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Abstract  

Accurate prediction of soil temperature (Ts) is critical for efficient soil, water and field crop 

management. In this study, hourly Ts variations at  5, 10, and 30 cm soil depth were predicted for 

an arid site (Sirjan) and a semi-humid site (Sanandaj) in Iran. Existing machine learning models 

have high performance, but suffer from uncertainty and instability in prediction. Therefore, GLUE 

approach was implemented to quantify model uncertainty, while wavelet coherence was used to 

assess interactions between Ts and meteorological parameters. Standalone machine learning 

models (adaptive neuron fuzzy interface system (ANFIS), support vector machine model (SVM), 

radial basis function neural network (RBFNN), and multilayer perceptron (MLP)) were hybridized 
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with four optimization algorithms (sunflower optimization (SFO), firefly algorithm (FFA), salp 

swarm algorithm (SSA), particle swarm optimization (PSO)) to improve Ts prediction accuracy 

and reduce model uncertainty. For both arid and semi-humid sites, ANFIS-SFO produced the most 

accurate performance at studied soil depths. At best, hybridization with SFO (ANFIS-SFO, MLP-

SFO, RBFNN-SFO, SVM-SFO) decreased RMSE by 5.6%, 18%, 18.3%, and 18.2% at 5 cm, 

11.8%, 10.4%, 10.6%, and 12.5% at 10 cm, and 9.1%, 12.1%, 13.9%, and 14.2% at 30 cm soil 

depth compared with the respective standalone models. GLUE analysis confirmed the superiority 

of hybrid models over the standalone models, while the hybrid models decreased the uncertainty 

in Ts predictions. ANFIS-SFO covered 95%, 94%, and 96% observation data at 5, 10, and 30 cm 

soli depths, respectively. Wavelet coherence analysis demonstrated that air temperature, relative 

humidity, and solar radiation, but not wind speed, had high coherence with Ts at different soil 

depths at both sites, and meteorological parameters mostly influenced Ts in upper soil layers. In 

conclusion, uncertainty analysis is a necessary and powerful technique to obtain an accurate and 

realistic prediction of Ts. In contrast, wavelet coherence analysis is a useful tool to investigate the 

most effective variables that strongly affect predictions.       
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1- Introduction  

Soil temperature (Ts) is an influential and vital parameter in sustainable agriculture and 

geosciences practices since it greatly influences physical, geological, chemical, and 

microbiological processes in the soil (Feng et al. 2019; Alizamir et al. 2020). Thus, more research 



about Ts is required for soil, plant, and water planning and managing (Zeynoddin et al. 2020), and 

also is essential for hydrological, meteorological, and environmental modeling (Bonakdari et al. 

2019). Soil temperature is dependent on meteorological factors (solar radiation, air temperature, 

precipitation, wind speed, pressure gradient), and there are relationships between them (Lehnert 

2014; Stajkowski et al. 2020).  

Direct measurement of hourly Ts using sensors and instruments is expensive in Iran. Therefore, Ts 

measurements are not easily available for developing countries, such as Iran (Mehdizadeh et al., 

2020a). In addition, inaccurate measurement of Ts causes some instability and uncertainty, and 

thus precise monitoring and managing of agricultural plans will be complex. With this viewpoint, 

indirect methods, including analytical, numerical, and data-driven models, have been suggested 

for the accurate prediction of Ts. However, analytical models cannot reproduce the complex 

relationships between Ts and climatological variables, especially for different climates and global 

scales (Plauborg, 2002). Numerical models use finite volume and finite element methods to solve 

heat transfer laws and are highly complex (Samadianfard et al. 2018b; Sofyan et al. 2020).  

As an alternative, intelligence machine learning models can predict Ts and describe the interactions 

between Ts and other predictor variables, such as meteorological parameters (Moazenzadeh and 

Mohammadi 2019; Feng et al. 2019). Furthermore, current advances in intelligence machine 

learning models improve their capability for modelling nonlinear relationships (Padarian et al. 

2020) to accurately predict processes and quantify the uncertainties.  

Recently, machine learning approaches such as adaptive neuron fuzzy inference system (ANFIS) 

(Abyaneh et al. 2016; Citakoglu 2017; Singh et al. 2018; Penghui et al. 2020), multilayer 

perceptron (MLP) (Heddam, 2019; Zeynoddin et al. 2019; Sihag et al. 2020), support vector 

machine (SVM) (Xing et al. 2018; Delbari et al. 2019; Shamshirband et al. 2020), and radial basis 



function neural network (RBFNN) (Kisi et al. 2015) have been widely used in geosciences 

engineering and Ts prediction owning to extra fast training ability of nonlinear and hidden 

relationships.  

However, most machine learning models are prone to membership function learning problems, 

premature convergence, over-fitting, and low convergence speed (Qasem et al. 2019; Zhao et al. 

2019; Mehdizadeh et al. 2020a). Therefore, several studies have proposed hybridizing standalone 

machine learning approaches using meta-heuristic algorithms to optimize the performance of 

conventional models and reduce computation cost (Seifi and Soroush 2020; Abualigah et al. 

2021b).  

Quick data-processing speed, achieving a global optimum, robust generalization (Moazenzadeh 

and Mohammadi 2019), powerful searchability, and gradient-free mechanisms (Abualigah et al. 

2021a; Abualigah and Diabat 2021) are advantages of integrated machine learning-optimization 

algorithm techniques over conventional models. Samadianfard et al. (2018b) developed a coupled 

MLP-firefly algorithm (MLP-FFA) model for monthly Ts estimation in the 0-100 cm soil layer in 

Adana, Turkey, using the climate variables Ta, atmospheric pressure (Pa), and solar radiation (Rs), 

and found that it performed better than the standalone MLP model, especially at 20 cm soil depth. 

Moazenzadeh and Mohammadi (2019) estimated daily Ts at six soil depths in Maragheh, Iran, 

using two standalone models, elman neural network (ENN) and support vector regression (SVR), 

and four coupled models, (SVR-FFA), SVR-krill herd algorithm (SVR-KHA), ENN-FFA, and 

ENN-KHA. They found that all models had their highest accuracy at 10 cm soil depth and that 

SVR-KHA showed the best estimation accuracy based on Ta, relative humidity (RH), and sunshine 

hours. Mehdizadeh et al. (2020b) hybridized the ENN model with two algorithms, ant colony 

optimization (ACO) and gravitational search algorithm (GSA), to predict daily Ts at four soil 



depths in Rasht and Isfahan, Iran, and found that ENN-GSA produced the most accurate 

predictions at all depths. Penghui et al. (2020) found that mutation Salp Swarm Algorithm and 

Grasshopper Optimization Algorithm (ANFIS-mSG) enhanced the estimation accuracy of ANFIS 

in predicting daily Ts at 10 cm soil depth based on maximum, mean, and minimum air temperature. 

Hourly evaluation of Ts is essential for high-resolution modelling within hydrology, geosciences, 

ecology, and crop models as a decision-support system to achieve better crop yield (Qi et al. 2016; 

Sanikhani et al. 2018). However, since hourly Ts measurement with instruments is difficult, 

previous studies have generally used daily or monthly datasets in Ts prediction.  

To our knowledge, few studies have investigated the precision of conventional machine learning 

models in predicting Ts at an hourly scale (Araghi et al. 2017; Feng et al. 2019; Li et al. 2020), 

while none has investigated model hybridization with integrated optimization algorithms to 

improve hourly Ts estimation in different climates.  

The problem of hybrid meta-heuristic models is complex structure that may cause some instability 

and uncertainty in predictions. Despite high attention to apply hybrid meta-heuristic models in Ts 

prediction, hybrid model uncertainties have large effects on the accuracy and reliability of 

predictions (Seifi et al. 2021). Uncertainty analysis is a robust post-processing step to assess the 

reliability of different hybrid models (Seifi et al. 2020a,b). However, previous studies on Ts 

prediction are primarily based on standalone machine learning models and consider 

straightforward prediction, with no detailed investigation of the associated uncertainty and 

coherence analysis in different climates of Iran.  

To the best of our knowledge, the assessment of uncertainty associated with Ts modelling has been 

disregarded. Hence, more studies are needed to assess the stability of predictions. Uncertainty 

analysis provides a comprehensive evaluation of hybrid models behaviors and often calculates a 



95% confidence interval (95% CI) to reflect estimations covering. With this viewpoint, generalized 

likelihood uncertainty estimation (GLUE) was applied in this study for uncertainty analysis to 

compare the validity and reliability of the models. The GLUE approach was widely used for 

investigating model uncertainty and sensitivity evaluation of parameters in hydrological studies. 

Previous studies indicated that the GLUE approach has high potential to identify model 

uncertainty. It is a more suitable technique than Markov Chain Monte Carlo for comparing 

predictions of models based on uncertainty (Sun et al. 2016).      

Inferring the relationships between climate variables and hourly Ts data can better understand soil 

temperature response to model structure. Monitoring and evaluating various effects of 

meteorological variables on hourly Ts prediction and uncertainty is informative and can be used as 

a decision tool.  

However, there is limited information about the relationships between hourly Ts and 

meteorological variables over time in agricultural areas. Furthermore, the effect of meteorological 

variables on hourly Ts differs with soil depth and time. In this context, it is valuable and important 

using mathematical computation tools to find the behavior of hourly Ts at different soil depths 

relative to meteorological variables.  

More essentially, there is a need for engineers and predictors to understand which meteorological 

variable has impressive relation with hourly Ts and to determine variables with a detrimental role 

in predicting Ts. Recently, statistical techniques are highly applied to investigate the relationship 

between variables.  

Wavelet analysis is a robust non-parametric computational change detection approach in 

environmental modelling to discover relationships in non-stationary systems (Li et al., 2019). 

Moreover, wavelet coherence analysis implements two aims of (1) dependencies analysis between 



two datasets and (2) indicating the time point of synchronizing and high correlation between two 

datasets (Damos and Caballero 2021).  

Therefore, the application of wavelet coherence analysis as a feature selection technique eliminates 

unnecessary and uninformative features (Abualigah 2019). Wavelet coherence analysis has been 

applied in different studies for relations between environmental factors such as winter and spring 

thaw CO2 and N2O fluxes and Ts (Furon et al. 2008), meteorological parameters and soli water 

content (Li et al. 2019), soil moisture and eco-hydrometric factors of rainfall and 

evapotranspiration (Lee and Kim 2019), winter precipitation and three oceanic sources (Ebrahimi 

et al. 2021).  

In the present study, wavelet coherence analysis examines the relation between hourly Ts and 

meteorological variables of Ta, RH, wind speed (U), Rs during the time. To our knowledge, based 

on a literature review, no previous study has applied wavelet coherence analysis to investigate the 

influences of meteorological variables on the scale-dependence of hourly Ts in different soil 

depths.  

Despite the popularity of hybrid optimization models for daily and monthly Ts prediction, few 

studies have compared hybrid model precision in predicting hourly Ts, primarily by analyzing 

related uncertainty and investigating significant meteorological factors. There have also been few 

accuracy evaluations of hybrid ANFIS and SVM models in estimating hourly Ts in Iran. Therefore, 

four machine learning models of ANFIS, MLP, SVM, and RBFNN were hybridized with four bio-

inspired meta-heuristic algorithms (sunflower optimization (SFO), salp swarm algorithm (SSA), 

FFA, particle swarm optimization (PSO)) to predict hourly Ts at three soil depths in two climate 

zones.  



The main and primary objective of this study is to determine the accuracy and feasibility of 

developed hybrid models for predicting hourly Ts. In particular, according to the before review 

and explanations, the major contributions of the present study can be expressed as follow. 

1) The innovation and critical contributions of this is performing a robust GLUE approach to 

identify hybrid models uncertainty for predicting hourly Ts at different soil depths. 

2) Another significant and novel contribution is determining the relationships between hourly 

Ts and Ta, U, RH, and Rs at different soil depths, using wavelet coherence analysis. 

3) Develop and compare ANFIS, MLP, RBFNN, and SVM hybridized with the SFO, SSA, 

FFA, and PSO algorithms in predicting hourly Ts at three soil depths in two climate zones. 

4) Select best values of optimization algorithm parameters using the Taguchi method. 

          

2- Material s and Methods 

2-1- Study area and dataset 

Two datasets of measured hourly Ts were chosen to evaluate the hybrid and standalone models. 

The first dataset was obtained from an automatic monitoring station in a pistachio orchard (55ę82⇔ 

N, 29ę30⇔ E) in Sirjan city, Iran (Fig. 1), where information about Ts at soil depth is essential in 

disease control, evaporation modelling, irrigation management, and frost protection. Sirjan has an 

arid climate, with a mean annual air temperature of 27ęC and a mean annual rainfall of 40 mm. 

Hourly Ts and meteorological parameters (Ta, Rs, U, RH) were monitored from 12 September 2012 

to 17 January 2012.  

From 1966 data obtained 75% hourly data were selected for training the models, and the remaining 

25% hourly data were used for model testing. Different percentages of the total dataset were 

examined for training and testing subsets to calculate RMSE. Since 75% for training and 25% for 



testing had the lowest RMSE, these percentages were selected as desired subsets for soil 

temperature modelling.    

The second Ts dataset was obtained from a synoptic station in Sanandaj (35.33°N, 47.00°E, 1373.4 

m height), western Iran (Fig. 1). This region has a semi-humid climate, based on the calculated 

aridity index using 30-year meteorological data (Zolfaghari et al. 2016), with hot conditions in 

summer and very cold winters.  

The mean annual air temperature measured at Sanandaj station is 13.4ęC, and the mean annual 

rainfall is 450 mm. Hourly Ts and meteorological parameters (Ta, Rs, U, RH) were recorded from 

9 July 2009 to 12 October 2009. A subset from 75% hourly Ts data was selected and used for 

training the models, while 25% of hourly Ts data were used for testing.  

Time series plots of Ta and hourly Ts at three depths (5, 10, and 30 cm) in the soil at Sirjan and 

Sanandaj revealed that temperature variations had a decreasing trend at all soil depths (Fig. 2). The 

most significant difference in temperature between initial and final points was at 5 cm soil depth 

(15ęC) in Sirjan, while in Sanandaj station, it was 21 ęC at 10 cm and 19ęC at 30 cm soil depth. 

Statistical characteristics of the measured meteorological and Ts data are given in Table 1.  

 

2-2- Generalized likelihood uncertainty estimation (GLUE) 

The GLUE analysis was performed to investigate predictive model reliability. The analysis has 

three important levels (Sun et al. 2016): 

Level 1: Random sampling is used to create many sampling sets from prior distribution of input 

data.  

Level 2: Likelihood value is calculated from model runs and compared with a particular threshold 

value to evaluate each input parameter as behavioral (value above the threshold likelihood) or non-



behavioral (value below the threshold likelihood). Behavioral parameters are retained to judge the 

models. The likelihood is calculated as: 

ὒ—ȿὣ Ὡὼὴ
ὔ„

„
 

(1) 

where N is an adjustable parameter, „  is the error variance for the i th model, „  is the variance 

of observations, — is the parameter set, and ὒ—ȿὣ is the likelihood measure for the i th model 

calculated with the observations Y.  

Level 3: Simulation weights for behavioral parameter sets are rescaled, and the cumulative 

weighted distribution of estimations is used in quantile estimation for uncertainty prediction:      

‮
ὒ—

В ὒ—
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where .atad fo rebmun eht si n dna ,thgiew doohilekil a si ‮  

Two indices, p and r, are used to quantify model uncertainty, where p is the percentage of bracketed 

observations at 95% prediction uncertainty (95PPU), and r is the mean 95PPU range, separated 

using the standard deviation of observations (Seifi et al. 2020a):  

ὴ ρππ
ὧέόὲὸὝȿὝ Ὕ Ὕ

ὔ
 

(3) 

ὶ
ρ

ὔ „
Ὕ Ὕ  

(4) 

where N is the number of observations, „ is the standard deviation of observations, and Ὕ  and 

Ὕ  are the lower and upper boundary of the 95% prediction uncertainty, respectively. Lower 

values of r and higher values for p indicate lower uncertainty. In this study, the GLUE technique's 

spectral responses were used to assess variations in r and p. 

 



2-3- Gamma Test 

Before training the standalone and hybrid models, the best input combination was selected using 

Gamma Test (GT) for two stations. Recently, GT approach has been widely used in different 

research fields such as rainfall runoff modelling (Singh et al., 2018), suspended sediment load 

prediction (Panahi et al., 2021), optimal design of groundwater monitoring networks (Azadi et al., 

2020), predicting groundwater level (Sharafati et al., 2020), and predicting evapotranspiration 

(Seifi and Riahi, 2020).  

Han et al. (2010) illustrated that the GT approach effectively reduces model development workload 

over trial and error procedures. In this approach, the main important input variables can be ranked 

by calculating Vratio index as the following steps (Sharafati et al. 2020): 

(1) Determine output (ώ) and input (ὼ) values where ρ Ὥ ὓ. 

(2) Compute the delta function as ‏ Ὧ В ὼȟ ὼ   ρ Ὧ ὴ, where |é| is 

the distance of Eulirean and ὼȟ  is the kth nearest neighbors for each xi.  

(3) Calculate the gamma function as ‎ Ὧ В ώ ȟ ώ   ρ Ὧ ὴ, where 

ώȟ  is the kth nearest neighbors for each yi. 

(4) Consider regression line for points of ‏ Ὧȟ‎ Ὧ  to calculate gamma statistic (ũ) as: 

‎ ὃ‏ ῲ. 

(5) Calculate the Vratio index as ὠ  , where „ ώ indicates the target outputs 

variance. The ũ and Vratio values close to 1 show a poor model performance.  

 



2-4- Wavelet coherence analysis in interaction analysis 

Wavelet coherence analysis of hourly Ts and the four meteorological variables dataset are used to 

determine the scale effects of meteorological variables in different soil depths. Ts depends on 

different meteorological variables such as Ta, RH, U, and Rs. Wavelet coherence analysis 

calculates the coherence value of cross-wavelet transform among two time series in the time-

frequency domain (Lee and Kim 2019). The continuous wavelet transformation (CWT) of a factor 

over time (ὣȟὭ ρȟςȟȣȟὔ) and uniform time step (ŭt) is presented as: 

ὡ
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ί
ὣ• Ὦ ρ
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(5) 

where •  is the basic wavelet function and s is the scale. ὡ ί is defined as ὥ Ὥὦ; where a is 

the real component and b is the imaginary component of ὡ ί.  

The Morlet wavelet is defined as: 

•– “ ȾὩ Ȣ  (6) 

where ɤ is the dimensionless frequency and ɖ is the dimensionless time with equation of – ίȾὸ.     

The cross-wavelet transform between hourly Ts and meteorological variables over time can be 

written as: 

ȿὡ ίȿ ὡ ίὡ ί  (7) 

where ὡ  and ὡ  are the wavelet coefficients of Ts and meteorological parameters in the time 

series X and Y, respectively, ὡ ί is the cross-wavelet power spectrum of X and Y, and ὡ ί 

is the complex conjugate of ὡ ί.      

In the present case, wavelet coherence between Ts and meteorological variables at each scale and 

occasion is calculated as (Lee and Kim 2019): 



ὅέὬὩὶὩὲὧὩ
Ὓί ὡ ί

Ὓί ȿὡ ίȿὛί ȿὡ ίȿ
 

(8) 

where S is the smoothing operator and can be defined as: 

Ὓὡ Ὓ Ὓ ὡ ίȟ†  (9) 

where † is the occasion, Sscale is smoothing along with the wavelet scale axis, and Ὓ is smoothing 

in time. 

The normalized real Morlet wavelet can be written as: 

ρ
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(10) 

Thus, the smoothing across occasions and smoothing across the scales can be written as:   
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(11) 
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where m is the number of terms on each symmetrical half of the window, and   is the rectangle 

function. 

 

2-5- Machine learning and optimization algorithms description 

In the present study, four machine learning models, namely ANFIS, MLP, RBFNN, and SVM, 

were applied to predict hourly Ts. Also, four meta-heuristic optimization algorithms, including the 

SFO, FFA, SSA, and PSO were hybridized with standalone machine learning models. 

 



2-4-1- Adaptive neuron fuzzy inference system (ANFIS) 

ANFIS model combines fuzzy logic and neural networks while benefiting from both methods' 

advantages (Najafi-Ghiri et al. 2019). In addition, ANFIS model uses the Takagi-Sugeno inference 

approach to generate fuzzy ñif-thenò rules, from input to output domains (Penghui et al. 2020).   

ὙόὰὩρȡὭὪ ὼ Ὥί ὃὥὲὨ ώ Ὥί ὄȟὸὬὩὲ Ὢ ὴὼ ήώ ὶ (13) 

ὙόὰὩςȡὭὪ ὼ Ὥί ὃὥὲὨ ώ Ὥί ὄȟὸὬὩὲ Ὢ ὴὼ ήώ ὶ (14) 

where A1, A2, B1, and B2 are membership functions and p1, q1, r1, and p2, q2, r2 are consequence 

parameters.   

The ANFIS structure contains five layers with different inputs and one output. The structure of 

ANFIS model is summarized in the following steps: 

Layer 1: each node adjusts to a function parameter and produces a value of membership degree 

using the bell membership function. 

ὕ ‘ ὼȟ    Ὥ ρȟς (15) 

ὕ ‘ ώȟ    Ὥ σȟτ (16) 
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where ai, ci, and bi are the membership values. 

Layer 2: the output of each node is defined that is input signals production to the node and shows 

a firing strength for each rule.   

ὕ ‘ ὼ ‘ ώ (18) 

Layer 3: the output of this layer calculates the ratio of strength for i th rule to the sum strength of 

all rules. 



ὕ ύ
‫

В ‫
 (19) 

Layer 4: the adaptive nodes are calculated in this layer. 

ὕ ύὪ ύ ὴὼ ήώ ὶ  (20) 

Layer 5: the network output is computed in this layer. 

ὕ ύὪ 
(21) 

 

2-4-2- Multilayer perceptron (MLP) model  

MLP is a feedforward supervised neural network that has been applied successfully for complex 

and nonlinear problems. The backpropagation learning algorithm is commonly used for training 

MLP models, but it may get trapped in a local optimum (Pouladi et al. 2019). The MLP model 

uses multiple layers with a nonlinear activation function to learn the relationship between input 

and output datasets. The first layer (input layer) contains the inputs to the MLP model, while the 

middle layers (hidden layers) have several neurons. Each neuron performs a weighted summation 

of inputs. The activation functions are used to calculate the inner product of input parameters and 

adjustable weight vectors of synapses (Pouladi et al. 2019). More details about MLP can be found 

in Kisi et al. (2015).  

  

2-4-3- Radial basis function neural network (RBFNN) 

The RBFNN model is a particular type of ANN model that has been widely used for modelling 

hydrological variables such as streamflow, runoff, temperature, drought, and groundwater level. 

The main difference between RBFNN and feedforward multilayer ANN is the transfer function 

properties employed in the hidden layers (Walczak and Massart 2000). RBFNN contains three 



layers in its structure. The first layer receives the input vector data, where the hidden layers include 

several nodes and a nonlinear transfer function (Tayebi et al. 2019). Then, the Euclidean norm 

(distance) associated with the hidden layerôs input vector and center is computed by the activation 

function related to each hidden neuron. Commonly, the hidden layers contain the nonlinear radial 

basis Gaussian function and another activation function placed in the last layer. More details about 

RBFNN can be found in Kisi et al. (2015). 

 

2-4-4- Support vector machine (SVM) 

SVM was initially introduced by Cortes and Vapnik (1995) and has been widely used for both 

regression and classification analysis due to its advantage in minimizing model complexity and 

estimation error simultaneously (Zheng et al. 2020). The SVM model uses different kernel 

functions to estimate the regressions, implicitly converting inputs to high-dimensional feature 

space using a hyper-plane (Xing et al. 2018). The SVM equation is: 

Ὢὢ ‫Ȣ•ὢ ὦ (22) 

where Ὢὢ  is a deterministic function, •ὼ  is a nonlinear transferring the input vector, is a ‫ 

vector of weight coefficients, and b is the bias.  

The b and values are determined by minimizing risk structure-function. To reduce the ‫ 

complexity and obtain a more robust model, slack variables ‚ȟ‚z can be used in the risk structure-

function equation: 
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(23) 

where ‐ is intensive loss value, ώis the i th output, and ὅis the cost constant.   



Lagrange multipliers (‌ and ‌ )z can be applied for solving eq. 23, with the solution written as 

follows using kernel function (ὑὢȟὢ): 

Ὢὢ ‌ ‌ᶻ ὑὢȟὢ ὦ 
(24) 

The radial basis function (ὑὢȟὢ Ὡὼὴ‎ᴁὢ ὢᴁ ) is widely used for SVM models.    

In this study, four optimization algorithms of SFO, FFA, PSO, and SSA are applied to integrate 

with standalone machine learning models and enhance hourly Ts prediction accuracy.   

     

2-4-5- Sunflower optimization algorithm (SFO)  

SFO is a new optimization algorithm proposed by Yang (2012) inspired by the solar tracking of 

sunflower heads to enhance pollination. SFO uses inverse square law radiation (ISLR) for 

optimization, based on the simple assumption that each flower only generates one gamete of pollen 

and reproduces individually (Qais et al. 2019). When the sunlight falls more obliquely, the 

sunflower receives less heat from the sun, expressed by the ISLR as: 

ὗ
ὖ

τ“ὶ
 

(25) 

where P is the power of source and r i is the distance between the current and the best i plant.  

The redirection of position by the sunflower is computed as: 

Ὠ ‗ ὖᴁὢ ὢ ᴁ ᴁὢ ὢ ᴁ (26) 

where ‗ is the inertial displacement of the sunflower and is constant, and ὢ is the current location 

of the plant, and ὖᴁὢ ὢ ᴁ is the pollution probability, where i th sunflower cross-pollinates 

with another near i-1th sunflower to generate a new individual in an updated location.   

It is essential to limit the maximum step of individuals by:  
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(27) 

where dmax is the maximum step, ὢ  is the upper bound value, Xmin is the lower bound value, 

and Npop is the number of sunflowers in the overall population. 

Finally, the next population is updated as: 

ὢᴆ ὢᴆ Ὠ ίᴆ (28) 
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(29) 

where ὢᴆ is the position of sunflower i+1 and ὢᶻis the best location of the sunflower.  

The principal steps of the SFO model can be written as: 

(1) initialize algorithm parameter of population size. The initial location of the sunflower is 

initialized in the initial matrix of population. Each location shows the initial value of sunflower. 

(2) evaluate the objective function for solutions. The sun's best solution is where the sun guides 

the solutions towards the best location during the optimization process. The other solutions modify 

their orientation towards the sun.   

(3) redirect positions using eq. 25.  

(4) update the position of each search solution using eq. 29. 

(5) investigate convergence criterion and finally, determine the optimal value. 

 

2-4-6- Firefly algorithm (FFA)  

Yang (2010) first developed FFA, inspired by the light emission capability of fireflies. The 

attractiveness of one firefly to another is related to its brightness to neighboring fireflies, where a 

less bright firefly is attracted to a brighter one (Alor et al. 2019; Riahi-Madvar et al. 2020). The 



excellent information-sharing mechanism is one of the advantages of FFA. The firefly mechanism 

is formulated as:   

Ὅὶ ὍὩ  (30) 

‍ὶ ‍Ὡ  (31) 

where ‍ὶ  is the attractiveness of a firefly, ‍ is the attractiveness of firefly at r=0 , ‎ is the 

absorption coefficient in the range of 0 and 1, Ὅὶ  is the light intensity, Ὅ is the light intensity 

at r=0 , and the distance between two fireflies i, j at locations of xi and xj can be defined as ὶ

ὼ ὼ . The firefly i is attracted by firefly j and updates its location as: 

ῳὼ ‍Ὡ ὼ ὼ ‟‘ 

ὼ ὼ ῳὼ 

(32) 

where ‟ is the randomization parameter, and ‘ is a vector of random parameters.  

The implementation steps of the FFA can be described as follows: 

(1) generate the initial population of fireflies to give the initial location. 

(2) evaluate the objective function to identify brighter firefly. 

(3) calculate the attractiveness using eq. 31. 

(4) update the location of firefly (eq. 32) by moving a firefly i towards other brighter fireflies.   

(4) move a firefly i towards other brighter fireflies, the position is updated by Equation.  

(5) evaluate solutions and update brightness. 

(6) terminate the optimization process if the stop criterion is met. 

 



2-4-7- Salp swarm algorithm (SSA) 

SSA is a new meta-heuristic optimization algorithm inspired by the collective behavior of salps 

(sea squirts), introduced by Mirjalili et al. (2017). Adaptability, robustness, and scalability are the 

most important advantages of SSA. Based on the individualôs location in the chain, salps are 

divided into leaders or followers in SSA. The followers follow the leader to guide them in their 

movements. The SSA starts by initializing the salp population. Then, the leader position is updated 

as: 

ὼ
ώ ὶ όὦ ὰὦὶ ὰὦ ᴺὶ π

ώ ὶ όὦ ὰὦὶ ὰὦ ᴺὶ π
 

(33) 

where ὼ is the leaderôs position, yi is the food source, ὰὦ and όὦ are the lower and upper bounds, 

respectively, r3 and r2 are random numbers, and r1 is computed as: 

ὶ ςὩ  
(34) 

where l is the existing iteration, and L is the maximum number of iterations. SSA uses the 

parameter r1 to increase stability in exploration and exploitation capability. For each follower, the 

position is updated as: 

ὼ
ρ

ς
ὼ ὼ  

(35) 

where ὼ is the location of j th salp in the ith dimension.  

The implementation steps of the SSA can be described as follows 

(1) initialize a population of salps to give the initial location of salps 

(2) compute the objective solution for each solution 

(3) update the location of a best salp (leader) 

(4) update the location of followers by eq. 35. 

(5) terminate the optimization process to reach the best values of decision variables.   



 

2-4-8- Particle swarm optimization (PSO) 

PSO is a well-established stochastic/random search approach related to the swarm  and inspired by 

the particleôs social behavior. Each particle in the swarm protects the updating of search behavior 

according to all other particles' learning experiences. In each generation, information is integrated 

by particles to set the velocity on every dimension. The position and velocity of particles are 

updated as: 

ὺȟ –z ὺȟ ὧ ὶzὥὲὨzὴȟ ὼȟ ὧ ὶzὥὲὨzὴȟ ὼȟ  (36) 

ὼȟ ὼȟ ὺȟ  (37) 

where ὺȟ  is the velocity of i th particle at iteration t+1, – is the weight inertia, ὧ ÁÎÄ ὧ are 

acceleration coefficients, ὼȟ  is the location of i th particle at iteration t+1, ὴȟ is the optimal 

location experienced by particles, and  ὴȟ is the optimal location experienced by any particle. 

The principal steps of the PSO model can be written as: 

(1) initialize initial location and velocity of particles 

(2) compute objective function during each iteration 

(3) update the velocity of particles 

(4) update the location of particles by eq. 37. 

(5) continue the optimization process until the stop criterion is met. 

  

2-4-9- Hybridizing ANFIS, MLP, RBFNN, and SVM with optimization algorithms 

In this study, SFO, FFA, SSA, and PSO were used to fine-tune the parameters of the ANFIS, MLP, 

RBFNN, and SVM models and to improve the convergence rate. By applying GT, the best input 



combination was selected for both stations and the training of models was performed using the 

selected best input combination.  

The input data were trained using optimization algorithms with a random selection of agents 

(particles, fireflies, salps, and sunflowers) and determined each individualôs position. The position 

of agents shows the values of the premise (ai, bi, ci) and consequent (p1, q1, r1, p2, q2, r2) parameters 

in the ANFIS model.  

The values of bias and weight connections for the MLP model; the width values and the hidden 

neuron center in the RBFNN model; and the values of width (‎), penalty (C), epsilon (Ů), and 

kernel function parameters in the SVM model. The algorithms used their operators to update the 

position of each agent.  

The initial values of the parameters were regarded as the initial positions of agents. The objective 

function of root mean square error (RMSE) was applied to verify model accuracy. The hybrid 

ANFIS, MLP, RBFNN, and SVM models continued until the minimum value of RMSE was 

detected, and algorithms were converged toward the optimal solutions (Abualigah et al., 2021b). 

The optimal values of model parameters were found in each update of the agentsô position.  

The robust design of random parameters included in the optimization algorithms is important to 

enhance model performance. In a novel approach, Taguchi search was used to select the best values 

of these random parameters. It is a powerful advanced technique that uses orthogonal array and 

signal to noise ratio (S/N) to minimize the number of experiments and greatly decrease the time, 

cost, and effort in finding optimal parameters of algorithms (Zhang et al. 2015).  

An orthogonal array table is created by calculating the total degree of freedom (DOF) based on the 

combined degree of freedom of all parameters (Canbolat et al. 2019; Bademlioglu et al. 2020). 

Based on the number of levels (L) and the number of parameters (NV), the total number of 



experiments is computed. The minimum number of experiments (N) is calculated as ὔ ρ

ὔὠὒ ρ. Thus, e.g., for the four parameters with four levels in the PSO algorithm, at least 13 

experiments should be conducted to discover the optimal values of PSO parameters, while without 

the Taguchi method, the total number of experiments would be 44. Thus, the Taguchi orthogonal 

array of L16 (43) was established.  

The S/N ratio is calculated as: 

Ὓ

ὔ
ρπὰέὫ

ρ

ὲ

ρ

ώ
 

(38) 

where n is the number of the case, and y is the performance characteristic performance value (the 

higher the S/N value, the better the ratio). S/N was used as a performance characteristic of each 

parameter in this study. 

The framework and flowchart of the work in this study are presented in Fig. 3, which also shows 

the general framework of the 16 hybrid models used to predict hourly Ts (ANFIS-SFO, ANFIS-

FFA, ANFIS-SSA, ANFIS-PSO, MLP-SFO, MLP-FFA, MLP-SSA, MLP-PSO, RBFNN-SFO, 

RBFNN-FFA, RBFNN-SSA, RBFNN-PSO, SVM-SFO, SVM-FFA, SVM-SSA, and SVM-PSO). 

Finally, a schematic diagram representing the general procedures of the proposed method is given 

in Fig. 4. 

 

2-6- Evaluation criteria  

Coefficient of determination (R2), RMSE, Nash-Sutcliffe efficiency (NSE), mean absolute error 

(MAE), and percentage bias (PBIAS) were used to assess the accuracy of the standalone and hybrid 

models (Moriasi et al. 2007; Moriasi et al., 2015):  
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(43) 

 where xi is the i th observed value, yi is the ith predicted value, ὼӶ and ώ are the mean value of 

observed and predicted values, respectively.   

 

3- Results and Discussion 

Wavelet coherence results for investigating the relationship and coherency between Ts and 

meteorological variables are summarized in section 3.1. Extracting the best values for optimization 

algorithm parameters in training the hybrid models using Taguchi search are presented in section 

3.2. In section 3.3, model's performance for predicting Ts and the results obtained at different sites 

and soil depths are compared. Finally, the uncertainty associated with the simulations, determined 

using the GLUE approach, is presented in section 3.4.  

 

3-1- Selection of the best input combination by Gamma Test 

To evaluate the potential of developed models in predicting hourly Ts, the employed dataset is 

divided into the training and testing sets equal to 75% and 25% of total data, respectively. The GT 



was used to construct and examine different input combinations by four meteorological variables 

of Ta, RH, U, and Rs. Table 2 shows the five optimal input combinations for any soil depth. The 

optimal input combination was selected using ũ and Vratio indices.  

As observed in Table 2, the input combination of mean air temperature, relative humidity, wind 

speed, and solar radiation had the least values of G and 
ratio

V at soil depth of 5 cm in Sirjan station. 

The results indicated that the input combination of mean air temperature, relative humidity, wind 

speed, and solar radiation was the best input scenario at depths 10 and 30 cm in Sanandaj station. 

Removing mean air temperature and solar radiation led to the high values of G and 
ratio

V  at soil 

depths of 5, 10, and 30 cm in both stations. The results indicated that the ũ and Vratio indices for 

four input combinations were lower than those of the other three input combinations.    

 

3-2- Wavelet coherence analysis  

To assess the importance of input vector selection in Ts simulation was considered using wavelet 

coherence analysis. The wavelet coherence between Ts and other climate variables (Ta, U, Rs, and 

RH) at 5, 10, and 30 soil depths is shown in Figures 5 and 6 for the period 0-1944 hours at 5 cm 

soil depth and 0-1000 hours at 10 and 30 cm soil depth.  

Five dominant scales (periodicity) of <4 h, 4-8 h, 8-16 h, 16-32 h, and 32-64 h were considered 

following the coherencies between Ts and meteorological variables. There was high coherence 

between Ta and Ts at scale 4-8 hours in the time domain 486-709 hours at 5 cm soil depth at Sirjan 

(Fig. 5).  

The coherence value between Ta and Ts at the mentioned scale and time was almost 0.8. Overall, 

Ta showed the highest correlation with Ts at 5 cm soil depth, confirming findings by Kisi et al. 

(2015) and Nanda et al. (2020). Analysis of the diagram indicated there was a few occasions with 



high coherences between U and Ts, and thus there was no significant coherence between U and Ts 

at different time.  

However, there was a significant relationship between Ts and Rs at scale of 28-34 hours, and 

between Ts and RH at scale of 28-34 hours, in the time domain 1252-1944 hours (Fig. 5). Overall, 

Ta, Rs, and RH showed variable coherence signals, while no significant coherence signal was 

observed at different time periodicities for U. Using WNN models, Samadianfard et al. (2018a) 

demonstrated that Ta and Rs have unquestionable effects on Ts prediction at 5, 10, 20, 30, 50, and 

100 soil depth at a synoptic station in Iran.   

To further analyze the results of wavelet coherence, the coherence values were plotted for different 

dominant scales of Ts. Fig. 6 shows the coherence at 10 and 30 cm soil depth for Sanandaj station. 

The maximum coherence between Ts at 10 and 30 cm soil depth and Ta was 0.8 and 0.7, 

respectively, at periodicity 8-16 hours in the time domain 0-1000 hours.  

There were no significant coherences between Ts and U in different periodicities at 10 and 30 cm 

soil depth. The maximum coherence between Ts and Rs at periodicity 4-8 hours in the time domain 

0-1000 hours was 0.9 and 0.7 at 10 and 30 cm depths. The highest coherence found equal to 0.9 at 

10 cm soil depth between RH and Ts at periodicity 8-16 hours in the time domain 0-1000 hours. 

These results indicate that wavelet coherence analysis can provide more quantitative evidence on 

periodicity and interaction of Ts with meteorological variables at different soil depths.  

 

3-3- Optimal model parameters derivation by Taguchi search 

The optimization parameters of the meta-heuristic algorithms of SFO, SSA, FFA, and PSO at 

different levels, and the associated S/N values, are shown in Table 3. The values of population 

size, c1, c2, inertia weight, and ɔ in optimization algorithms were derived based on the Taguchi 



method. After constructing an orthogonal array and calculating S/N ratio for each algorithm 

parameter, the optimal values were chosen (highest S/N ratio) (Table 3).  

The effect of each optimization algorithm process parameter was divided into four levels. For the 

PSO algorithm, the mean value of RMSE for population size varied from 1.12 to 1.54, inertia 

weight from 1.23 to 1.76, c1 from 1.12 to 1.45, and c2 from 1.37 to 1.45, and the best conditions 

were obtained at a value of 2, 4, 1, and 1, respectively. The greatest variation in S/N values was 

seen for inertia weight, i.e. PSO was mainly affected by inertia weight, which should be the main 

focus in model development.  

The most critical parameter for SSA, SFO, and FFA was r3, population size, and ɔ, respectively. 

The optimal value of r3, r2, and population size for SSA, determined by Taguchi search, was 0.5, 

0.8, and 400, respectively. For SFO, population size of 400 was most effective, while for FFA, ɔ 

had an optimal value of 0.8. These results indicate that Taguchi search can effectively and 

systematically provides robustness values in selection optimization parameters, replacing the trial-

and-error approach. It can be used in future studies of meta-heuristics to improve the ability and 

applicability of models. 

 

3-4- Performance analysis of models 

The performance of standalone ANFIS, MLP, RBFNN, and SVM and the hybrid models was 

evaluated based on statistical criteria and by comparison the predictions against measured hourly 

Ts at 5, 10, and 30 cm soil depth (Tables 4 and 5). Soil temperature was used as the target 

parameter, and corresponding Ta, U, Rs, and RH as input data for all models. At the training level, 

integration the SFO with ANFIS, SVM, RBFNN, and MLP led to better results.  



The standalone ANFIS model outperformed the other standalone SVM, RBFNN, and MLP 

models. All models provided the highest accuracy at 10 cm soil depth, and the lowest at 5 cm soil 

depth. However, the prediction accuracy in terms of RMSE, MAE, NSE, and PBIAS for the 

training level was lower for SVM-PSO than for the other hybrid ANFIS, SVM, MLP, and RBFNN 

models.  

It should be noted that the measured data at 5 cm depth were from the arid Sirjan site and the 

measured data at 10 and 30 cm soil depths from the semi-humid Sanandaj site. Table 5 shows the 

performance of the models in predicting hourly Ts in terms of RMSE (°C), MAE (°C), PBIAS (%) 

(optimal value=0), and NSE (optimal value=1) in the testing phase. Scatter plots and correlation 

comparisons between simulated and measured Ts' values at 5, 10, and 30 cm soil depths are 

presented in Fig. 7, 8, and 9, respectively.  

At 5 cm soil depth, ANFIS-SFO had the lowest error among all hybrid models (RMSE=1.18, 

MAE=1.05, PBIAS=7). ANFIS-SFO also had the lowest error among all models at 10 cm depth 

(RMSE=0.824, MAE=0.822, PBIAS=1, NSE=0.98) and at 30 cm depth (RMSE=0.911, 

MAE=0.905, PBIAS=2, NSE=0.97) (Table 5).  

The ANFIS model was the most accurate between standalone models, with RMSE=0.978 oC, 

MAE= 0.971 oC, NSE=0.85, and PBIAS=14% in the best case (at 10 cm soil depth). The ANFIS 

model has been shown previously to be superior in Ts prediction. For example, Citakoglu  (2017) 

reported that ANFIS was better (MAE=1.09, RMSE=1.99, R2=0.98) than the ANN model in 

estimating hourly Ts when using monthly minimum temperature, monthly maximum temperature, 

calendar month number, soil depth, and monthly precipitation as input data.  

As can be seen from Table 4, the SVM model had the highest error (highest MAE, RMSE, and 

PBIAS values, lowest NSE values) compared with all models at all soil depths. Nanda  et al. (2020) 



also found that SVM had the lowest precision compared to all machine learning models tested in 

hourly and half-hourly Ts prediction. The main reason for the low accuracy of SVM may be non-

linearity between several analyzed parameters. 

Comparison of the results at 10 and 30 cm depth indicated that the error in Ts prediction increased 

with depth, indicating that meteorological parameters mostly influenced soil temperature in the 

upper layers (Kazemi et al. 2018; Behmanesh and Mehdizadeh et al. 2017). Similarly, Nahvi et al. 

(2016) found that the precision of machine learning models in estimation of Ts in soils in Turkey 

and Iran declined from 10 cm to 100 cm depth but increased from 5 to 10 cm depth.  

Behmanesh and Mehdizadeh (2017) also found that the accuracy of machine learning models 

increased between 5 and 10 cm depth. In the present study, the highest accuracy was observed at 

10 cm depth for all hybrid and standalone models, as also found by Behmanesh and Mehdizadeh 

(2017) and Kisi et al. (2017). Among the models they studied, Kisi et al. (2017) found that ANFIS 

achieved the highest precision at 10 cm depth (RMSE=1.29) based on 25-year monthly dataset at 

10, 50, and 100 cm depth.  

Based on the results in Table 5, in this study the SFO algorithm increased the accuracy of 

standalone models by decreasing RMSE by 5.6% for ANFIS-SFO and 18.3% for RBFNN-SFO, 

both at 5 cm depth. The SSA algorithm decreased RMSE by 6.2% at 10 cm soil depth for MLP-

SSA and 15% for RBFNN-SSA at 5 cm soil depth. The FFA algorithm decreased RMSE by 3.3% 

at 10 cm depth for MLP-FFA and 10.9% at 5 cm depth for SVM-FFA. Similarly, Samadianfard et 

al. (2018b) found that integrated MLP-FFA and SVM-FFA models had significantly higher Ts 

prediction accuracy than the standalone MLP and SVM models at 5, 10, and 20 cm soil depth.  

Almost all predictions fell on the 1:1 line in the scatterplots, with R2 values >0.99 for all models 

(Figs. 7-9). The R2 value increased from 0.9958 to 0.9998, 0.9934 to 0.9993, and 0.9950 to 0.9998 



for all hybrid and standalone models at 5, 10, and 30 cm depth. All models had the most accurate 

performance for 10 cm soil depth and the worst for 5 cm soil depth (Figs. 7-9).  

This reflects the complexity and rapid changes in Ts at shallow depths. Overall, the ANFIS-SFO 

predictions were closest to the observed data, with the highest R2 and lowest error at each soil 

depth, confirming the suitability of ANFIS-SFO for estimating hourly Ts in regions with arid 

(Sirjan) and semi-humid (Sanandaj) climates. Abyaneh et al. (2016) presented that the artificial 

neural network models and co-active neuro-fuzzy inference system (CANFIS) had the high 

abilities for predicting soil temperature.   

Table 5 and Figures 7-9 show that the use of all meta-heuristic algorithms  (SFO, SSA, FFA, PSO) 

improved the accuracy of the corresponding standalone models. This may be due to more accurate 

searching and finding the best solution in the local and global spaces. This is in agreement with 

findings by Mehdizade et al. (2020a), Riahi-Madvar et al. (2020), and Shamshirband et al. (2020) 

that hybrid models show higher accuracy than conventional models.  

Samadianfard et al. (2018b) coupled MLP model with FFA method to estimate soil temperature. 

They showed that the hybrid MLP models performed better than the standalone MLP models. The 

error of MLP models at depth 20 cm was lower than those of MLP models at depth 50 cm. The 

current research results confirmed that the models had more accuracy at the depths 5 and 10 cm.   

Based on results from the present study, the ANFIS model integrated with a meta-heuristic 

optimization algorithm is highly recommended for estimating Ts at different soil depths in different 

climates. The developed hybrid ANFIS and MLP models in the current study provided lower 

RMSE and MAE values than previous studies. The results of the present study at 30 cm soil depth 

were more accurate than the results of Alizamir et al. (2020).  



In several prediction cases by conventional machine learning methods, the search domain become 

wider while the convergence rate decreases and then it may get trapped in local optimum. 

Therefore, optimizing the weights of conventional machine learning models (ANFIS, SVM, MLP, 

and RBFNN) is helpful to overcome this issue (Penghui et al. 2020).  

Hence, the CPU time and number of functional evaluation (NFE) were obtained in this study to 

compare the convergence rate of models. Table 6 shows the values of CPU time and NFE to reach 

the best solution for developed models. As observed in Table 1, the CPU time of ANFIS, MLP, 

RBFNN, and SVM model hybridized with SFO was lower than those of other hybrid models. It 

means that the SFO could converge earlier than other optimization algorithms and conventional 

machine learning models.  

The SSA, FFA, and PSO had the following ranks based on the CPU time. The ANFIS, MLP, and 

RBFNN models had the longest CPU time. It means that the standalone models of ANFIS, MLP, 

SVM, and RBFNN need a longer time for training. Table 6 reports the minimum NFE required to 

achieve the optimal solution. Hybrid models of ANFIS-SFO, MLP-SFO, RBFNN-SFO, SVM-

SFO had the lowest values of NFE, indicating a faster convergence rate of the SFO algorithm to 

find the best solution. Thus, the SFO outperformed the other algorithms for converging and finding 

the optimal solution.    

 

3-5- Uncertainty analysis of models using GLUE 

Spectral representations of models uncertainty values in testing level for 5, 10, and 30 cm soil 

depth determined using the GLUE approach and the results are shown in Fig. 10. At 5 cm soil 

depth, the r value for the testing data for ANFIS-SFO ranged from 0.10 to 0.15 with 486-972 data 



points and from 0.15 to 0.20 with 1458-1944 data points. The p value at 5 cm soil depth for ANFIS-

SFO was found to be 0.95 with 486-972 data points.  

For 10 and 30 cm soil depth, the p range for ANFIS-SFO was 0.90-0.94 and 0.92-0.96, 

respectively. The uncertainty analysis showed p values in the range 0.86-0.90 and 0.86-0.90 for 

MLP-SFO and RBFNN-SFO, respectively, with 600-1000 data points. ANFIS-PSO, MLP-PSO, 

RBFNN-PSO, and SVM-PSO had higher p and lowest r than other hybrid models. ANFIS-SFO 

and MLP-SFO had the highest bracketed observed values in the testing level, while the lowest 

unbracketed observations were obtained with the standalone SVM and RBFNN models.  

This indicates that using meta-heuristic algorithms such as SFO adjusts specific parameters in AI 

models while reduces the case-specificity and improving the generality of the models. In the 

present case, hybridization of the traditional models, decreased soil temperature predictions and 

provided more accurate and reliable analysis for soil temperature in depths. 

In the uncertainty analysis, an increase in data points increased the r values for the different models 

(Fig. 10). In general, SVM had the highest r and lowest p, indicating a high level of uncertainty. 

The standalone and hybrid MLP models produced more accurate predictions than the standalone 

and hybrid RBFNN models. Overall, the optimization algorithms improved the performance and 

reliability of the standalone models in terms of r and p values. SFO outperformed the other 

optimization algorithms in reducing uncertainty in the estimation of hourly Ts at all soil depths. 

In general, the evaluation criteria values and GLUE uncertainty analysis of models confirmed that 

the hybrid ANFIS-SFO model had the most accurate performance in predicting hourly Ts based 

on the Ta, RH, U, and Rs semi-humid and arid climates of Iran. Thus, the results demonstrated the 

suitability of SFO for hybridizing machine learning models.  

 



4- Conclusions 

Soil temperature strongly affects soil biological processes, irrigation scheduling, plant growth, the 

environment, and water resource management, but measuring soil temperature is time-consuming 

and costly. Accurate, reliable, and stable soil temperature prediction using models is necessary in 

agricultural, environmental, and geosciences practices.  

The scale-specific coherency between soil temperature at three soil depths of 5, 10, and 30 cm and 

meteorological variables of air temperature, relative humidity, wind speed, and solar radiation was 

investigated using wavelet coherence analysis.  

The soil temperature time series data at three soil depths were mainly affected by air temperature, 

relative humidity, and solar radiation, especially in upper layers. In addition, coherence wavelet 

analysis indicated weak effects of wind speed on soil temperature.  

The relationships between soil temperature and most effective variables of air temperature and 

relative humidity differed with scale (periodicity). High coherency with air temperature was 

generally observed at periodicity of 4-8 h at 5 cm and 8-16 h at 10 and 30 cm soil depths, while 

strong coherency with relative humidity obtained at periodicity of 16-64 h at 5 cm and 4-8 h at 10 

and 30 cm soil depths. Therefore, soil temperature can be predicted with high accuracy at 

recommended periodicity as an application of information for scales.        

In this study, four meta-heuristic optimization algorithms (SFO, FFA, PSO, SSA) were used to 

hybridize and optimize the standalone models of ANFIS, MLP, RBFNN, and SVM for predicting 

hourly soil temperature at various soil depths, based on meteorological data from an arid site 

(Sirjan) and a semi-humid site (Sanandaj) in Iran.  



The uncertainty of conventional and hybrid models was evaluated using GLUE approach to 

investigate the stability of the prediction. Input combination of air temperature, relative humidity, 

wind speed, and solar radiation was trained by models to predict soil temperature.  

Parameter selection of the meta-heuristic models was optimized by Taguchi search. Taguchi search 

has a high potential to overcome the excellent effort to find the optimal values of optimization 

parameters and considerably reduce the number of experiments.  

ANFIS was the most accurate standalone model, while SVM was the least accurate for both sites 

and soil depths (5, 10, 30 cm). The optimization algorithms SFO and SSA were best in enhancing 

the performance of all standalone models. The performance criteria proved that the hybrid ANFIS-

SFO model had a strong correlation with observed data and predicted soil temperature with low 

error at all soil depths.  

Uncertainty results of GLUE approach indicated that the bracketed observed values of the best 

model, ANFIS-SFO, were in the range 94-96%. The wider uncertainty bounds were obtained by 

standalone models, indicating some instability in soil temperature prediction and the small 

accuracy.  

The developed approach in this study proved reliable and accurate for hybrid meta-heuristic 

models. It applies in regions with similar climate conditions to the study sites. Future studies 

should consider the effects of climate scenarios on soil temperature for a future period. ANIFS, 

SVM, RBFNN, and MLP can also be hybridized with multi-objective optimization algorithms to 

determine the optimal values of hyperparameters and appropriate inputs to the models.  

The grey models are one of the most important models for predicting hydrological variables. In 

the following studies, the abilities of grey models and decision tree models can be evaluated for 

soil temperature estimation.  



Also, this study performed a comprehensive uncertainty analysis to evaluate the accuracy of 

standalone and hybrid machine learning models that can be used to evaluate other estimation 

models.  
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Table 1: Statistical characteristics of climatic parameters and soil temperature at studied stations  

Dataset Factor 

Sirjan station  Sanandaj station 

Ta Rs U RH 
Ts  

@ 5 cm 

 
Ta Rs U RH 

Ts  

@ 30 cm 

Ts  

@ 10 cm 

All 

data 

Min -9.31 5 0.15 2 5.2  -10.1 4 0.19 5 5.9 7.4 

Max 25.05 1151 9.92 79 31.77  32.23 1132 7.85 69 24.69 29.12 

Mean 24.23 625 5.23 65.12 19.23  21.48 567.1 4.55 56 18.12 19.1 

Skewness 0.86 4.12 1.12 2.43 2.46  2.45 3.45 1.1 2.4 1.78 2.1 

Train 

set 

Min -7.12 7 0.14 4 6.7  -9.98 6 0.86 7 6.12 8.12 

Max 24.87 1146 8.45 65 29.87  30.23 985 8.22 65 24.01 28.12 

Mean 26.12 678 6.12 56.25 18.23  22.12 567.1 5.12 45 17.65 17.99 

Skewness 1.32 1.67 1.56 2.14 2.01  4.55 3.11 3.12 2.2 1.45 1.23 

Test 

set 

Min -6.12 4 0.15 2 6.8  -8.14 4 0.98 6 5.14 7.12 

Max 24.78 1056 8.23 69 28.78  29.87 987 6.72 59 24.42 28.12 

Mean 29.78 614 6.45 58.12 16.54  24.56 589.1 4.23 44 16.56 18.12 

Skewness 1.25 1.28 1.45 2.44 2.12  5.56 3.22 2.44 2.8 1.43 2.12 

 

 

Table 2: Optimal input combinations obtained using the GT approach.  

Input combination 5 cm  10 cm  30 cm 

G 
ratio

V   G 
ratio

V   G 
ratio

V  

Ta, RH, U, Rs 0.02345 0.0033  0.065 0.0083  0.0551 0.007 

Ta, U, Rs 0.03567 0.0051  0.078 0.0100  0.0671 0.008 

Ta, RH, Rs 0.0672 0.0095  0.082 0.0105  0.072 0.009 

Ta, RH, U 0.0721 0.01037  0.089 0.0114  0.084 0.0106 

RH, U, Rs 0.082 0.01123  0.093 0.0119  0.0923 0.0112 
 

 

 

 

 

 

 

 



 

 

 

 

Table 3: Optimal value of random parameters optimization algorithms 

Optimization 

algorithm 

Level 1 2 3 4 

Parameters 

PSO 

Population size (S/N) 100 (1.12) 200 (1.54) 300 (1.34) 400 (1.46) 

Inertia weight (S/N) 0.30 (1.23) 0.50 (1.32) 0.70 (1.50) 0.90 (1.76) 

c1 (S/N) 1.40 (1.45) 1.60 (1.30) 1.80 (1.28) 2 (1.12) 

c2 (S/N) 1.40 (1.45) 1.60 (1.39) 1.80 (1.42) 2 (1.37) 

SSA 

Population size (S/N) 100 (1.16) 200 (1.14) 300 (1.19) 400 (1.21) 

r2 (S/N) 0.5 (1.19) 0.6 (1.12) 0.7 (1.15) 0.8 (1.21) 

r3 (S/N) 0.5 (1.22) 0.6 (1.12) 0.7 (1.17) 0.8 (1.21) 

SFO Population size (S/N) 100 (1.02) 200 (1.07) 300 (1.12) 400 (1.14) 

FFA 
Population size (S/N) 100 (1.26) 200 (1.22) 300 (1.21) 400 (1.26) 

ɔ 0.50 (1.27) 0.6 (1.29)  0.70 (1.32) 0.80 (1.36) 

 

 

     Table 4: Statistical results of models performance in training phase. 

Model 5 cm  10 cm  30 cm 

RMSE 

(°C) 

MAE 

(°C) 

NSE PBIAS 

(%) 
 RMSE 

(°C) 
MAE 

(°C) 
NSE PBIAS 

(%) 
 RMSE 

(°C) 
MAE 

(°C) 
NSE PBIAS 

(%) 
ANFIS-SFO 1.12 1.01 0.95 5  0.95 0.91 0.97 2  0.98 0.97 0.97 4 

MLP-SFO 1.20 1.10 0.93 7  1.02 1.00 0.95 3  1.09 1.06 0.95 5 

RBFNN-SFO 1.23 1.16 0.90 10  1.12 1.03 0.93 5  1.14 1.10 0.93 8 

SVM-SFO 1.32 1.19 0.89 12  1.14 1.08 0.91 7  1.17 1.12 0.91 9 

ANFIS-SSA 1.14 1.10 0.94 14  1.02 1.00 0.96 3  1.08 1.07 0.96 10 

MLP- SSA 1.25 1.18 0.91 16  1.04 1.02 0.94 4  1.10 1.09 0.94 6 

RBFNN- SSA 1.27 1.20 0.89 18  1.14 1.10 0.93 8  1.18 1.14 0.93 9 

SVM- SSA 1.39 1.37 0.88 21  1.19 1.17 0.91 10  1.23 1.21 0.91 11 

ANFIS-FFA 1.17 1.14 0.92 15  1.05 1.03 0.95 4  1.07 1.03 0.95 7 

MLP-FFA 1.35 1.20 0.90 18  1.09 1.08 0.93 5  1.14 1.12 0.93 11 

RBFNN-FFA 1.42 1.25 0.89 20  1.15 1.12 0.92 12  1.19 1.18 0.92 14 

SVM-FFA 1.45 1.39 0.87 22  1.20 1.18 0.90 14  1.24 1.22 0.90 15 

ANFIS-PSO 1.18 1.7 0.90 21  1.10 1.08 0.94 9  1.12 1.14 0.94 12 

MLP-PSO 1.36 1.32 0.88 23  1.12 1.10 0.92 12  1.18 1.19 0.92 15 

RBFNN-PSO 1.45 1.40 0.86 25  1.16 1.14 0.90 15  1.19 1.14 0.90 17 

SVM- PSO 1.48 1.42 0.84 27  1.19 1.17 0.89 17  1.25 1.18 0.89 19 

ANFIS 1.23 1.20 0.86 29  1.19 1.18 0.88 12  1.16 1.19 0.88 17 



MLP 1.42 1.39 0.85 31  1.21 1.19 0.87 14  1.23 1.20 0.87 19 

RBFNN 1.51 1.41 0.83 33  1.29 1.23 0.86 19  1.26 1.24 0.86 22 

SVM 1.62 1.55 0.81 35  1.32 1.30 0.85 20  1.29 1.28 0.85 25 

 

 

Table 5: Statistical results of models performance in testing phase. 
Model 5 cm  10 cm  30 cm 

RMSE 

(°C) 

MAE 

(°C) 

NSE PBIAS 

(%) 
 RMSE 

(°C) 
MAE 

(°C) 
NSE PBIAS 

(%) 
 RMSE 

(°C) 
MAE 

(°C) 
NSE PBIAS 

(%) 
ANFIS-SFO 1.18 1.05 0.93 7  0.824 0.822 0.98 1  0.911 0.905 0.97 2 

MLP-SFO 1.23 1.12 0.92 9  0.835 0.832 0.97 3  0.914 0.909 0.96 4 

RBFNN-SFO 1.25 1.18 0.89 11  0.845 0.843 0.95 5  0.915 0.912 0.94 6 

SVM-SFO 1.35 1.20 0.87 14  0.856 0.854 0.94 6  0.917 0.914 0.93 7 

ANFIS-SSA 1.17 1.12 0.92 16  0.832 0.828 0.97 2  0.914 0.911 0.96 9 

MLP- SSA 1.29 1.19 0.90 18  0.839 0.837 0.95 5  0.919 0.918 0.94 10 

RBFNN- SSA 1.30 1.22 0.86 20  0.849 0.842 0.94 8  0.933 0.932 0.91 12 

SVM- SSA 1.42 1.39 0.85 22  0.860 0.857 0.93 9  0.935 0.931 0.90 14 

ANFIS-FFA 1.19 1.16 0.82 23  0.878 0.876 0.93 3  0.955 0.951 0.92 4 

MLP-FFA 1.37 1.22 0.81 24  0.882 0.880 0.91 5  0.962 0.958 0.90 6 

RBFNN-FFA 1.44 1.27 0.84 26  0.893 0.891 0.90 7  0.969 0.967 0.89 8 

SVM-FFA 1.47 1.42 0.83 28  0.896 0.892 0.88 10  0.976 0.972 0.87 15 

ANFIS-PSO 1.22 1.26 0.88 29  0.901 0.899 0.92 5  0.980 0.976 0.91 7 

MLP-PSO 1.39 1.35 0.87 30  0.923 0.912 0.89 8  0.983 0.981 0.88 9 

RBFNN-PSO 1.48 1.43 0.84 32  0.935 0.932 0.88 9  0.985 0.983 0.86 11 

SVM- PSO 1.51 1.45 0.82 33  0.945 0.935 0.86 11  0.990 0.986 0.84 12 

ANFIS 1.25 1.23 0.81 35  0.934 0.931 0.90 6  1.002 1.001 0.89 8 

MLP 1.50 1.45 0.83 37  0.932 0.930 0.88 9  1.040 1.030 0.87 10 

RBFNN 1.53 1.47 0.80 39  0.945 0.941 0.87 12  1.063 1.055 0.86 15 

SVM 1.65 1.52 0.80 40  0.978 0.971 0.85 14  1.069 1.054 0.83 17 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

Table 6: Criteria for convergence rate of developed models   
Model CPU time (s)  Number of functional evaluation (NFE): Population 

size* number of iterations 
5 cm 10 cm 30 cm  5 cm 10 cm 30 cm 

ANFIS-SFO 208 212 214  12222 12341 12124 
MLP-SFO 212 216 217  12453 12562 12455 
RBFNN-SFO 224 218 223  12654 12673 12876 
SVM-SFO 229 221 232  13786 13784 13457 
ANFIS-SSA 230 224 234  14569 13812 15678 
MLP- SSA 232 234 236  14987 14913 17899 
RBFNN- SSA 234 237 238  15123 15454 18244 
SVM- SSA 246 241 239  16223 15675 19215 
ANFIS-FFA 267 243 240  17124 15926 20202 
MLP-FFA 312 245 242  17225 16222 21003 
RBFNN-FFA 314 267 243  17346 17223 22002 
SVM-FFA 324 278 245  17678 18224 24002 
ANFIS-PSO 328 289 246  17567 19225 26002 
MLP-PSO 332 310 247  18223 20123 28001 
RBFNN-PSO 335 312 251  18344 20224 32002 
SVM- PSO 337 321 253  18565 20263 34003 
ANFIS 338 324 255  19227 20352 35004 

MLP 339 325 256  20128 20591 38005 

RBFNN 340 326 267  22129 22212 40006 

SVM 345 329 267  22243 22453 42007 

 

 

 

 



  

 

 

 

 

Fig. 1. Location of the case study stations in Iran 
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 Sanandaj station 



 

Fig. 2 Time series of (1): soil temperature at (a): 5 cm depth for Sirjan and (b): 10 and 30 cm 

depths for Sanandaj stations, and (2) air temperature  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Fig. 3 Framework for predicting hourly soil temperature using hybrid models. 



 

Fig. 4 Schematic diagram representing the general procedures of the proposed method  

 

ÅGathering datasets from Sirjan and Sanandaj stations

Step 1: Dataset

ÅSelection the best input combination

Step 2: Gamma Test (GT) 

ÅDetermine the scale and time-specific correlations between optimal meteorological 
variables and soil temperature

Step 3: Wavelet coherence analysis

ÅDetermine the best values of optimization algorithm parameters

Step 4: Taguchi search

ÅStandalone machine learning models: ANFIS, MLP, RBFNN, SVM

ÅMeta-heuristic optimization algorithms: SFO, SSA, FFA, PSO 

Step 5: Hybridizing models

ÅEvaluation criteria for accuracy: RMSE, MAE, BPIAS, NSE, R2

ÅEvaluation criteria for convergence rate: CPU time, number of functional evaluation 
(NFE)

Step 6: Evaluation of models

ÅUncertainty analysis of models to investigate the prediction stability

Step 7: GLUE approach



  

  

Fig. 5 The coherence value for meteorological parameters in Sirjan at 5 cm soil depth 

 

 

 

 

 


