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Abstract

Accurate prediction of soil temperatures)(Ts critical for efficient soil, water and field crop
managemenin this study, hourly Jvariatiors at5, 10, and 30 cm soil depth were predidied

an arid site (Sirjan) and a semimid site (Sanandaj) in Ira&xisting machine learningnodels
have high performance, but suffer from uncertaartglinstabilityin prediction. Therefore, GLUE
approach was implemented to quantify model uncertairiylewavelet coherence was used to
assess interactions betweeg and meteorological parameters. Standalone machine learning
models(adaptive neuron fuzzy interfacesggm (ANFIS), support vector machine model (SVM),

radial basis function neural network (RBFNN), and multilayer perceptron (MLP))wbralized
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with four optimization algorithms (sunflower optimization (SFO), firefly algorithm (FFA), salp
swarm algorithm(SSA), particle swarm optimization (PSO)) to improwgpfediction accuracy

and reduce model uncertainBor both arid and serfiumid sitesANFIS-SFO produced the most
accurate performance at studied soil depths. At best, hybridization with SFO (SRBISVILP-

SFO, RBFNNSFO, SVMSFO) decreased RMSE by 5.6%, 18%, 18.3%, and 18i2%ocm,
11.8%, 10.4%, 10.6%, and 12.5% at 10 cm, and 9.1%, 12.1%, 13.9%, and 14.2% at 30 cm soil
depthcompared with the respective standalone mo@ltJE analysis confirmethe superiority

of hybrid models over the standalone models, while the hybrid mddeteased the uncertainty

in Ts predictions ANFIS-SFO covered 95%, 94%, and 96% observation data at 5, 10, and 30 cm
soli depths, respectivelWavelet coherence analysismonstrated that air temperature, relative
humidity, and solar radiation, but not wind speed, had high coherence sathdifferent soil
depths at both sites, and meteorological parameters mostly influepomedpper soil layersin
conclusion, unceainty analysis is a necessamyd powerfutechnique to obtaianaccurate and
realistic predictiorof Ts. In contrastyavelet coherence analysssa useful tool to investigate the

most effective variables that strongly affect predictions.

Keywords. Bio-inspired metéheuristic optimization, Soil depth, Sunflower optimization,

Uncertainty analysis, Wavelet coherence analysis.

1- Introduction
Soil temperature (g is an influential and vital parameter in sustainable agriculture and
geosciences practices since it greatly influences physical, geological, chemical, and

microbiological processes in teil (Feng et al. 2019; Alizamir et al. 2020’ hus,moreresearch



abaut Tsis required for soil, plant, and water planning amhaging Zeynoddin et al. 2090and
also is essential for hydrological, meteorological, and environmental modBlimgKdari et al.
2019. Soil temperature is dependent meteorological factorésolar radiation, air temperature,
precipitation, wind speed, pressure gradiemtld there are relationsisipetween thenfLehnert
2014; Stajkowski et al. 2020

Direct measurement of hourly using sensors and instruments is expensive in Tiaerefore, T
measurements are not easily available for developing countries, such @ddhalizadeh et al.
20203. In addition, inaccurate measurement @fc&use some instability and uncertaintsind
thus precise monitoring and managing of agricaltptans will becomplex With this viewpoint,
indirect methods, including analytical, numerical, and -disiteen models, have been suggested
for the accurate prediction of sT However, analytical models cannot reproduce dbmplex
relationships betweens@nd climatological variables, especially for different climates and global
scalesPlauborg 2002. Numericalmodels usdinite volume and finite element methods to solve
heat transfer lawand are highlyomplex Samadianfard et al. 2018Bpfyan et al. 2020

As an alternativantelligence machine learning models gaadict Tsand describéhe interactions
between Tand other predictor variables, such as meteorological paraniieteazenzadeh and
Mohammadi 2019; Feng et al. 201%urthermore, arrent advances in intelligence machine
learning modelsmprove their capability for modking nonlinear relationships (Patn et al.
2020)to accurately predict processes au@ntify the uncertainties

Recently, nachine learning approachssch asadaptive neuron fuzzy inference system (ANFIS)
(Abyaneh et al. 2016; Citakoglu 2017; Singh et al. 2(8nghui et al. 2030 multilayer
perceptron (MLP (Heddam, 2019Zeynoddin et al. 2019Sihag et al. 2020 support vector

machine (SW) (Xing et al. 2018Delbari et al. 20195hamshirband et al. 20R@ndradial basis



function neural network(RBFNN) (Kisi et al. 201% have been widely used in geosciences
engineering and sTprediction owning to extra fast trainingability of nonlinear andhidden
relationships

However, mosmachine learning modekre prone tanembership function learning problems,
premature convergen, overfitting, and low convergence spe@dasem et al. 2019; Zhao et al.
2019; Mehdizadeh et al. 2090& hereforeseveral studieBave proposed hybridizirgiandalone
machine learning approachasing metaheuristic algorithmgo optimize the performmece of
conventionalmodelsand reducecomputation costSeifi and Soroush 202@3bualigahet al.
20218,

Quick dataprocessing speed, achieving a global optimum, robust generali¢gstc@zenzadeh
and Mohammadi 2019powerful searchability, and gradieinee mechanism@Abualigahet al.
2021a;AbualigahandDiabat2021) are advantages of integrated machine learogignmization
algorithm techniquesver conventional modelSamadianfard et al. (2018t¢veloped a coupled
MLP-firefly algorithm (MLP-FFA) model formonthly Ts estimation in the 100 cm soil layer in
Adana, Turkey, using the climate variableg, &tmospheric pressureg{Pand solar radiation @R
and found that it performed better than the standalone MLP model, especially at 20daptboil
Moazenzadeh and Mohammadi (20E8}imateddaily Ts at six soil deths in Maragheh, Iran,
using two standalone models, elman neural network (ENN) and support vector regression (SVR),
and four coupled models, (SWRFA), SVRkrill herd algorithm (SVRKHA), ENN-FFA, and
ENN-KHA. They found that all models had their highasturacy at 10 cm soil depth and that
SVR-KHA showed the best estimation accuracy based.oreltive humidity (RH), and sunshine
hours.Mehdizadeh et al. (2020ybridizedthe ENN model with two algorithms, ant colony

optimization (ACO) andyravitational search algorithm (GSA), to predict dailyat four soil



depths in Rasht and Isfahan, Iran, and found ENN-GSA produced the most accurate
predictions at all depth®enghui et al. (20D found that mutation Salp Swarm Algorithm and
Grasslopper Optimization Algorithm (ANFI8nSG) enhanced the estimation accuracy of ANFIS
in predicting daily Tat 10 cm soil depth based oraximum, meajandminimum air temperature
Hourly evaluation of {is essential for higinesolution modiing within hydrology, geosciences,
ecology, and crop models as a decissapport system to achieve better cyagdd (Qi et al. 2016;
Sanikhani et al. 2038 However, sce hourly Ts measurement with instruments is difficult,
previous studies have generally uskdly or monthly datasets insprediction.

To our knowledge, few studies have investigated the precision of conventional machine learning
models in predicting Jat an hourly scalg(Araghi et al. 2017; Feng et al. 2019;et al. 2020),

while none has westigated model hybridization with integrated optimization algorithms to
improve hourly Festimation in different climates.

The problem of hybrid metheuristic models is complex structure that may cause some instability
and uncertainty in predictionBespite high attention to apphybrid metaheuristic modelsn Ts
prediction, hybrid model uncertainties have large effects on the accuracy and reliability of
predictions (Seifi et al. 2021WUncertainty analysis is a robysbstprocessingtep to asseshe
reliability of different hybrid models(Seifi et al. 20204). However, pevious studies on I
prediction are primarly based on standalone machine learning models and consider
straightforward prediction, with naletailed investigation of the associated uncertainty and
coherence analysis different climates of Iran.

To the best of our knowledge, the assessment of umdgréssociated witl's modelling has been
disregarded. Hence, more studies aredee to assess the stability predictions. Uncertainty

analysis provides a comprehensexaluationof hybrid modeldehaviorsand often calculates a



95% confidence interV#95% CI) to reflect estimations covering. With this viewpageneralized
likelihood uncertainty estimation (GLUE) was appliedthis study foruncertainty analysis to
compare the validity and reliability of the model$ie GLUE approachvas widely used for
investigating model uncertainty and sensitivity evaluation of parameters in hydrological studies.
Previous studies indicated that the GLUE approachk high potential to identify model
uncertainty. It is a more suitable technique than Markhain Monte Carlo for comparing
predictions of models based oncertainty Sun et al. 2016

Inferring the relationships between climate variables and hosidgt& carbetter understansbil
temperature response to model structukéonitoring ard evaluating various effects of
meteorological variablesn hourly T prediction @d uncertainty is informative and can be used as
a decision tool.

However, there is limited information about the relationships between hourhand
meteorological variabteover time in agricultural areas. Furthermore, the effect of meteorological
variables on hourly ddiffers with soil depth and time. In this context, iv&uableand important
using mathematical computation tools to fitme& behavio of hourly Ts at different soil depths
relative to meteorological variables

More essentially, there sneed for engineers and predictoraitmlerstandvhich meteorological
variablehas impressive relation with hourly @nd to determine variables with a detrimental role
in predicting E. Recently, statistical techniques &ighly applied to investigate the relatsgmp
between variables.

Wavelet analysis is a robuston-parametric computational change detectiapproat in
environmental modelling to discover relationships in-stationary systems (Li et aR019).

Moreover, wavelet coherence analysis implements two aims of (1) dependencies analysis between



two datasets and (2) indicatitige time point of synchronizign and high correlation between two
datasetsliamos and Caballero 201

Therefore, the application of wavelet coherence analysis as a feature selection techniqueseliminate
unnecessary and uninformative features (Abualigah 20¥8yelet coherence analggias been
applied in different studies for relations between environmental factors suéhtesand spring
thaw CQ and NO fluxesandTs (Furon et al. 2008)neteorological parameters and soli water
content (Li et al. 2019),soil moisture andecohydrometric factors of rainfall and
evapotranspiratioflLee and Kim 2019)winter precipitatiorandthree oceanic sourcéSbrahimi

et al. 2021).

In the present study, wavelet coherence analys@ninesthe relation between hourlys Bind
meteorologial variablef Ta, RH, wind speed (U), Rluringthetime. To our knowledggebased

on a literature review, no previous study has applied wavelet coherence anahpastigatehe
influences of meteorological variables tre scaledependence of hourlys in different soil
depths.

Despite the popularity of hybrid optimization models for daily and montblgrédiction, few
studies have compared hybrid model precision in predicting hoyrigrilariy by analyzing
related uncertainty and investigating significant meteorological factors. There have also been few
accuracy evaluations of hybrid ANFIS and SVMdets in estimating hourlysin Iran. Therefore,

four machine learning models of ANFIS, MLP, SVM, and RBFNN viwtaridized with four bie
inspired metéheuristic algorithms (sunflower optimization (SFO), salp swarm algorithm (SSA),
FFA, particle swarm optiization (PSO)}o predict hourly Tat three soil depths in two climate

Zones



The main and primary objectivef this studyis to determine the accuracy and feasibility of
developed hybrid models for predicting hourly Th particular,according to théefore review
and explanationghe major contributions of the present study can be expressed as follow.
1) Theinnovation anaritical contributionsof thisis performing a robust GLUE approach to
identify hybrid models uncertainty for predicting hourlyak different soil depths
2) Anothersignificantand novel contribution ideterminng the relationships between hourly
Tsand T, U, RH, and Rat different soil depths, using wavelet coherence analysis.
3) Develop and compare ANFIS, MLP, RBFNN, and SVM hylzedi with the SFO, SSA,
FFA, and PSO algorithms in predicting hourlyaf three soil depths in two climate zones

4) Select best values of optimization algorithm parameters using the Taguchi method

2- Material sand Methods

2-1- Study area and dataset
Two datasets of measured hourlywiere chosen to evaluate the hybrid and standalone models.
The first dataset was obtained from an 2a#t oma
N, P B)gnSSirjan city, Iran Eig. 1), where information atut Ts at soil depth is essential in
disease control, evaporation modelling, irrigation management, and frost protection. Sirjan has an
arid climate, with a mean annual air temper at
Hourly Tsand meteorologed parameters @J'Rs, U, RH) were monitored from 12 September 2012
to 17 January 2012.
From 1966 data obtained 75% hourly data were selected for training the raoddlse remaining
25% hourly data were used for model testing. Different percentagiw tftal dataset were

examined for training and testing subsets to calculate RMSE. Since 75% for training and 25% for



testing hadthe lowest RMSE, these percentageera selected as desired subsets for soill
temperature modieng.

The second Jdataset was obtained from a synoptic station in Sanad&l&3°N, 47.00°E, 1373.4

m heighj}, western Iran (Fig. 1). This region has a sbmnid climate, based on the caldelh

aridity index using 3@ear meteorological datZdlfaghari et al. 2016 with hot conditions in
summer and very cold winters.

The mean annual air temperature measured at
rainfall is 450 mm. Hourly Jarnd meteorological parametersa(Rs, U, RH) were recorded from

9 July 2009 to 12 October 2008.subsetfrom 75% hourly E data was selected and used for
training the models, while 25%f hourly Ts data were used for testing.

Time series plots of sland tourly Ts at three depths (5, 10, and 30 cm) in the soil at Sirjan and
Sanandaj revealed that temperature variations had a decreasing trend at all soil depths (Fig. 2). The
most significahdifference in temperature between initial and final points was at 5 cm soil depth
(15eC) in Sirjan, while in Sanandaj station,

Statistical characteristic¥ the measured meteorological angdd@ta are gien in Table 1.

2-2- Generalized likelihood uncertainty estimation (GLUE)
The GLUE analysis was performed to investigate predictive model reliability. The analysis has
three important levelsSun et al. 2016)
Level 1. Random sampling is used to create mamypsing sets from prior distribution of input
data.
Level 2: Likelihood value is calculated from model runs and compared \pédhiaularthreshold

value to evaluate each input parametdredsavioralvalue above the threshold likelihood) or ron

& aY



behaviaal (value below the threshold likelihoodehavioralparameters are retained to judge the
models.The Ikelihoodis calculated as:

T | 1)
UV—0 Quwr——

whereN is an adjustable parameter, is the error variance for th¥& model,, is the variance
of observations—is the parameter seand —gb is the likelihood measure for th& model
calculated with the observatiolis

Level 3: Simulation weights fobehavioralparameter sets are rescaleshd the cumulative

weighted distribution of estimations is used in quantile estimation for uncertainty prediction:

0 — (2)
B 0 —

wherg is a likelihood weightandn is the number of data.

Two indicesp andr, are used to quantify model uncertainty, wheigethe percentage of bracketed
observations at 95% prediction uncertainty (95PPU),rasdhe mean 95PPU range, separated
using the standard deviation of observati@®eiff et al. 2020n

‘ n@ € 6BYgY Y Y 3)
n P b 0

P w vy 4)

whereN is the number of observations,is the standard deviation of observations, aridand
"Y are the lower and upper boundary of the 95% prediction uncertainty, respectively. Lower

values ofr and higher values fqrindicate laver uncertainty. In this study, the GLUE technique's

spectral responses were used to assess variatioasap.



2-3- Gamma Test
Before training the standalone and hybrid models, the best input combination was selected using
Gamma Test (GT) for two stations. Recently, GT approach has been widely used in different
research fieldsuch as rainfall runoff modelling (Singh et al., 2Q18)spended sediment load
prediction (Panahi et al., 2021), optimal design of groundwater monitoring networks (Azadi et al.,
2020), predicting groundwater level (Sharafati et al., 2020), and predicting evapotranspiration
(Seifi and Riahi, 2020).
Han et al (2010) illustrated that the GT approafectively reducemodel development workload
over trial and error procedures. In this approach, the main important input variables can be ranked
by calculatingVratio index as the following stepSkarafati et al2020:

(1) Determine outputdd) and input @) values where@ Q 0.

(2) Compute the delta functonas Q@ —-B @y ® p Q@ n, where | é]
the distance of Eulirean awndl, is thek™ nearest neighbors for eagh

(3) Calculate the gamma function s Q@ —B ®  ® p Q 1, where
w is thek" nearest neighbors for eagh

(4) Consider regression line for points pf Qi "Q to calculate gamma statistit)(as:
[ 01 @

(5) Calculate theViatio index asw —— , where,, ® indicates the target outputs

variance. Théi andVraio Values close to 1 show a poor model performance.



2-4- Wavelet coherence analysis in interaction analysis
Wavelet coherence analysis of hourlyahd the four meteorological variables dataset are used to
determine the scale effects of meteorological variailedifferent soil depthsTs depends on
different meteorological variables such ag RH, U, and R Wavelet coherence analysis
calculates the coherence value of crasselet transform among two time series in the time
frequencydomain (ee and Kim 201p The continuous wavelet transformation (CWT) of a factor

over time (OHQ plgMB h)) and uniform time stepi(tis presentedsa

T ®)

wheres is the basic wavelet function and s is the saale.i is defined agd "Qwhereais
the real component arids the imaginary component af i .
The Morletwavelet is defined as:

e -  TqQ 8 (6)
wherey is the dimensionless frequency ahid the dimensionless time with equation-of i 70.
The crosswvavelet transform between hourly and meteorological variables over time can be
written as:

W s w iw i (7)
wherew andw are the wavelet coefficients of &nd meteorological parameters in the time
seriesX andY, respectivelyw i is the crossvavelet power spectrum &fandY, andw i
is the complex conjugate af i .

In the present case, wavelet coherence betweandimeteorological variables each scale and

occasion icalculatedas (ee and Kim 2019



) Yi oo i (8)
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whereSis the smoothing operatand can be defined as:

Yo Y Y o ift (9)
wheret is the occasiortscaeis sSmoothing along with the wavetatale axisandY  is smoothing
in time.

The normalized real Morlet wavelet can be written as:

P Qi T (10)
gt Gi

Thus,the smoothing across occasions anwothing across the scatemn be written as

_p T o (11)
Y w iht ® it —Qwn ———

g Gi

. P . (12)
i K Y w i Tl

wherem is the number of terms on each symmetrical half of the window, aisdhe rectangle

function.

2-5- Machine learning and optimization algorithms description
In the present study, four machine learning models, namely ANFIS, MLP, RBFNN, and SVM
wereapplied to predichourly Ts. Also, fourmetaheuristicoptimizationalgorithms, including the

SFQ FFA, SSA, and PSWerehybridized with standalone machine learning models.



2-4-1- Adaptive neuron fuzzy inference system (ANFIS)
ANFIS model combines fuzzy logiand neural networke/hile benefilng from both methods'
advantage(Najafi-Ghiri et al. 2019. In addition, ANFIS model usethe TakagiSugeno inference
approach to generatezzy i +t fh erudeg from input to output domains (Pengtetial. 2020).
YO pdQ@QD & QOB MEQ R o i (13)
YO qdROQD k& QOB BMEQ o A i (14)
whereAs, A, By, andB; are membership functions apd qi, r1, andpe, g, r> are consequence
parameters.
The ANFIS structure contains five layessth different inputs and one outputhe structure of
ANFIS model is summarized in the following steps:
Layer 1:each nodedjusts to a function parameter and produces a value of membership degree

using thebell membership function

0 “ wh Q plt (15)
0 : wh Q oh (16)
C o ‘p _ fQ pit (17)
W W
P W

wherea, ¢, andb; are themembership values.
Layer 2: the output of each node is defined that is input signals production to the netievasd
a firing strength for each rule

0 N W (18)
Layer 3: the output of this layer calculates the ratio of strengtif'farle to the sum strength of

all rules.



! (19)
B 1

Layer 4. the adaptive nodes are calculated in this layer.
0 0VQ U Nw Nw | (20)
Layer 5: the network output is computed in this layer.

¥ 0 "Q (21)

2-4-2- Multilayer perceptron (MLP) model
MLP is afeedforwardsupervised neural network that has been applied successfully for complex
and nonlinear problems. The backpropagation learning algorithm is commonly used for training
MLP models, but it may get trapped in a local optimitouladi et al. 2019 The MLP mode
uses multiple layers with a nonlinear activation function to learn the relationship between input
and output datasets. The first layer (input layer) contains the inputs to the MLP model, while the
middle layers (hidden layerbBpveseveraheurons. Eacheuron performs a weighted summation
of inputs. The activation functions are used to calculate the inner product of input parameters and
adjustable weight vectors of synapdesyladi et al. 2019 More details about MLP can be found

in Kisi et al. (2015).

2-4-3- Radial basis function neural network (RBFNN)
The RBFNN model is a particular type of ANN model that has been widely used follingpde
hydrological variables such as streamflow, runoff, temperature, drought, and groundwater level.
The main difference diween RBFNN and feedforward multilay®XN is the transfer function

properties employed in the hidden layerga{czak and Massart 200RBFNN contains three



layers in its structure. The first layer receives the input vector data, where the hiddeimthyaes

several nodes and a nonlinear transfer functicayébi et al. 2019 Then, he Euclidean norm

(di stance) associated with the hidden | ayero6s
function related to each hidden neuron. Commonlyhttiden layers contain the nonlinear radial

basis Gaussian function and another activation function placed in the last layer. More details about

RBFNN can be found iKisi et al. (2015).

2-4-4- Support vector machine (SVM)
SVM was initially introduced byCortes and Vapnik (199%ndhas been widely used for both
regression and classification analysis due to its advantage in minimizing model complexity and
estimation error simultaneouslyZi{eng et al. 2020 The SVM model use different kernel
functions to estimate the regressions, implicitly converting inputs to-dilgbnsional feature
space using a hypgtane King et al. 2018 The SVM equation is:

N ] 8D @ (22)
where™Q® is a deterministic functior, @ is a nonlinear transferring the input vectoris a
vector of weight coefficients, arigis the bias.

The b and] values are determined by minimizing risk structfunection. To reduce the
complexity and obtain a more robust model, slack varigbles can be used in the risk structure
function equation:

0 (23)
b0t RdhE®E 8.

i 0 W DZEWO., vq(,‘m.‘ ” .
ah oa w w - -

where- is intensive loss valueyis thei™ output, and is the cost constant.



Lagrange multipliers ( and| -) can be applied for solving eq. 23, with the solution written as
follows using kernel function & o ):
5 N (24)
Qw | R AL A
The radial basis functiom (Ghd Qo & && ) is widely used for SVM models.
In this study, four optimization algorithms of SFO, FFA, PSO, and SSA are applied to integrate

with standalone machine learning models and enhance hayhediction accuracy.

2-4-5- Sunflower optimization algorithm (SFO)
SFO is a new optimization algorithm proposedfang (2012)inspired by the solar tracking of
sunflower heads to enhance pollination. SFO uses inverse square law radiation (ISLR) for
optimization, based on the simple assumption that each flower only generates on@tjpofiete
and reproduces individually@ais et al. 2019 When the sunlight falls more obliquely, the
sunflower receives less heat from the sun, expressed by the $SLR a

. 0 (25)

whereP is the power of source amds the distance between the current and thei lpdant.
The redirection of position by the sunflower is computed as:

Q _ 0 A O & A © £ (26)
where_is the inertial displacement of the sunflower and is constantpaisdhe current location
of the plant,and A&y & £ is the pollution probability, wheri& sunflower crosgollinates
with another near1" sunflower to generate a new individual in an updated location.

It is essential to limit the maximum step of individuals by:



— ”Xmax_ X

min”
max
3
23 N,

(27)

wheredmaxis the maximum stegp  is the upper bound valuZmin is the lower bound vagy
andNpop is the number of sunflowers in the overall population.

Finally, the next population is updated as:

® ® Q b (28)
o W (29)
AY QA

where® s the position of sunflowe#1 and®’is the best location of the sunflower.

The principal steps of tfteFOmodelcan bewritten as

(1) initialize algorithm parameter of population size. The initial locatiorthefsunflower is
initialized in the initial matrix of population. Eadbcation shows the initial value of sunflower.
(2) evaluate the objective function for solutions. Bo@'s best solution iwhere the sun guides
the solutions towards the best location duringobiemization process. The other solutions modify
their orietation towards the sun.

(3) redirect positions using eq. 25.

(4) update the position of each search solution using eq. 29.

(5) investigate convergence criterion and finallgtermine the optimal value.

2-4-6- Firefly algorithm (FFA)
Yang (2010) first developed FFAinspired by the light emission capability of fireflies. The
attractiveness of one firefly to another is related to its brightnessigbbaing fireflies, where a

less bright firefly is attracted to a brighter oddof et al. 2019;RiahiMadvar et al. 2020 The



excellent informatiorsharing mechanism is one of the advantages of FRAfirefly mechanism

is formulated as:

o o (30)
T I Q (32)
wherel | is the attractiveness of a firefly, is the attractiveness of firefly at0, | is the

absorption coefficient in the range of 0 andd, is the light intensity;Ois the light intensity
atr=0, and the distance between two firefliegat locations ofx; andx can be defined as
@ . The fireflyi is attracted by firefly and updates its location as:
W 1TQ o 6 " (32)
where" is therandomization parameter, ahds a vector of random parameters.
The implementation steps of the FFA can be described as follows:
(1) generate the initial population of fireflies to gieinitial location.
(2) evaluate the objective functionittentify brighter firefly.
(3) calculate the attractiveness using eq. 31.
(4) update the location of firefly (eq. 32) by moving a firefly i towards other brighter fireflies.
(4) move a firefly i towards other brighter fireflies, the position is updagdeiduation.
(5) evaluate solutions and update brightness.

(6) terminate the optimization process$héstop criterion is met.



2-4-7- Salp swarm algorithm (SSA)
SSA is a new metheuristic optimization algorithm inspired by the collectbehavio of salps
(seasquirts), introduced bilirjalili et al. (2017) Adaptability, robustness, and scalability are the
mo s t i mportant advantages of SSA. Based on
divided into leaders or followers in SSA. The followers folltwe leader to guide them in their

movements. The SSA starts by initializing the salp populatiben;The leader position is updated

as:

o ® 1 6 i NI om (33)
“w 1 60 i NI oom

wherewi s t he | e aydsehe foad squroegvianddcpane,the lower and upper bounds,

respectivelyrz andrz are random numbers, angdis computed as:

i cQ (34)
wherel is the existing iteration, and L is the maximum number of iterations. SSA uses the
parameter; to increase stability in exploration and exploitation capability. For each follower, the

position is updated as:

@ o o (35)

N IO

where® is the location of" salp in tha™ dimension.

The implementation steps of the SSA can beriteed as follows
(1) initialize a population of salps to gitleeinitial location of salps
(2) compute the objective solution for each solution

(3) update the location aefbest salp (leader)

(4) update the location of followers by eq. 35.

(5) terminatehe optimization process to reach the best values of decision variables



2-4-8- Particle swarm optimization (PSO)
PSO is a welkstablished stochastic/random search approach related to theawebirmspired by
t he par t behdvie. &ach particteiinghle swarm protects the updating of search behavior
according to all other particles' learning experemndn each generation, information is integrated

by particles to set the velocity onesy dimension. The position and velocity of particles are

updated as:
bp  —z0f @1 GEME 6 O OEM G of (36)
Wh AT VI (37)

whereV ; is the velocity ofi" particle at iteratiort+1, — is the weight inertiag0 AT & are
acceleration coefficientsp; is thelocation ofi" particle at iteratiort+1, 1y is the optimal
location experienced by particles, and; is the optimal location experienced by any particle.
The principal steps of the PSO model can be written as:

(1) initialize initial location and velocity of particles

(2) compute objective fuation during each iteration

(3) update the velocity of particles

(4) update the location of particles by eq. 37.

(5) continughe optimization process until the stop criterion is met.

2-4-9- Hybridizing ANFIS, MLP, RBFNN, and SVM with optimization algorithms
In this study, SFO, FFA, SSA, and PSO were used tetdine the parameters of the ANFIS, MLP,

RBFNN, and SVM modeland to improvehe convergence rat@y applying GT, the best input



combination was selected for both stations and the traofimgodels was performed usitige

selected best input combination.

The input data were trained using optimization algorithms withndom selection of agents
(particles, fireflies, salps, and sunfitbnower s)
of agents shows the values of the premagéyi( ¢i) and consequenpd, qu, r1, P2, 2, r2) parameters

in the ANFIS model

The values of bias and weight connections for the MLP mdidelwidth values and the hidden

neuron center in the RBFNN model; and the valuewidth () , penalty (C), ep:s
kernel function parameters in the SVM maodéie algorithms used their operators to update the
position of each agent.

The initid values of the parameters were regarded as the initial positions of agents. The objective
function of root mean square error (RMSE) was applied to verify model accuracy. The hybrid
ANFIS, MLP, RBFNN, and SVM models continued until the minimum value of EM&s
detectedandalgorithms were convergddwardthe optimal solutionsAbualigahet al., 2021h

The optimal values of model parameters were f
The robust design of random parameters included in the optimization algorithms is important to
enhance model performance. In a novel approach, Taguchi searckedds select the best values

of these random parameters. It is a powerful advanced technique that uses orthogonal array and
signal to noise ratio (S/N) to minimize the number of experiments and greatly decrease the time,
cost, and effort in finding optinh@arameters of algorithmZlgang et al. 2015

An orthogonal array table is created by calculativegotal degree of freedom (DOF) based on the
combined degree of freedom of all paramet€anpolat et al. 2019; Bademlioglu et al. 2D20

Based on the umber of levels (L) and the number of parameters (NV), the total number of



experiments is computed. The minimum number of experiments (N) is calculated as

0 wd p . Thus, e.g., for the four parameters with four levels in the PSO algosthieast 13
experiments should be conducted to discover the optimal values of PSO paramigiersithout
the Taguchi method, the total number of experiments would.bEnds, the Taguchi orthogonal
array of L16 (4) was established.

TheS/N ratio iscalculated as:

% (38)
0 £ W

wheren is the number of the case, anid the performance characteristic performance vahe (t
higher the S/N value, the bettire ratio). S/N was used agparformance characteristic ech
parametem this study.

The framework and flowchart of the work in this stadgpresented in Fig. 3, which also shows

the general framework of the 16 hybrid models used to predict hou(ANIFIS-SFO, ANFIS

FFA, ANFISSSA, ANFISPSO, MLRSFO, MLRFFA, MLP-SSA, MLP-PSO, RBFNNSFO,
RBFNN-FFA, RBFNNSSA, RBFNNPSO, SVMSFO, SVMFFA, SVM-SSA, and SVMPSO).
Finally, a €hematiadiagram representing the general procedures of the proposed method is given

in Fig. 4.

2-6- Evaluation criteria
Coefficient ofdetermination (R, RMSE,NashSutcliffe efficiency (NSE), mean absolute error
(MAE), and percentage bias (PBIAS) were used to assess the accuracy of the standalone and hybrid

models(Moriasi et al. 2007Moriasiet al, 2015:
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wherex; is thei™ observed valuey; is thei™ predicted valuegfand  are the mean value of

observed and predicted values, respectively.

3- Results andDiscussion

Wavelet coherence results for investigatithg relationship and coherency betweep ahd
meteorological variables are summarized in sectibnBktractinghe best values for optimization
algorithm parameteris training the hybrid modelgsingTaguchi searclre presented in section
3.2.In section 33, models performancdor predicting Eand the results obtained at different sites
and soildepths are comparelinally, theuncertainty associated with the simulations, determined

using the GLUE approach, is presented in sectién 3.

3-1- Selectionof the best input combination by Gamma Test
To evaluate the potential of developed models in priedidiourly Ts, the employed dataset

divided into the training and testing sets equal to 75% and 25% of total data, respéidtie&hf.



was used to construct and examine different input combinations by four meteorological variables
of Ta, RH, U, and R Table 2 shows the five optimal input combinations for any soil depth. The
optimal input combination was selected usingndV;aio indices.

As observed in Table 2, the input combination of mean air temperature, relative humidity, wind

speed, and solar radiation had the least valu&aridV___at soil depth of 5 cm in Sirjan station.

ratio
The resultsndicated that the input combination of mean air temperature, relative humidity, wind

speed, and solar radiatisrasthe best input scenario at depths 10 and 30 cm in Sanandaj station.

Removing mean air temperature and solar radiation led to the higls wdl@and V___ at soll

ratio

depths of 5, 10, and 30 cm in both stations. The results indicated ttiaatitk/atio indicesfor

four input combinations were lower than thoséhefother three input combinations.

3-2- Wavelet coherence analysis
To assess the importance of input vector selection ginfulation was considered using wavelet
coherence analysis. Tivavelet coherence betweegahd other climate variables{TU, R, and
RH) at 5, 10, and 30 soil depths is showrrigures5 and6 for the period 1944 hours at 5 cm
soil depth and 1000 hours at 10 and 30 cm soil depth.
Five dominant scaleeriodrity) of <4 h, 48 h, 816 h, 1632 h, and 364 hwere considered
following the coherencies betweer dnd meteorological variableShere was high coherence
between Fand Ts atscale4-8 hours in the time domain 48®9 hours at 5 cm soil depth at Sirjan
(Fig. 5).
The coherence value betweegahd Ts at the mentioned scale and time was almost@verall,
Ta showed the highest correlation with 8t 5 cm soil depthconfirmingfindings by Kisi et al.

(2015)andNanda et al. (2020Analysis of the diagram indicatédere was a few occasions with



high coherences between U angand thus there wam significant coherence between U ard T

at different time

However,there was aignificant relationship betweens &nd R at scaleof 28-34 hours, and
between Tand RH ascaleof 28-34 hours, in the time domain 128244 hours (Fig5). Overall,

Ta, Rs, and RH showed variable coherence signals, while no significant coherence signal was
observed at differerttime periodicities for U. Using WNNnodels,Samadianfard et al. (2018a)
demonstratethat T and R have unquestionable effects ogipFediction ab, 10, 20, 30, 50, and

100 soil depth at a synoptic station in Iran.

To further analyze the results of wavelet coherencedherencealues were plottefibr different
dominant scalesf Ts. Fig. 6showsthe coherence at 10 and 30 cm soil depth foaBSdaj station.

The maximum coherence betweemn al 10 and 30 cm soil depth and Wwas 0.8 and 0.7,
respectively, at periodicity-86 hours in the time domairIDO0 hours.

There were no significant coherences betweagsnd Uin different periodicities at0 and 30 cm

soil depth. The maximum coherence betwegant R at periodicity 48 hours in the time domain
0-1000 hours was 0.9 and 0.7 at 10 and 30 cm deplie highest coherence fouaqual ta0.9 at

10 cm soil depth between RH angatperiodicity 816 hours in the time domairI®00 hours.

These results indicate that wavelet coherence analysis can provide more quantitative evidence on

periodicity and interaction ofsvith meteorological/ariablesat different soil depths.

33 Optimal model parameters derivationby Taguchi search
The optimization parameters of the maguristic algorithms oSFO, SSA, FFA, and PSO at
different levels, and the associated S/N valaes,shown in Table 3. The values of population

size,cy, Co, inertia weight, ana in optimization algorithms were derived based on the Taguchi



method. After constructingn orthogonal array and calculating S/N ratio for each algorithm
parameter, the optimal values were chosen (highest S/N ratio) (Table 3).

The dfect of each ptimization algorithm process parameter was divided into four levels. For the
PSO algorithm, the mean value of RMSE for population size varied from 1.12 to 1.54, inertia
weight from 1.23 to 1.76;: from 1.12 to 1.45, anc from 1.37 to 1.8, and the best conditions

were obtained at a value of 2, 4, 1, and 1, respectively. The greatest variation in S/N values was
seen for inertia weight, i.e. PSO was mainly affected by inertia weight, which should be the main
focus in model development.

Themost critical parameter for SSA, SFO, and FFA wagopulation size, ang respectively.

The optimal value ofs, r2, and population size for SSA, determined by Taguchi search, was 0.5,
0.8, and 400, respectivellfor SFO, population size of 400wassnb ef f ect i ve, whi |
had an optimal value of 0.8. These results indicate that Taguchi search can effectively and
systematically provides robustness values in selection optimization parameters, replacing the trial
anderror approach. It can be asim future studies of metiaeuristics to improve the ability and

applicability of models.

3-4- Performance analysis of models
The performance of standalone ANFIS, MLP, RBFNN, and SVM and the hybrid models was
evaluated based atatistical criteria and by comparistive predictions against measured hourly
Ts at 5, 10, and 30 cm soil depth (Tabkesand5). Soil temperature was used as the target
parameter, and corresponding U, Rs, and RH as input data for all models. At the training level,

integrationthe SFO with ANFIS, SVM, RBFNN, and MLP led to bettesults.



The standalone ANFIS model outperformed the other standalone SVM, RBFNN, and MLP
models. All models provided the highest accuracy at 10 cm soil depth, and the lowest at 5 cm soill
depth.However, he prediction accuracy in terms of RMSE, MAE, NS&hd PBIAS for the
training level was lower for SVMPSO than for the other hybrid ANFIS, SVM, MLP, and RBFNN
models.

It should be noted that the measured data at 5 cm depth were from the arid Sirjan site and the
measured data at 10 and 30 cm soil deptia thesemihumid Sanandaj site. Tabbeshows the
performance of the models in predicting hourdyrlterms of RMSE (°C), MAE (°C), PBIAS (%)
(optimal value=0), and NSgptimal value=1) in the testing phase. Scatter plots and correlation
comparisons beveen simulated and measured Values at 5, 10, and 30 cm soil depths are
presented in FigZ, 8, and9, respectively.

At 5 cm soil depth, ANFISSFO had the lowestrror amongall hybrid models (RMSE=1.18,
MAE=1.05, PBIAS=7). ANFISSFO also had the loweerroramongall models at 10 cm depth
(RMSE=0.824, MAE=0.822, PBIAS=1, NSE=0.98) and at 30 cm depth (RMSE=0.911,
MAE=0.905, PBIAS=2, NSE=0.97) (Tab%.

The ANFIS model was the most accuraetweenstandalone models, with RMSE=0.978,

MAE= 0.971°C, NSE=0.85, and PBIAS=14% in the best case (at 10 cm soil dEpt"ANFIS

model has beeshown previously to be superiior Ts prediction. Forexample Citakoglu (2017)
reported that ANFIS wabetter (MAE=1.09, RMSE=1.99, R0.99 than the ANN model in
estimating hourly Jwhen using monthly minimum temperature, monthly maximum temperature,
calendar month number, soil depth, and monthly precipitation as input data.

As can be seeftom Table 4the SVM model had the highest error (highest MAE, RMSE, and

PBIAS values, lowest NSE valuesympared withall models at all soil depthslandaet al. (2020)



also foundhatSVM had the lowest precisimompared t@ll machine learning modetsested in
hourly and hakhourly Ts prediction. The main reason for the low accuracy of SVM may be non
linearity between several analyzed parameters.

Comparisorof the results at 10 and 30 cm depth indicated that the errgpiedictionincreased
with depth, indicating that meteorological parameters mostly influenced soil temperature in the
upperlayers Kazemi et al. 2018; Behmanesh and Mehdizadeth.2017). Similarly, Nahvi et al.
(2016)found that the precision of machine learning models in estimatidrinfsoils in Turkey
and Irandeclined from 10 cm to 100 cm depth but increased from 5 to 10 cm depth.
Behmanesh and Mehdizadeh (2017) dtmend that the accuracy of machine learningdels
increased between 5 and 10 cm depth. In the present study, the highest accuracy was observed at
10 cm depth for all hybrid and standalone models, asfalsw byBehmanesh and Mehdizadeh
(2017) and Kisi et al. (2017Among the models they studid€isi et al. (2017foundthat ANFIS
achieved the highest precision at 10 cm depth (RMSE=1.29) basedyear2monthly dataset at
10, 50, and 100 cm depth.

Based on theaesults inTable 5 in this study the SFO algorithm increased the accuracy of
standalme modeldy decreasing RMSE by 5.6% for ANFISFO and 18.3% for RBFNHSFO,
both at 5 cm depth. The SSA algorithm decreased RMSE by 6.2% at 4@ilatepth for MLR

SSA and 15% for RBFNMSA at 5 cnsoil depth. The FFA algorithm decreased RMSE by 3.3%
at 10 cm depth for MLPFFA and 10.9% at 5 cm depth for SWIMFA. Similarly, Samadianfaret

al. (2018b)found that integrated MHFFA and SVMFFA models had significantly highdis
prediction accuracthanthe standalone MLP and SVM models at 5, 10, and 20 cm soil depth.
Almost all predictions fell on the 1:1 line in the scatterplotith R? values >0.99 for all models

(Figs. 79). The R value increased from 0.9958 to 0.9998, 0.9934 to 0.9993, and AXOR®98



for all hybrid and standalone models at 5, 10, and 30 cm depth. All models had the most accurate
performance for 10 cm soil depth and the worst for 5 cm soil dEmgh. (£9).

This reflects theomplexity and rapid changes ig &t shallow defhs. Overall, the ANFISSFO
predictions were closest to the observed data, with the highestdRlowest error at each soil
depth, confirming the suitability of ANFISFO for estimating hourly sTin regions with arid
(Sirjan) and serhumid Sanandgjclimates.Abyaneh et al. (2016) presented that the artificial
neural network models and -eative neureduzzy inference system (CANFIS) had the high
abilities for predicting soil temperature.

Table 5 and Figures9 show that the use afl metaheurigic algorithms(SFO, SSA, FFA, PSO)
improved the accuracy of the corresponding standalone models. This may be due to more accurate
searching and finding the best solution in the local and global spaces. This is in agreement with
findings byMehdizade et al(2020a), RiahMadvar et al. (2020gndShamshirband et al. (2020)

that hybridmodels show higher accuracy than conventional models.

Samadianfard et al. (20kBcoupled MLP model with FFA method to estimate soil temperature.
They showed that the hybrdLP models performed better than the standalone MLP models. The
error of MLP models at depth 20 cm was lower than those of MLP models at depth 50 cm. The
current research resultenfirmed that the models had more accuracy at the depths 5 and 10 cm.
Basd on results from the present study, the ANFIS model integrated with ahengtstic
optimization algorithm is highly recommended for estimatipgt Qifferent soil depths in different
climates.The developed hybrid ANFIS and MLP models in the current study provided lower
RMSE and MAE valuethanprevious studies. The results of fheentstudy at 30 cm soil depth

were more accuratbanthe results of Alizamir et al. (2020).



In several prediabn cases by conventional machine learning methods, the search domain become
wider while the convergence rate decreases and then it may get trapped in local optimum.
Therefore, optimizing the weights of conventional machine learning models (ANFIS, SVM, MLP
and RBFNN) is helpful to overcome this iss@eghui et al. 2030

Hence, theCPU time and number of functional evaluatitNFE) were obtained in this study to
compare the convergence rate of modEddle6 shows the values of CPU time and NFE to heac

the best solution for developed models. As observed in Table 1, the CPU time of ANFIS, MLP,
RBFNN, and SVM model hybridized with SFO was lower than those of other hybrid models. It
means that the SFO could converge earlier than other optimization fatge@ind conventional
machine learning models.

The SSA, FFA, and PSO had ttelowing ranks based on the CPU time. The ANFIS, MLP, and
RBFNN models had the longest CPU time. It means that the standalone models of ANFIS, MLP,
SVM, and RBFNN needlonger time for trainingTable 6 reports the minimum NFE required to
achieve the optimal solon. Hybrid models of ANFISSFO, MLRSFO, RBFNNSFO, SVM

SFO had the lowest values of NFE, indicatafgster convergence rate thfe SFO algorithm to

find thebest solutionThus, the SFO outperformed the other algorithms for converging and finding

the gotimal solution

3-5 Uncertainty analysis of modelsusing GLUE
Spectral representations of models uncertainty vahuéssting level for 5, 10, an80 cm soil
depth determinedsing the GLUE approacénd the resultareshown inFig. 10 At 5 cm soil

depth, the value for the testing data for ANFISFO ranged from 0.10 to 0.15 with 4882 data



points and from 0.15 to 0.20 with 143844 data points. Thevalue at 5 cm soil depth for ANHS
SFO was found to be 0.95 with 4882 data points.

For 10 and 30 cm soil depth, therange for ANFISSFO was 0.9@.94 and 0.9®.96,
respectively. The uncertainty analysis showedhlues in the range 0.8690 and 0.8®.90 for
MLP-SFO and RBFNNSFO, respectively, with 600000 data points. ANFI®SO, MLRPSO,
RBFNN-PSO, and SVMPSO had highep and lowest than other hybrid models. ANHSFO

and MLRSFO had the highest bracketelserved values in the testing level, while the lowest
unbracketed observations were obtained with the standalone SVM and RBFNN models.

This indicates that using melteeuristic algorithms such as SE@justsspecificparametesin Al
modelswhile reducesthe casespecificity and improving the generality of the models. In the
present case, hybridizatiai the traditional models, decreassull temperature predictions and
provided more accurate and reliable analf@isoil temperaturén depths

In the urtertainty analysis, an increase in data points increaseddhges for the differemhodels

(Fig. 10. In general, SVM had the highesand lowesp, indicating a high level of uncertainty.
The standalone and hybrid MLP models produced more accueatietions than the standalone
and hybrid RBFNN models. Overall, the optimization algorithms improved the performance and
reliability of the standalone models in termsroénd p values. SFO outperformed the other
optimization algorithms in reducing uncertaintytlie estimation of hourly Jat all soil depths.

In general, the evaluation criteria values and GLUE uncertainty analysis of models confirmed that
the hybrid ANFISSFO malel hadthe most accurate performance in predicting hourly Ts based
on the Ta, RH, U, and Remithumid and arid climates of Iranhiis, he results demonstrated the

suitability of SFO for hybridizing machine learning models.



4- Conclusions

Soil temperature strongly affects soil biological processes, irrigation scheduling, plant growth, the
environment, and water resource management, but measuring soil temperature@msuming

and costly. Accurate, reliahlandstablesoil temperature predion using models is necessary in
agricultural,environmentagland geosciences practices.

The scalespecific coherency betweasnil temperaturat three soil depths of 5, 10, and 30 cm and
meteorological variables air temperature, relative humidity, md speed, and solar radiativas
investigated using wavelet coherence analysis.

Thesoil temperaturéime series data at three soil depths were mainly affected by air temperature,
relative humidity, and solar radiatipespecially in upper layertn addition, oherencevavelet
analysis indicated weak effects of wind speecaihtemperature

The relationships betweesoil temperaturand most effective variables of air temperature and
relative humidity differed with cale (periodicity). High coherency with air temperature was
generally observed at periodicity of8dh at 5 cm and-86 h at 10 and 30 cm soil depths, while
strong coherency with relative humidity obtained at periodicity e64.6 at 5 cm and-8 h at 10

and 30 cm soil depths. Thereforsil temperaturecan be predicted with high accuracy at
recommended periodicity as an application of information for scales.

In this study four metaheuristic optimization algorithms (SFO, FFA, PSO, SSA) were tsed
hybridize and optimize the standalone mo@¢élBNFIS, MLP, RBFNN, and SVMor predicting

hourly soil temperature at various soil depths, based on meteorological data from an arid site

(Sirjan) and a serfiumid site (Sanandaj) in Iran.



The uncertainty of conventional and hybrid models was evaluated using GLUE approach to
investigate thetablity of the prediction Input combination ohir temperature, relative humidity,

wind speed, and solar radiation was trained by models to predict soil temperature.

Parameter selection of the mdtauristic models was optimized by Taguchi seafrelyuchi garch

hasa high potential to overcome thexceller effort to find the optimal values of optimization
parameters and considerably reduce the number of experiments

ANFIS was the most accurate standalone model, while SVM was the least accurate fdesoth si
and soil depths (5, 10, 30 cm). The optimization algorithms SFO and SSA were best in enhancing
theperformancef all standalone model$heperformance criteria proved that the hybrid ANFIS
SFO model had atrong correlation with observed data anddmted soil temperature with low
error at all soil depths.

Uncertainty result®f GLUE approachndicated that the bracketed observed values of the best
model, ANFISSFO, were in the range ®6% The wider uncertainty bounds were obtained by
standalone wdels, indicatingsome instability in soil temperature prediction athé small
accuracy

The developed approach in this study proved reliable and accurate for hybrithenestic
models. Itappliesin regions with similar climate conditions to the study sites. Future studies
should consider the effects of climate scenarios on soil temperatuadufimre period. ANIFS,

SVM, RBFNN, and MLP can also be hybridized with molbjective optimization algrithms to
determine the optimal values of hyperparameters and appropriate inputs to the models.

The grey models are one of the most important models for predicting hydrological variables. In
the following studies, the abilities of grey models and decisiree models can be evaluated for

soil temperaturestimation



Also, this study performed a comprehensive uncertainty andlysevaluate the accuracy of
standalone and hybrid machine learning models that can be used to ewvtieatestimation

models
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Table 1: Statistical characteristics of climatic parameters and soil temperature at studied stations

Sirjan station Sanandaj station

Dataset Factor Ts Ts Ts
Ta Rs U RH @ 5cm Ta Rs U RH @30cm @ 10cm
Min -9.31 5 0.15 2 5.2 -10.1 4 0.19 5 5.9 7.4
All Max 25.05 1151 9.92 79 31.77 32.23 1132 7.85 69 24.69 29.12
data Mean 24.23 625 5.23 65.12 19.23 21.48 567.1 455 56 18.12 19.1
Skewness 0.86 412 112 2.43 2.46 245 345 11 24 1.78 2.1
Min -7.12 7 0.14 4 6.7 -9.98 6 0.86 7 6.12 8.12

Train Max 24.87 1146 8.45 65 29.87 30.23 985 8.22 65 24.01 28.12
set Mean  26.12 678 6.12 56.25 18.23 22.12 567.1 5.12 45 17.65 17.99
Skewness 1.32 1.67 156 2.14 2.01 455 3.11 312 2.2 1.45 1.23

Min -6.12 4 0.15 2 6.8 -8.14 4 0.98 6 5.14 7.12

Test Max 24.78 1056 8.23 69 28.78 29.87 987 6.72 59 24.42 28.12
set Mean  29.78 614 6.45 58.12 16.54 2456 589.1 4.23 44 16.56 18.12
Skewness 1.25 1.28 145 244 2.12 556 322 244 2.8 1.43 2.12

Table 2: Optimal input combinations obtained using the GT approach.

Input combination 5cm 10 cm 30 cm

G Vratio G Vratio G Vratio
Ta RH, U R 0.02345 0.0033 0.065 0.0083 0.0551 0.007
Ta U, R 0.03567 0.0051 0.078 0.0100 0.0671 0.008
Ta RH, R 0.0672  0.0095 0.082 0.0105 0.072  0.009
Ta, RH, U 0.0721 0.01037 0.089 0.0114 0.084 0.0106

RH, U R 0.082  0.01123 0.093 0.0119 0.0923 0.0112




Table 3: Optimal value of random parameters optimization algorithms

Optimization Level 1 2 3 4
algorithm Parameters
Population size (S/N) 100 (1.12) 200 (1.54) 300 (1.34) 400 (1.46)
PSO Inertia weight (S/N) 0.30 (1.23) 0.50 (1.32) 0.70 (1.50) 0.90(1.76)
c1(S/N) 1.40 (1.45) 1.60(1.30) 1.80(1.28) 2(1.12)
c2(S/N) 1.40 (1.45) 1.60(1.39) 1.80(1.42) 2(1.37)
Population size (S/N) 100 (1.16) 200 (1.14) 300 (1.19) 400 (1.21)
SSA r2(S/N) 0.5(1.19) 0.6(1.12) 0.7(1.15) 0.8(1.21)
r3 (S/N) 05(1.22) 0.6(1.12) 0.7(1.17) 0.8(1.21)
SFO Population size (S/N) 100 (1.02) 200 (1.07) 300 (1.12) 400 (1.14)
FEA Population size (S/N) 100 (1.26) 200 (1.22) 300 (1.21) 400 (1.26)
2 0.50 (1.27) 0.6(1.29) 0.70(1.32) 0.80 (1.36)
Table 4: Statistical results of models performance in training phase.
Model 5cm 10 cm 30cm
RMSE MAE NSE PBIAS RMSE MAE NSE PBIAS RMSE MAE NSE PBIAS
(°C)  (°Q) (%0) (C)  (°C) (%0) (C)  (°C) (%)
ANFIS-SFO 1.12 101 095 5 095 091 097 2 0.98 0.97 097 4
MLP-SFO 120 110 093 7 1.02 100 095 3 1.09 106 095 5
RBFNN-SFO  1.23 116 0.90 10 1.12 103 093 5 114 110 093 8
SVM-SFO 1.32 119 089 12 114 108 091 7 117 112 091 9
ANFIS-SSA 1.14 110 0.94 14 1.02 100 09 3 1.08 1.07 096 10
MLP- SSA 125 118 091 16 1.04 102 094 4 110 109 094 6
RBFNN-SSA 127 120 0.89 18 1.14 110 093 8 118 114 093 9
SVM- SSA 1.39 137 088 21 1.19 117 091 10 123 121 091 11
ANFIS-FFA 1.17 114 092 15 1.05 103 095 4 1.07 103 095 7
MLP-FFA 1.35 120 090 18 1.09 108 093 5 114 112 093 11
RBFNN-FFA 142 125 0.89 20 115 112 092 12 119 118 092 14
SVM-FFA 1.45 139 087 22 120 118 090 14 124 122 090 15
ANFIS-PSO 118 1.7 090 21 1.10 1.08 094 9 112 114 094 12
MLP-PSO 1.36 132 088 23 1.12 110 092 12 118 119 092 15
RBFNN-PSO 145 140 0.86 25 1.16 114 090 15 1.19 114 090 17
SVM- PSO 1.48 142 084 27 119 117 0.89 17 125 1.18 089 19
ANFIS 123 120 086 29 1.19 118 0.88 12 116 119 088 17



MLP 1.42 139 085 31 121 119 087 14 123 120 087 19
RBFNN 151 141 083 33 129 123 086 19 126 124 086 22
SVM 162 155 081 35 1.32 130 0.85 20 129 128 085 25
Table 5: Statistical results of models performance in testing phase.
Model 5cm 10cm 30 cm

RMSE MAE NSE PBIAS RMSE MAE NSE PBIAS RMSE MAE NSE PBIAS

G (S (%) ) (S (%) Q) (G (%)
ANFIS-SFO 1.18 1.05 093 7 0.824 0.822 098 1 0.911 0.905 0.97 2
MLP-SFO 123 112 092 9 0.835 0.832 0.97 3 0.914 0.909 0.96 4
RBFNN-SFO 125 1.18 0.89 11 0.845 0.843 0.95 5 0.915 0.912 0.94 6
SVM-SFO 135 120 087 14 0.856 0.854 0.94 6 0.917 0.914 0.93 7
ANFIS-SSA 1.17 112 092 16 0.832 0.828 0.97 2 0.914 0911 096 9
MLP- SSA 129 119 090 18 0.839 0.837 095 5 0.919 0.918 0.94 10
RBFNN-SSA 130 1.22 086 20 0.849 0.842 0.94 8 0.933 0.932 091 12
SVM- SSA 142 139 085 22 0.860 0.857 0.93 9 0.935 0.931 0.90 14
ANFIS-FFA 119 116 082 23 0.878 0.876 0.93 3 0.955 0.951 0.92 4
MLP-FFA 1.37 122 081 24 0.882 0.880 091 5 0.962 0.958 0.90 6
RBFNN-FFA 144 127 084 26 0.893 0.891 0.90 7 0.969 0.967 0.89 8
SVM-FFA 1.47 142 083 28 0.896 0.892 0.88 10 0.976 0.972 0.87 15
ANFIS-PSO 122 126 088 29 0.901 0.899 0.92 5 0.980 0.976 091 7
MLP-PSO 1.39 135 087 30 0.923 0.912 0.89 8 0.983 0.981 0.88 9
RBFNN-PSO 148 143 084 32 0.935 0932 0.88 9 0.985 0.983 0.86 11
SVM- PSO 151 145 082 33 0.945 0.935 0.86 11 0.990 0.986 0.84 12
ANFIS 125 123 081 35 0.934 0931 090 6 1.002 1.001 0.89 8
MLP 150 145 083 37 0.932 0930 0.88 9 1.040 1.030 0.87 10
RBFNN 153 147 080 39 0.945 0.941 0.87 12 1.063 1.055 0.86 15
SVM 165 152 0.80 40 0.978 0.971 0.85 14 1.069 1.054 0.83 17




Table 6: Criteria for convergence raté developed models

Model CPU time (s) Number of functional evaluation (NFE): Populatior
size* number of iterations

5cm 10 cm 30cm 5cm 10 cm 30 cm
ANFIS-SFO 208 212 214 12222 12341 12124
MLP-SFO 212 216 217 12453 12562 12455
RBFNN-SFO 224 218 223 12654 12673 12876
SVM-SFO 229 221 232 13786 13784 13457
ANFIS-SSA 230 224 234 14569 13812 15678
MLP- SSA 232 234 236 14987 14913 17899
RBFNN- SSA 234 237 238 15123 15454 18244
SVM- SSA 246 241 239 16223 15675 19215
ANFIS-FFA 267 243 240 17124 15926 20202
MLP-FFA 312 245 242 17225 16222 21003
RBFNN-FFA 314 267 243 17346 17223 22002
SVM-FFA 324 278 245 17678 18224 24002
ANFIS-PSO 328 289 246 17567 19225 26002
MLP-PSO 332 310 247 18223 20123 28001
RBFNN-PSO 335 312 251 18344 20224 32002
SVM- PSO 337 321 253 18565 20263 34003
ANFIS 338 324 255 19227 20352 35004
MLP 339 325 256 20128 20591 38005
RBFNN 340 326 267 22129 22212 40006

SVM 345 329 267 22243 22453 42007
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e Step 1: Dataset

AGathering datasets from Sirjan and Sanandaj stations

mel  Step 2: Gamma Test (GT)

ASelection the best input combination

mmml  Step 3: Wavelet coherence analysis

ADetermine the scale and tirspecific correlations between optimal meteorological
variables and soil temperature

sy Step 4: Taguchi search

ADetermine the best values of optimization algorithm parameters

s Step 5: Hybridizing models

Astandalone machine learning models: ANFIS, MLP, RBFNN, SVM
AMetaheuristic optimization algorithms: SFO, SSA, FFA, PSO

=y Step 6: Evaluation of models

AEvaluation criteria for accuracy: RMSE, MAE, BPIAS, NSE, R

AEvaluation criteria for convergence rate: CPU time, number of functional evaluation
(NFE)

mamet  Step 7: GLUE approach

AUncertainty analysis of models to investigate the prediction stability

Fig. 4 Schematic diagram representithg general procedures of the proposed method



Fig. 5The coherence value for meteorological parameters in Sirjan at 5 cm soil depth



