.50
Electric DHW heating 7.19

highly varying, but seasonally rather constant load profile,
similarly to appliances. Conversely, space and ventilation
heating loads tend to require a lot of power during win-
ter, but have low power demand in summer. This means
that all these loads have their different characteristics and
load profiles which while accumulated would have mul-
tiple impacting sources to the building’s energy manage-
ment.

4 Conclusions
The aim of this work was to create a functional, fully
mixed DHW tank model to be integrated in an existing
Markov-Chain smart house model and to investigate the
flexibility of DHW load on 60, 30 and 15 min time reso-
lutions and with 4 different heating controls. The behav-
ior of the model was tested with using DHW withdrawal
profiles created with DHWcalc program. The results in-
dicate that the model was able to behave robustly with a
Constant Temperature Set-point scenario in all tested time
resolutions, showing little difference between their simu-
lation results.

Comparing the results of different heating control sce-
narios from Table 3 the flexibility of the electricity con-
sumption with DHW tank is visible in the ToU scenario
results as it has the lowest costs and highest total heat-
ing energy consumption of the studied scenarios. There-
fore, with ToU scenario it is possible to use DHW tank
as an energy storage and charge it during the lower night
time electricity prices. Yet, this behavior is contradic-
tory as it reduces the efficiency of the system from elec-
tricity consumption point-of-view. The low performance
from the Linear optimization scenario compared to ToU
was likely related to the short optimization time and mis-
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matches between the forecasted and actual energy with-
drawals. These did not allow the optimized heater to uti-
lize the thermal inertia of the DHW tank and lower elec-
tricity prices during the night as it did not expect a with-
drawal from the tank early enough. Similarly, the diffi-
culty in knowing the correct withdrawal of energy reduced
the accuracy of the optimization. The final result showed
the importance in integrating the DHW model with smart
house model for allowing testing of new control mecha-
nisms and different aggregated load profiles. Furthermore,
in an integrated model all the separate electricity loads can
be controlled together.

The future direction of the work is to finalize the in-
tegration of the smart house and DHW models, and start
developing combined control mechanisms for them. Also
the current DHW model should be developed to operate in
lower time resolutions to allow also short-term power net-
work testing, as well as expanded to include temperature
stratification for increased accuracy and different DHW
tank options. Consideration of improving the optimiza-
tion with aggregated load profiles should be investigated
as well. Also renewable energy generation and control
mechanisms related to it should be added to the model.
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