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Abstract—This work proposes and evaluates a hybrid
Bayesian-based localization method to estimate the position of a
target node using received signal strength and time of flight
measurements. In our investigations, we consider these mea-
surements are acquired through a distributed antenna system
which is connected to a common master anchor node. The
baseline non-hybrid scenarios use only received signal strength
measurements to estimate the position of interest, while the
hybrid implementation combines time of arrival measurements
as well. Both Bayesian-based (non) hierarchical approaches
approximates the posterior distribution of the target’s location
coordinates using Markov Chain Monte Carlo methods. The
hierarchical method introduces conditional interdependencies to
the model parameters, resulting in less model variance. Herein,
the root mean square error is used to evaluate the performance
of the indoor test scenarios. Our results show that both hybrid
and hierarchical approaches outperform the baseline Bayesian
model, while the former significantly increase the accuracy the
target position estimate.

I. INTRODUCTION

The 5G New Radio (NR) system will support exciting
new applications which are organized into three use cases,
namely massive Machine Type Communications (mMTC), the
Ultra Reliable Low Latency (URLLC) and the extreme Mobile
Broadband (eMBB) communications [1]. Moreover, owing to
its large bandwidth, very high carrier frequency and massive
antenna array, the 5G NR systems put forward a plethora
of compelling new deployment scenarios which require or
benefit from accurate and reliable position information [2].

The location information becomes particularly advanta-
geous for emerging IoT (Internet of Things) applications
across various industry verticals: for example, assets tracking,
context-aware marketing, transportation and logistic systems,
augmented reality, health care, as well as haptic technologies.
In such indoor deployment scenarios, traditional localization
methods relying on GPS (Global Positioning System) satel-
lites and standard cell multilateration are limited or even
impractical. And yet traditional location estimation based on
time of flight suffers from synchronization mismatch in such
infrastructureless mMTC deployments.

Academia and industry have motivated to overcome all
aforementioned challenges, designing new techniques and
algorithms suitable for Indoor Positioning Systems (IPS) due
to its importance in several application areas [3]–[7].

To estimate the target node position, we can employ dis-
tinct measurements depending on the radio access interface,
propagation features and intended accuracy of the localization
strategy. An IPS can implement distinct computational meth-
ods to estimate the target position using one or a combination
of the following alternatives: Time of Arrival (TOA) [8], Time
Difference of Arrive (TDOA), Received Signal Strength (RSS)
[9] and Direction of Arrival (DOA) [10].

Following a frequentist approach, traditional methods to
find the target position resort to Nonlinear Least Squares

(NLS) and Maximum Likelihood (ML) estimators [11]. Re-
cently, Bayesian inference using probabilistic graphical mod-
els emerged as a promising alternative to estimate the location
of the target node by sampling the joint posterior distribution
of its position coordinates. In this context, Markov Chain
Monte Carlo (MCMC) methods constitute a robust approach
to sample large Bayesian models that, otherwise, would
require multidimensional integration over several unknown
parameters. In indoor deployment scenarios, such Bayesian
graphical models can use distinct metrics, such as TOA,
TDOA, RSS and DOA, or a hybrid approach (combining
distinct metrics) to find the position of a target [1], [12].

Deployments of mMTC in low latency and high reliabil-
ity scenarios are still a challenge. Communication systems
has been revisited to minimize the utilization of resources
and satisfy the requirements of the system. Recently, there
has been considerable interest in physical layer techniques
for those types of scenarios [13], [14]. Distributed Antenna
System (DAS) have been approached in recent works. In
[15] authors propose DAS to reduce the use of spectrum
resources from the conventional co-located antenna system
and satisfy the URLLC requirements. In [16], authors explore
short packet length satisfying the low latency for industrial
IoT, investigating the packet error probability in the DAS for
downlink URLLC.

Our work proposes and evaluates Bayesian-based localiza-
tion methods using RSS and TOA measurements in indoor
deployment scenarios employing distributed antenna system.
The reminder of this paper is organized as follows. Section
II presents the Bayesian networks by introducing the prob-
abilistic graphical models and the MCMC algorithms used
to estimate the posterior distribution of the target position.
In Section III, we discuss localization’s models and the
evaluation scenarios under consideration. Section IV presents
the numerical results in terms of the root mean square error
(RMSE) for distinct Bayesian network layouts and input
measurements. Finally, Section V concludes this work and
provides final remarks.

II. BAYESIAN-BASED MODEL AND INFERENCE

Bayesian networks represent the conditional interdepen-
dencies between random variables in probabilistic graphical
models while allowing to infer the likelihood of the related
events conditional on the available prior knowledge. By using
such networks, it is possible to predict the occurrence of
events as well as update the prior knowledge through an
iterative procedure when new information is acquired, thus,
reducing the corresponding uncertainty.

A. Graphical Models
A graphical model is a multivariate statistical model that

represents the conditional interdependencies between descrip-
tive parameters. In such models, the vertices correspond to



random variables (RVs) while the edges represent the under-
lying relationships between them [17]. We model the source
localization system by Directed Acyclic Graphs (DAGs) and
infer the target node position. In this model, the RVs repre-
sented as vertices are assumed to be conditionally indepen-
dent. In other words, a vertex is only affected by its own
parents, while being independent of its non-descendants given
its parents. This property implies a factorization of the joint
probability density function p(V ) of the RVs Xv , v ∈ V ,
where V is a set of RVs, constituting the model as given next

p(V ) =
∏
v∈V

p(v|pa(v)), (1)

where pa(v) represents the parents of v. The conditional
distribution of a RV v in the graph is given by

p(v|V/v) ∝ p(v, V/v)

∝ terms in p(V ) containing v

= p(v|pa(v))
∏

w∈ child(v)

p(w|pa(w)), (2)

where child(v) yields all the children of v. In this work,
we use Python (a general-purpose programming language)
to implement a Bayesian-based source localization system.
In particular, we employ the PyMC3 package [18] to build
Bayesian statistical models and carry out approximate in-
ference using the Markov Chain Monte Carlo (MCMC) ap-
proach. The MCMC approach uses the Bayes’ Theorem to
estimate the prior knowledge.

B. Bayes’ Theorem and the Posterior Distribution

Considering the RVs and their conditional interdependen-
cies, the Bayes theorem is used to estimate the posterior
distribution of interest, based on the likelihood function and
prior distributions. From [19], the posterior distribution can
be estimated as follows,

p(H|D) =
p(D|H)p(H)

p(D)
, (3)

where H is the hypothesis of the system and D is the
observed data, p(H) is the prior distribution and represents the
initial hypothesis about the system parameters, p(D|H) is the
likelihood function and p(D) is the evidence that represents
the probability of all possible values that the parameters can
assume, it is used as a normalization factor.

The data parameters can be organized into groups to
obtain a hierarchical structure, which results in conditional
independencies between those parameters [20]. This strategy
is usable when information is available on different levels of
observational units. The model is called Hierarchical and is
more accurate than the non-hierarchical models, because the
posterior distribution is less sensitive to multilevel model data,
resulting in less model variance than the classic method. A
one-level hierarchy with hypothesis of the system H = (θ, φ)
and data D [21] is given by

p(θ, φ|D) ∝
n∏
i=1

p(Di|θi)p(θi|φ)p(φ). (4)

To illustrate this construction, we consider the one-way nor-
mal model

yi ∼ N (θi, σ
2
i ), θi ∼ N (µ, τ2), i = 1, . . . , I,

which relates to (4) by considering D = (yi, θi) and φ =
(µ, τ). In this case yi is an observation and θi is a parameter

governing the data generation process for yi. The parameters
θ1, θ2, . . . , θi are generated from a common population, with
distribution given by a hyperparameter φ. Hence, the posterior
distribution of this Hierarchical Bayesian Model is given by,

p(θ, φ|D) =
p(D|θ, φ)p(θ|φ)p(φ)

p(D)
. (5)

In this work, we build such (non) hierarchical models and
use the Bayes’ Theorem through the MCMC approach to esti-
mate the posterior distribution of the target node coordinates.

C. The Markov Chain Monte Carlo algorithm

The MCMC algorithms generate a sequence of random
samples from a probability distribution and present a good
performance when computing complex posterior distributions
on high dimensional models. The Metropolis-Hastings al-
gorithm implements the MCMC method to sample from a
target distribution by first making a random proposal for new
parameter values and then accepting or rejecting the proposal.
From [22], a sample h∗ drawn from target distribution must
satisfy the following equation to be accepted,

Ak(h∗,h(τ)) = min

(
1,

p̃(h∗)qk(h(τ)|h∗)
p̃(h(τ))qk(h∗|h(τ))

)
, (6)

where k yields the members of the set of possible transitions
being considered, τ is a step of the algorithm, h(τ) is the cur-
rent state containing all the draw samples, h∗ is a draw sample
analysed, qk(h|h(τ)) is the distribution of h∗, Ak(h∗,hτ ) is
the probability for acceptance, and p̃(h) is a distribution that
evaluate p(h) easily by the following equality p(h) = p̃(h)

Hp

and Hp is unknown normalizing constant. If the draw sample
is accepted, then h(τ+1) = h∗, otherwise the candidate sample
h∗ is rejected, h(τ+1) is set to h∗ and another candidate sample
is drawn from the distribution qk(h|h(τ+1)).

The Metropolis-Hastings algorithm is based on a random
walk (stochastic process) and may linger (re)-exploring the
same region of the sample space for a number of steps,
thus wasting computational resources. To cope with this
situation, the No-U-Turn Sampler (NUTS) algorithm, based
on the Metropolis-Hastings, is used to find a good estimates
adaptively. Furthermore, it avoids re-exploring local spaces to
ensure a much shorter simulation time [23].

III. SYSTEM MODEL

A. Evaluation Scenario

In this contribution, we evaluate the performance of the pro-
posed solution in an indoor deployment scenario with a square
shape and an anchor (central processing unit) with distributed
antenna heads in known positions (in the corners of the area).
The central unit then estimates the position of a target node
after acquiring a minimum amount of measurements from the
antenna heads. A target is randomly located inside this square
and measurements are collected by the anchors. Each side of
this square scenario has 100 meters as shown in Fig.1.

The radio links are assumed to be affected by a log-distance
shadowed path loss model, so that each receiver collects the
corresponding Received Signal Strength (RSS) measurements
independently. Then, it is possible to determine the unknown
position of the target node in this evaluation scenario by using
the measurements gathered by at least 3 anchor receivers [24].
The radio link RSS function is given by

pri = pt − α ln(di) + ϕ in dBm, (7)
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Fig. 1. Illustration of the indoor deployment scenario.

where pri is the received signal strength at the ith receiver, pt
is the transmitted signal strength, α is the path loss exponent,
di is the euclidean distance between the target and the ith
receiver, and ϕ is the shadowing value with zero-mean normal
distribution in logarithmic scale.

In the hybrid scenarios, two arbitrary anchors are assumed
to collect RSS and TOA measurements. The TOA function is

ti = di/c, (8)

where c is the speed of light and ti is the time of flight
assuming that the source emits a signal at time 0 and the
sensor receives it at time ti. It is worth mentioning, assuming
a distributed antennas system, the central unit is responsible
for making the necessary synchronization between the anchors
to acquire this type of data.

B. Localization Graphical Models

We consider three types of graphical models: i) a RSS-
based Bayesian network; ii) a hybrid model with the combi-
nation of RSS and TOA measurements; and iii) a RSS-based
hierarchical Bayesian network. In the following we present the
Directed Acyclic Graphs (DAG) model and respective metrics
considered for each case.
i) RSS-based Bayesian network: The interdependence be-

tween the random variables in the RSS-based Bayesian net-
work is represented by the DAG model shown in Fig.2.
The illustration describes the following variables: x and y
represent the receivers’ coordinates, which are assumed to be
known a priori by the central unit; and remaining parameters,
shown inside the circles, correspond to random variables
whose distribution is set based on our prior knowledge. The
assumptions of the respective problem are given as

pti ∼ Normal(0, 100), αi ∼ Normal(0, 100),
σ2 ∼ Halfnormal(10), µi ∼ pti − α log(di),
X ∼ Uniform(0, L), Y ∼ Uniform(0, B),

di ∼
√
(X − xi)2 + (Y − yi)2,

where pti is the transmit power, α is the path loss exponent,
σi is the standard deviation of the measurements collected by
the ith receiver point, di is the distance between the target

Fig. 2. Graphical model of the non-hierarchical RSS-based source localiza-
tion.

and the ith receiver and (X,Y ) are the RVs representing the
target location coordinates.
ii) Hybrid-based Bayesian network: The hybrid model is a

combination between a RSS- and TOA-based Bayesian net-
works. The interdependence between the random variables in
latter model, using time of flight measurements, is represented
by the DAG in Fig.3. Similarly to the RSS-based model, the
TOA-based Bayesian’s network is described by

µi ∼ di/c, σ2 ∼ Halfnormal(10/c),
X ∼ Uniform(0, L), Y ∼ Uniform(0, B),

di ∼
√
(X − xi)2 + (Y − yi)2.

The employed hybrid model combines the components
presented in Figs. 2 and 3.
iii) RSS-based hierarchical Bayesian network: in this con-

figuration, we create an additional one-level hierarchy to two
data parameters, so that now the transmit power and the path
loss exponent have a distribution with mean and variance
given by (ai, σ2

ai ) and (bi, σ2
bi

), respectively, for each param-
eter. Comparing this model to i), the hierarchical structure
introduces conditional independencies in these parameters
resulting in less model variance. The DAG model shown in
Fig. 5 illustrates the interdependence between the random
variables in this network.

Fig. 3. Graphical model of the non-hierarchical TOA-based source localiza-
tion.
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Fig. 4. The probability density of the source location estimate with (a) 20 and (b) 50 RSS measurements, and (c) 20 TOA measurements. In each plot, the
real location of target is denoted by red circle denotes and the maximum of the probability density by black circle.

Fig. 5. Graphical model of the hierarchical RSS-based source localization.

Similar to the previous models, the hierarchical Bayesian
network is described as
pti ∼ Normal(ai, σ2

ai), ai ∼ Normal(0, 10),
σ2
ai ∼ Gamma(5, 1), αi ∼ Normal(b, σ2

bi
),

bi ∼ Normal(0, 10), σ2
bi
∼ Gamma(5, 1),

σ2 ∼ Halfnormal(10), µi ∼ pti − α log(di),
X ∼ Uniform(0, L), Y ∼ Uniform(0, B),

di ∼
√
(X − xi)2 + (Y − yi)2,

where ai and bi are assumed to be a normal distribution with
mean 0 and with variance 10 and represent the mean of pti
and αi respectively, σ2

ai and σ2
bi

represent the variance of pti
and αi and are assumed to be a gamma distribution with shape
parameter 5 and a scale parameter 1.

IV. PERFORMANCE EVALUATION

We evaluate the Bayesian-based source localization meth-
ods for indoor deployment scenarios (see § III). We implement
our estimator using the PyMC3 Python package and carry
out an extensive simulation campaigns to assess the proposed
solutions. In our investigations, the target location is unknown
by the algorithm and measurements are generated according
to the radio propagation channel described in (7) and (8).
Then, anchors collect the measurements and forward them
to the central unit which employes the NUTS algorithm to

sample the posterior distribution of a bidimensional coordinate
representing the target position (X,Y ). The target node is
located at (70, 30) in every simulation scenario. We ran
simulations by varying the number of measurements collected
by each receiver and fed to the NUTS algorithm. The an-
chors independently acquire the measurements, the real target
position is represented by the red circle, the estimated target
position is the black point in the PDF illustrated by blue color.
The results for RSS- and TOA-based Bayesian network are
presented in Fig.4.

Our results show that the number of measurement samples
acquired by the receivers affects the accuracy of the algorithm.
In fact, by comparing the RSS-based approach with 20 and
50 samples in Figs. 4(a) and 4(b) respectively, the latter
shows a more accurate estimate of the target position. Thus,
we conclude that RSS-based approach performs better by
acquiring more measurements (more evidence). In Fig. 4(c),
we observe that the TOA-based approach needs much less
measurements to achieve a similarly performance.

Fig. 6 shows the accuracy improvement with the use of
hybrid models. In this simulation set, we compare the Root
Mean Square Error (RMSE) between the distinct models by
varying the standard deviation of the error associated to the

Fig. 6. Root mean square error for increasing standard deviation when using
of RSS and hybrid (RSS plus TOA) models.



Fig. 7. Root mean square error comparison between the non- and hierarchical
models for increasing standard deviation.

RSS measurements acquired by the receivers. Each point in
the curve is averaged over 60 simulation runs and in each such
iteration the localization algorithm is fed with 20 new RSS
measurements – notice that the hybrid approach uses new RSS
and TOA measurements for each run. Anchors independently
acquire RSS or TOA measurements and the NUTS algorithm
is used to estimate the position. Similar to the results in
Fig. 4(c), the hybrid approach outperforms the RSS-based
one, though the performance gap narrows by increasing the
standard deviation of the RSS measurements error. This occurs
because the hybrid approach has more information acquired
by TOA measurements and this compensates the high values
of standard deviation of the RSS measurements error for
estimating the location of the target node.

In a similar way, Fig. 7 compares the hierarchical approach
(see § II-B) against the RSS-based models in terms of
the RMSE as function of standard deviation of the error
associated to the measurements. In this figure, each point
in the curve is averaged over 60 simulation runs and in
each such iteration the localization algorithm is fed with 20
new RSS measurements. Anchors independently acquire RSS
measurements and the NUTS algorithm is used to estimate the
position. The hierarchical models achieve better performance
than non-hierarchical models. Furthermore the gap in perfor-
mance becomes higher when the error associated with the
measurements increase. This occurs because the hybrid model
consider conditional independencies between the parameters
of the model and this result in less model variance than the
non-hierarchical method to estimate the target position.

V. CONCLUSIONS

In this contribution, we evaluate three Bayesian-based
localization methods to estimate the position of a target
node. The network represents a distributed antenna system
connected to a central unit that synchronizes the different
types of acquired data. The NUTS algorithm is used to sample
the posterior distribution and estimate the target position.
The results show that hybrid Bayesian-based method can be
efficient to estimate the localization node and outperforms the
non-hybrid Bayesian-based method. Our results also show that
hierarchical models perform better in scenarios when the error

associated with the measurements increase. A combination
of the hybrid Bayesian-based method with the hierarchical
approach is the intention of our next work. That is expected
to provide more accuracy in localization.
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