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F

Abstract—Automated test generators, such as search-based software
testing (SBST) techniques are primarily guided by coverage information.
As a result, they are very effective at achieving high code coverage.
However, is high code coverage alone sufficient to detect bugs effec-
tively? In this paper, we propose a new SBST technique, predictive many
objective sorting algorithm (PreMOSA), which augments coverage infor-
mation with defect prediction information to decide where to increase the
test coverage in the class under test (CUT).

Through an experimental evaluation using 420 labelled bugs on
the Defects4J benchmark and using theoretical defect predictors, we
demonstrate the improved effectiveness and efficiency of PreMOSA in
detecting bugs when using any acceptable defect predictor, i.e., a defect
predictor with recall and precision � 75%, compared to the state-of-the-
art dynamic many objective sorting algorithm (DynaMOSA). PreMOSA
detects up to 8.3% more labelled bugs on average than DynaMOSA
when given a time budget of 2 minutes for test generation per CUT.

Index Terms—Search-Based Software Testing, Automated Test Gener-
ation, Defect Prediction

1 INTRODUCTION

Search-based software testing (SBST) techniques consider
test cases with high code coverage as high quality test cases,
and aim at maximising code coverage [1, 2, 3]. As a result,
they are very effective at achieving high code coverage [4]. A
test suite with high code coverage, however is not sufficient
to effectively detect bugs in a program. Previous work
shows that SBST techniques have limitations in terms of
detecting bugs [5, 6, 7]. For example, DynaMOSA [3], a state-
of-the-art SBST technique, could only detect on average
22% of the bugs from the Defects4J dataset, when it is
given a 30 seconds time budget per class and using branch
coverage as criterion [8]. In this paper, we hypothesise that
we can improve the bug detection performance of SBST by
augmenting coverage information used by SBST with defect
prediction information.
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Defect predictors are well-studied techniques for esti-
mating the bug-prone areas in software. The predictions can
be coarse-grained like package [9] and file/class [10, 11] lev-
els, or fine-grained like method level [10, 12, 13]. They use
various features related to metrics like code size [14], code
complexity [15], change history [16] and organisation [17]
to predict whether a package, file or method is defective.
Defect predictors have been shown to be effective at locating
bugs in software [10, 18, 19]. As a result, organisations use
defect predictors to help developers in code reviews [20, 21]
and to focus their testing efforts on likely buggy parts in
code [22]. In addition, defect prediction has been success-
fully used to inform other automated testing techniques,
i.e., Paterson et al. [23] proposed a test case prioritisation
strategy, Perera et al. [8] introduced a time budget allocation
approach for SBST, and Hershkovich et al. [24] proposed a
strategy to select a subset of all the classes in a project to run
test generation. In contrast to existing work, ours is the first
to adapt defect prediction information to guide the search
process of an SBST technique.

We introduce predictive many objective sorting algo-
rithm (PreMOSA) which uses information from a defect
predictor and focuses the search for tests in the likely buggy
methods to increase the chances of detecting bugs. Pre-
MOSA starts with coverage targets containing likely buggy
methods as predicted by a defect predictor that works at
method level [12, 13]. Once it deems to have searched
enough for test cases that cover the likely buggy targets,
it starts finding tests to cover the likely non-buggy targets
in the class under test (CUT). It generates more than one
test case for all the selected targets, thus increasing the like-
lihood of detecting bugs. Finally, to ensure the non-trivial
targets have an equal chance of being covered, PreMOSA
dynamically balances the test coverage among all the targets
in the search. To do this, PreMOSA temporarily removes
coverage targets from the search in every iteration based
on their current test coverage and number of independent
paths.

We evaluate how PreMOSA performs in terms of its ef-
fectiveness and efficiency in detecting bugs when compared
to the state-of-the-art DynaMOSA. We evaluate PreMOSA
on 420 labelled bugs from 6 open source java projects in the
Defects4J dataset. We use theoretical (i.e., simulated) defect
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predictors that can be replaced with any real defect predictor
in practice [12, 13]. We intentionally abstract the defect
predictor in PreMOSA to avoid potential confounding ef-
fects that can be caused by using a single defect predictor.
Our experimental evaluation demonstrates that PreMOSA
is significantly more effective than DynaMOSA with large
effect sizes when using any acceptable defect predictor, i.e.,
recall and precision � 0.75 [25]. In particular, PreMOSA
detects 8.3% and 7.8% more labelled bugs on average than
DynaMOSA when using an ideal defect predictor and most
conservative and acceptable defect predictor, respectively.
Moreover, we find that PreMOSA is significantly more effi-
cient than DynaMOSA with small effect sizes.

In summary, the contribution of this paper is a novel
SBST technique that uses defect prediction information
along with coverage information to guide the search process
in order to improve the bug detection capability of SBST. In
addition, we present an empirical evaluation involving 420
bugs from 6 open source java projects (which took roughly
48,800 hours) that demonstrates the effectiveness and effi-
ciency of our proposed approach, PreMOSA with theoret-
ical defect predictors. Finally, we make the source code of
PreMOSA and the scripts for post processing the results
publicly available here: https://github.com/premosa-sbst

2 PROBLEM STATEMENT AND MOTIVATION

2.1 Problem

Coverage is often used to define the fitness function used in
search-based software testing (SBST) [2, 3, 26]. During the
search process, test cases with high coverage are considered
of higher quality, and the aim of the search process is
to generate test cases that maximise coverage. Different
fitness function formulations exist based on coverage, such
as approach level [3] and branch distance [27, 28]. A notable
technique that uses coverage is DynaMOSA [3], which is
considered the state-of-the-art SBST approach.

High code coverage, however does not necessarily imply
effective bug detection by the test suite [8]. Indeed, previous
work shows that SBST techniques have limitations in terms
of detecting bugs [5, 6]. Even DynaMOSA could only detect
on average 22% of the bugs from the Defects4J dataset in
a 30 seconds time budget and using branch coverage as
guidance [8].

Our hypothesis is that augmenting coverage information
used by SBST approaches with defect prediction informa-
tion improves the performance of SBST in terms of bug de-
tection. Defect predictors can predict the methods in a class
that are likely to be buggy. SBST generates tests for a class,
and a class usually has only one or few buggy methods.
We argue that increasing the coverage in a large number of
non-buggy methods is ineffective in terms of detecting bugs.
Therefore, we propose to use defect prediction information
in the search process along with coverage information to
guide the search for test cases towards likely buggy methods
in the class.

2.2 Motivating Example

Figure 1 shows the buggy code snippet and
the applied patch for DateTimeZone class from

Fig. 1: Buggy code and patch from Time-8 bug

Time-8 bug in Defects4J [29]. The buggy method,
forOffsetHoursMinutes, takes two integer inputs,
hoursOffset and minutesOffset, and returns the
DateTimeZone object for the offset specified by the two
inputs. For example, if the method is called with the inputs
hoursOffset=0 and minutesOffset=-30, then it is
expected to return a DateTimeZone object for the offset
�00 : 30. However, such inputs execute the true branch
of the if condition at line 279 and the method throws an
IllegalArgumentException instead of the expected
DateTimeZone object. This bug is fixed by modifying the
if condition at line 279 and adding a new condition at line
282 as shown in the diff in Figure 1.

To detect this bug, test cases have to execute the
false branches of the if conditions at line 273 and 276;
that is hoursOffset 6= 0 or minutesOffset 6= 0 and
hoursOffset 2 [�23; 23]. They also have to execute the
true branch at line 279 with an additional constraint;
minutesOffset 2 [�59;�1]. Furthermore, the newly
added if condition at line 282 adds another constraint
on the input hoursOffset; that is hoursOffset � 0.
In summary, only the test inputs sampled from the space
where hoursOffset 2 [�23; 0] and minutesOffset 2
[�59;�1] can detect the bug.

It is evident that just covering the buggy code (i.e.,
the true branch of the if condition at line 279) is
not sufficient to detect the bug. For example, the inputs
hoursOffset=12 and minutesOffset=-60 cover the
buggy code, however, they do not detect the bug. Also,
the space of all possible test inputs that cover the buggy
code (i.e., hoursOffset 2 [�23; 23] and minutesOffset
=2 [0; 59]) is larger than the space of test inputs that can
detect the bug. The existing SBST techniques that aim at
maximising code coverage, such as DynaMOSA are more
likely to sample test inputs from the larger space of inputs
that cover the buggy code without detecting the bug, and
then terminate without actually detecting the bug.

The existing SBST approaches can be configured to
generate many tests for each coverage target in the
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DateTimeZone class, and it will increase the chances of
detecting the bug. However, there are 54 methods in the
class and only one method is buggy. If we assume the test
adequacy criterion to be branch coverage, then there are
201 coverage targets in total, while only 14 of them actually
contain the buggy method. Thus, we find it is ineffective to
spend all the critical search resources on covering all the 201
targets, when only a few of them leads to the buggy code.
We propose to use buggy methods predictions from a defect
predictor to decide where to increase the coverage within
the class. Thus, our novel SBST approach concentrates the
search for test cases more on the only buggy method in the
project, forOffsetHoursMinutes.

3 BACKGROUND

3.1 Optimisation Problem

In this paper, our proposed approach, PreMOSA, tackles the
test generation problem as a many objective optimisation
problem, where each objective represents a coverage target
in the CUT. Our approach optimises test cases to meet a
given coverage criterion, such as maximising branch cover-
age, method coverage or a combination of both.

Let U = fu1; : : : ; ukg be the set of k coverage targets
of the CUT. fi(t), where i 2 [1; k] and t is a test case, is
the fitness function for the coverage target ui. For example,
assuming the coverage target is a branch ui 2 U , fi(t) is as
follows;

fi(t) = al(ui; t) + d(ui; t) (1)

where al(ui; t) is the approach level and d(ui; t) is the
normalised branch distance of the branch ui for the test case
t [3]. Approach level is calculated based on the distance (i.e.,
number of control dependencies) between the branch where
the execution diverges from the desired execution path and
the branch under consideration. Branch distance [27, 28] is a
widely used heuristic in fitness functions to guide the search
to find inputs that evaluate the logic in branch predicates as
desired (i.e., to true or false).

For a given test case t, the fitness is a vector of k values
(hf1; : : : ; fki), where fi (i 2 [1; k]) represents the distance of
t from covering the target ui 2 U . If a test case t covers a
target ui, then the corresponding fitness fi of t is zero.

To maximise the coverage of multiple targets, we need
to find a set of non-dominated test cases T = ft1; : : : ; tng
where for each tj 2 T , 9ui 2 U such that fi(tj) = 0. A set
of test cases are said to be non-dominated if each test case
in the set is better on at least one coverage target and worse
on the remaining targets when compared to other test cases
in the set.

To evaluate individual test cases, PreMOSA uses Pareto
dominance (Definition 1) and Pareto optimality (Defini-
tion 2) of test cases.

Definition 1. Pareto Dominance. A test case ti dominates
another test case tj , if, and only if, the values of the
fitness vector satisfy the following conditions:

8x 2 f1; : : : ; kg fx(ti) � fx(tj)

and
9y 2 f1; : : : ; kg s:t: fy(ti) < fy(tj)

The definition above states that a test case ti dominates
another test case tj , if, and only if, ti is closer to cover at
least one coverage target and not worse in terms of covering
other targets when compared to tj .

Definition 2. Pareto Optimality. A test case is Pareto opti-
mal, if, and only if, it is not dominated by any other test
case in the space of all possible test cases.

The definition above states that a Pareto optimal test case
is better on covering one or more targets and can be worse
on covering the remaining targets when compared to all
possible test cases.

The solution to the many-objective problem is a set of
Pareto optimal test cases. Unlike in usual many-objective
optimisation problems where there are trade-offs in the
objective space, in the context of test generation, the optimal
test cases are the ones which cover at least one target, i.e.,
objective, (i.e., 9ui 2 U s:t: fi(t) = 0). Therefore, these test
cases that cover at least one target form the final test suite
and represent a sub-set of the Pareto optimal test cases.

3.2 Existing Many-Objective Algorithms

Panichella et al. [2] first proposed many objective sorting
algorithm (MOSA), which formulates the test generation
problem as a many objective optimisation problem and
produces a set of Pareto optimal test cases. MOSA is based
on a genetic algorithm (GA). It starts with a set of randomly
generated test cases as the initial population. It generates
new population of test cases by applying crossover and
mutation operators. Test cases are selected to the next gen-
eration using a ranking algorithm called preference sorting
algorithm which is based on ‘preference criterion’ and the
non-dominance relation of test cases. According to prefer-
ence criterion, for each target ui 2 U , the test case that is
closest to cover ui is selected to the first non-dominated
front. All the test cases in the first non-dominated front are
selected to the next generation. MOSA maintains an archive
of test cases generated during the evolution process that
forms the final test suite. The archive contains the shortest
test cases for each covered target.

Dynamic many objective sorting algorithm (Dy-
naMOSA) [3] is the successor of MOSA and stands as the
state-of-the-art SBST technique. A main limitation in MOSA
is that it tries to cover all the targets from the beginning of
the search while most of the targets are not reachable until
their control dependent targets are covered. DynaMOSA
addresses this problem by introducing a method called
dynamic selection of targets.

Figure 2 shows the control dependency graph (CDG) of
the method forOffsetHoursMinutes from the motivat-
ing example. Nodes denote the predicates and leaves denote
the exit points of the program. For example, node 279-1
denotes the minutesOffset < 0 predicate at line 279 and
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Fig. 2: Control Dependency Graph

leaf 280 denote the return statement at line 280. Lines
between nodes denote the control dependency edges. For
example, b5;T is the true branch of the minutesOffset
< 0 predicate. For simplicity, we do not include the nodes
that are not predicates of the program.

A subset of the targets that are included in the search
process cannot be covered until their control dependent tar-
gets are covered. Assume a test generation scenario which
uses branch coverage as the optimisation criterion. In the
beginning of the search, U contains all the branches as
shown in the CDG (Figure 2) as the set of targets to search
for test cases. However, branches like b3;T and b3;F cannot
be covered until their control dependent branches b2;T or
b1;F are covered. Likewise, b2;F cannot be covered until
b1;T is covered. Therefore, it is inefficient to search for
tests to cover such targets, e.g., b3;T , while their control
dependent targets are still uncovered.

To address this, DynaMOSA dynamically selects targets
to search for test cases only when their control dependent
targets are covered. For example, b3;T and b3;F are selected
to the search process only if b1;F or b2;F is covered. At the
start of the search, DynaMOSA selects the set of targets
U� � U that do not have control dependencies. At any
given time in the search, DynaMOSA optimises test cases
to cover only the targets in U�. Once a new population
is generated, DynaMOSA needs to update U� with new
targets if their control dependent targets are covered. Since
DynaMOSA was originally proposed to maximise code cov-
erage, it also removes the covered targets from U� to allow
itself to focus more on uncovered targets.

3.3 Bug Detecting with Search-Based Software Testing
Techniques
In order to detect a bug, a test case must satisfy the
conditions of the reachability, infection and propagation (RIP)
model [30, 31, 32, 33]. In addition, it must also have a
test oracle to reveal the failure [34]. MOSA, DynaMOSA
and PreMOSA are implemented in the state-of-the-art SBST
tool, EvoSuite. Tests generated by EvoSuite satisfy all three
conditions of the RIP model. However, they do not have test
oracles, hence are incapable of revealing bugs without test
oracle inserted by humans or automated tools [35]. We will
explain this more with the motivating example.

Assume a test generation scenario for the buggy version
of the DateTimeZone class in our motivating example.

1 ...
2 int int0 = 0;
3 int int1 = (-30);
4 DateTimeZone.forOffsetHoursMinutes(int0, int1);
5 ...

(a) Test case generated by EvoSuite during the search
1 public void test001() throws Throwable {
2 // time taken = 28926
3 try {
4 DateTimeZone.forOffsetHoursMinutes(0, (-30));
5 fail("Expecting exception: IllegalArgumentException");
6 } catch(IllegalArgumentException e) {
7 //
8 // Minutes out of range: -30
9 //

10 verifyException("org.joda.time.DateTimeZone", e);
11 }
12 }

(b) Final test case with assertions by EvoSuite

Fig. 3: A sample test generated by EvoSuite for the buggy
version of DateTimeZone class from Time-8

Figure 3a shows a sample test case generated by EvoSuite
during the search process. The execution of the test case
reaches the buggy code, i.e., line 279. The execution of the
buggy statement causes an incorrect internal program state
(infection), i.e., a valid minutesOffset must not cause
the program to throw an IllegalArgumentException
at line 280. The incorrect internal program state is propagated
to an incorrect final state (failure) of the program, i.e., at
line 4 in the test case, forOffsetHoursMinutes(0,-30)
call should output a valid DateTimeZone object for the
offset �00 : 30, instead an IllegalArgumentException
is thrown. EvoSuite does not have test oracles, hence it
generates assertions in the tests assuming the program
under test is correct. For example, Figure 3b shows the final
test case generated by EvoSuite for the test case shown in
Figure 3a, which is not able to reveal the bug since the test
case does not fail when it is executed against the buggy
program.

In the ideal scenario, if oracle automation [35] exists,
the generated test cases can reveal the bugs. Without oracle
automation, the best EvoSuite can do is to propagate the
incorrect state of the program to the output. The scope of
this paper is to improve the bug detection capability of the
test suites generated by SBST guided by defect prediction
and not oracle automation. Therefore, in this paper, we
consider that DynaMOSA or PreMOSA detect a bug if they
generate a test case that propagates the internal error to
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the output of the program. Nevertheless, we remind the
readers that neither DynaMOSA nor PreMOSA are able to
reveal existing bugs in a program without the aid of oracle
automation. Finally, this limitation is not only applicable to
PreMOSA and DynaMOSA, but also to other SBST tech-
niques [2, 26, 36] in this space as well.

4 PREDICTIVE MANY OBJECTIVE SORTING ALGO-
RITHM

Predictive many objective sorting algorithm (PreMOSA) is a
novel search-based software testing approach that incorpo-
rates guidance from a defect predictor. PreMOSA receives
as input a buggy program with methods labelled as buggy
or non-buggy, which are labels that can be obtained using
existing defect predictors [12, 13]. PreMOSA is not specific to
a certain defect predictor. Hence, we use the most commonly
used defect predictor output type in PreMOSA, which is
binary classification [37]. PreMOSA uses this information
to start searching for test inputs that cover targets that are
deemed to contain buggy methods as indicated by the defect
prediction information (see Section 4.1). This helps focus the
search initially on covering the likely buggy targets rather
than the likely non-buggy targets.

Most of the time, defect predictors are not 100% accurate.
Hence, there can be actual buggy methods among the meth-
ods labelled as non-buggy. Therefore, PreMOSA adds the
targets that contain predicted non-buggy methods, once the
likely buggy targets coverage does not improve for a pre-
defined number of consecutive iterations (see Section 4.1).

PreMOSA also generates more than one test case for all
the selected targets, hence, increases the chances of detecting
bugs (see Section 4.2).

Finally, to balance the test coverage among all the targets
in the search, we introduce a method to dynamically disable
coverage targets from the search based on their current test
coverage and number of independent paths (see Section 4.3).
This ensures that the non-trivial targets have an equal
chance of being covered compared to the targets that are
easier to cover.

PreMOSA is presented in Algorithm 1. It is based on a
genetic algorithm (GA). PreMOSA creates an initial popula-
tion of randomly generated test cases (line 9 in Algorithm 1).
Then, it evolves this initial population through creating new
test cases via crossover and mutation (line 13) and selecting
test cases to the next generation (line 18), until a termination
criterion, such as maximum time budget, is met.

4.1 Filtering Targets with Defect Prediction
A defect predictor classifies the methods of the class under
test (CUT) as buggy or non-buggy, denoted as ci, where

ci =

(
1 if mi is predicted as buggy
0 otherwise

where mi denotes method with index i. PreMOSA starts
with filtering the likely buggy and likely non-buggy targets,
UB and UN respectively, from the set of all targets U
using the classifications given (line 2 in Algorithm 1). The
procedure FILTERTARGETS labels targets as buggy if they
belong to a likely buggy method and non-buggy otherwise.

Algorithm 1 PreMOSA
Input:
U = fu1; : : : ; ukg . the set of coverage targets of CUT
G = hN;Ei . control dependency graph of the CUT
� : E ! U . partial map between edges and targets
C = fc1; : : : ; cmg . the set of defectiveness

classifications for methods in the CUT
1: procedure PREMOSA
2: UB ; UN  FILTERTARGETS(U;C)
3: L INDEPENDENTPATHS(G) . L is a vector of the

number of independent paths for each edge
4: if UB is not empty then
5: U  UB

6: else
7: U  UN

8: U�  targets in U with no control dependencies
9: P0  RANDOMPOPULATION(M ) . M is the

population size
10: A UPDATEARCHIVE(P0; ;) . A is the archive
11: U�  UPDATETARGETS(U�; G; �)
12: for r  0 ; !terminationCriteria; r++ do
13: Qr  GENERATEOFFSPRING(Pr)
14: A UPDATEARCHIVE(Qr; A)
15: U�  UPDATETARGETS(U�; G; �)
16: Rr  Pr [Qr

17: U�  SWITCHOFFTARGETS(U�; A; L; �)
18: Pr+1  SELECTPOPULATION(Rr; U

�;M )
19: U�  ADDNONBUGGYTARGETS

20: T  A . Update the final test suite T
21: RETURN(T )
22: procedure ADDNONBUGGYTARGETS
23: if trigger not fired to add non-buggy targets then
24: if # covered goals = prev. # covered goals then
25: w++
26: else
27: w = 0
28: if w = I then . I is max. # iterations without

coverage improvement
29: U  U [ UN

30: U�  U� [ fu 2 UN ju has no control
dependenciesg

31: RETURN(U�)

Initially, PreMOSA finds tests to cover only the likely buggy
targets, hence, only the likely buggy targets are selected to
be included in the search process in the beginning (line 5).
This way, PreMOSA can extensively search for test cases that
cover likely buggy targets, which leads to generating more
effective test cases faster than other approaches.

However, defect predictors often are not 100% accurate,
and it is likely that buggy methods may be labelled as non-
buggy. To address this issue, PreMOSA considers targets
that do not contain any methods that are predicted as buggy
if it deems to have searched enough for tests that cover
the likely buggy targets (line 19). If PreMOSA resorts to
searching for tests to cover only the likely buggy targets,
then it will miss actual buggy targets that are incorrectly
classified. Thus, PreMOSA starts finding tests to cover likely
non-buggy targets once the coverage of likely buggy targets
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does not improve for a predefined number of consecutive
iterations (I) in GA (line 28). This way, PreMOSA expects
to account for the errors present in the predictions. Finally,
if there are no likely buggy targets, either because the class
is not buggy or the defect predictor is inaccurate, PreMOSA
considers all targets from the start (line 7).

4.2 Updating Targets and Archiving Tests
PreMOSA generates more than one test case for all the
selected targets in order to increase the chances of detecting
bugs. When updating targets in each iteration (lines 11 and
15), it does not remove covered targets from U�, allowing it
to keep generating more tests to cover those targets as well.

PreMOSA keeps an archive of all the test cases that
cover the selected targets u 2 U during the search (lines 10
and 14). This archive of test cases form the final test suite.
Thus, the final test suite is more likely to detect the bugs
as it contains all the generated test cases which cover the
potentially buggy targets.

Removing covered targets from U� and archiving only
the shortest test case for each covered target are beneficial
for achieving high code coverage with a minimal test suite
size [3]. However, just covering the buggy code is not
sufficient to detect the bug. In particular, Perera et al. [8]
showed that there was an average improvement of up
to 79% in terms of detecting bugs when the state-of-the-
art DynaMOSA was configured to not to remove covered
targets from the search and retain all the generated tests.
Therefore, we decide to archive all the test cases that cover
the selected targets u 2 U and not to remove the covered
targets from the search in PreMOSA.

4.3 Balanced Test Coverage of Targets
In our running example, assume the branch coverage is used
as the optimisation criterion. An SBST technique that does
not remove covered targets from the search is more likely
to keep on generating test cases which cover more trivial
branches like b3;T or b4;T rather than a less trivial branch
b5;T (Figure 2). This is detrimental to the bug detection
performance of SBST since it is necessary to find tests that
exercise the branch b5;T in order to detect the bug, and also,
to increase the chances of detecting the bug, SBST has to
find as many tests as possible that cover b5;T .

We introduce a method to dynamically remove coverage
targets from the search based on their current test coverage
and number of independent paths, in order to balance the
test coverage among all the targets. A balanced test coverage
means that all the targets receive an equitable test coverage.
This ensures that, in PreMOSA, the less trivial targets also
get a good coverage in the presence of more trivial targets.

We consider a balanced test coverage is achieved when
the measure, the number of tests generated per an inde-
pendent path of a target, is equal for all of the targets. We
measure the number of independent paths of a target by
assuming the paths start at the control dependent edge of
that target (line 3). An independent path is one that traverses
one or more new edges in the control dependency graph.

In general, for each target u 2 U�, PreMOSA checks the
current test coverage (i.e., number of tests in the archive
that cover u), and then temporarily removes u from U� in

the current iteration, if the test coverage per an independent
path from u is higher than the other targets (line 17).

4.3.1 Independent Paths

We use the measure, the number of independent paths of
a target, to determine how much of a test coverage a target
should receive compared to other targets, in order to achieve
a balanced test coverage for all targets. For a target u 2 U�,
if there are many independent paths that start from u, then
PreMOSA should generate more tests to cover u than the
other targets which have few independent paths. In our
running example, the target b2;F should receive more test
coverage than b2;T because there are more independent
paths leading up from b2;F (6) compared to b2;T (1).

In the beginning of the search, PreMOSA finds the
number of independent paths of each edge in the control
dependency graph G of the program (line 3). The control
dependency graph G = hN;Ei consists of nodes n 2 N
and edges e 2 E � N �N . The nodes represent statements
in the program. The edges represent control dependencies
between the statements. For each edge e 2 E, the procedure
INDEPENDENTPATHS calculates the number of independent
paths starting from e using the graph G. The actual ex-
ecutions of the paths start at the root node, however, in
the calculation of number of independent paths of e, we
assume the paths start at e. All the coverage targets that are
directly control dependent by e have the same number of
independent paths as that of e.

In the motivating example, the edges b2;T , b3;T , b4;T ,
b5;T , b6;T , b7;T and b7;F have only one path each that start
from those edges. There are 2 independent paths from the
edge b6;F , those are b6;F � b7;T and b6;F � b7;F . Likewise,
there are 7, 6, 6, 5, 4 and 3 independent paths that start from
edges b1;T , b1;F , b2;F , b3;F , b4;F and b5;F , respectively. If
the optimisation problem is maximising the branch cover-
age, then these edges become the coverage targets in the
search.

4.3.2 Temporarily Disabling Targets from Search

In many objective optimisation, test cases are optimised
simultaneously to satisfy all the coverage targets. Thus,
the search resources (e.g., time budget) are not allocated
to each coverage target individually. Therefore, to focus
the search differently on covering each target, we decide
to dynamically switch off targets during the evolution. In
every iteration in GA, for each target u 2 U�, the procedure
SWITCHOFFTARGETS checks the current test coverage of u,
and then removes u from U�, if the test coverage per an in-
dependent path of u is higher than that of the other targets.
Therefore, after calling the procedure SWITCHOFFTARGETS,
only the targets which are having a low test coverage (per
an independent path) remain in U�. Then, the procedure
SELECTPOPULATION selects test cases to the next generation
considering only these remaining targets in U�. Hence, this
paves way for the search to find more test cases in the
next generation that cover these targets, thereby guiding the
search to a balanced test coverage for all the targets.

First, the procedure SWITCHOFFTARGETS finds the set
of nodes with predicates NP in G (line 2 in Algorithm 2).
Next, for each node n 2 NP , it fetches the number of
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Algorithm 2 Temporarily Removal of Targets to Balance Test
Coverage

1: procedure SWITCHOFFTARGETS(U�; A; L; �)
2: NP  NODESWITHPREDICATES(G)
3: for n 2 NP do
4: fen;T ; en;F g  outgoing edges in G from node n
5: ln;T  GETINDEPENDENTPATHS(L; en;T )
6: ln;F  GETINDEPENDENTPATHS(L; en;F )
7: un;T  RANDOMCHOICE(f�(en;T )g)
8: un;F  RANDOMCHOICE(f�(en;F )g)
9: An;T  GETTESTS(A; un;T )

10: An;F  GETTESTS(A; un;F )

11: if
jAn;T j
ln;T

>
jAn;F j
ln;F

then

12: U�  U� � f�(en;T )g

13: else if
jAn;T j
ln;T

<
jAn;F j
ln;F

then

14: U�  U� � f�(en;F )g
15: RETURN(U�)

independent paths from the outgoing edges of n (lines 5-
6 in Algorithm 2). Then, it randomly selects a control de-
pendent target from each outgoing edge of n (lines 7-8 in
Algorithm 2). We consider all the control dependent targets
of an edge receive the same test coverage. Hence, the test
coverage of a randomly selected target of an edge is equal
to the test coverage of that edge. Finally, it finds the edge
which has the largest number of tests in the archive per an
independent path, and removes all the control dependent
targets of that edge from U� (lines 9-14 in Algorithm 2).

In the running example, if we consider the node 276-2,
the outgoing edges are b4;T and b4;F , and the number of in-
dependent paths from these edges are 1 and 4, respectively.
Assume the coverage criterion is maximise branch coverage,
hence b4;T and b4;F are also targets in the search, and there
are currently 30 and 20 tests in the archive covering b4;T

and b4;F , respectively. Thus, b4;T has 30 (= 30=1) tests in
the archive per an independent path, while b4;F has only
5 (= 20=4) tests per a path. Hence SWITCHOFFTARGETS
temporarily removes the target b4;T fromU�, and paves way
for the search to find more test cases that cover b4;F . Overall,
this encourages the search to have a balanced test coverage
for all the targets rather an excessive coverage of more trivial
targets like b3;T and b4;T . As a result, a less trivial target
like b5;T , which contains the buggy code, receives a good
coverage in the presence of other more trivial targets.

5 DESIGN OF EXPERIMENTS

We design a set of experiments to evaluate PreMOSA in
terms of its effectiveness and efficiency in detecting bugs
compared to the state-of-the-art DynaMOSA. Through these
experiments, we aim to investigate if augmenting coverage
information with defect prediction information in the search
process of SBST indeed helps to improve the bug detection
performance of the generated test suites. Our first research
question is:

RQ1: Is PreMOSA more effective in detecting bugs compared to
the state-of-the-art DynaMOSA?

To answer this research question, we compare the num-
ber of bugs detected by PreMOSA against DynaMOSA,
which we discuss in Section 5.4. We run test generation
on Defects4J bugs [29] (discussed in Section 5.3) using both
PreMOSA and the baseline. To account for randomness in
PreMOSA and DynaMOSA, we repeat the test generation
for 25 runs for each bug and testing approach. Once test
cases are generated and evaluated for bug detection, we
report the bug detection results as means and medians over
25 runs. To check if PreMOSA significantly detects more
bugs than DynaMOSA and the effect size of the difference,
we employ one-tailed non-parametric Mann-Whitney U-
Test with the significance level (�) 0.05 [38] and Vargha and
Delaney’s bA12 statistic [39].

To analyse the efficiency of PreMOSA, we seek to answer
the following research question:

RQ2: Is PreMOSA more efficient at generating test cases that
can detect bugs compared to the state-of-the-art DynaMOSA?

To answer this research question, we measure the time to
generate the first test case that can detect a bug by the two
approaches over 25 runs. As we described in Section 3.3, a
test case detects a bug if it satisfies all the three conditions
of RIP model, and we call such test cases bug detecting tests
throughout the paper. For each bug that is detected by both
approaches, we calculate the difference of the mean time to
generate the first test case that detects the particular bug by
the two approaches. If the difference is positive, that means
PreMOSA generates a test case to detect the bug in a shorter
time. A negative difference means otherwise. To check if
PreMOSA generates a bug detecting test in a significantly
shorter time, we employ one-tailed Wilcoxon signed-rank
test [38] and its effect size, r [40]. We remind the readers
that the time taken to generate the first bug detecting test is
not equal to time taken to reveal the bug. The latter happens
only after the test generation is completed.

Zimmermann et al. [25] argues that a defect predictor is
strong if, and only if, all recall, precision and accuracy are
greater than 75%. Therefore, we consider defect predictors
having both recall and precision in the range 75% to 100% as
acceptable defect predictors. In RQ1 and RQ2, we simulate
defect predictor outcomes for two levels of performance
for PreMOSA; i) most conservative and acceptable defect
predictor (recall=precision=75%) and ii) ideal defect pre-
dictor (recall=precision=100%). We will discuss this more
in Section 5.1. We expect PreMOSA to perform best with
the latter defect prediction simulation, and with the former
simulation, we can see the most conservative performance
of PreMOSA when using acceptable defect predictors.

5.1 Defect Prediction Simulation

We simulate defect predictor outcomes at two levels of recall
and precision, which correspond to the theoretical upper
bound and lower bound performance of an acceptable de-
fect predictor. This would not be possible with real defect
predictors since their performance cannot be controlled.
Using a real defect predictor would have demonstrated the
viability of PreMOSA in practice. However, it would then
have the disadvantage of limiting the findings of our study
to one single defect predictor, e.g., a specific defect predictor
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built with one learner and one set of metrics. Therefore, we
abstract the defect predictor component in the experimental
evaluation.

Recall is the probability that the defect predictor cor-
rectly labels a buggy method. It can be calculated as in
Equation. (2), where tp is the number of true positives, i.e.,
number of buggy methods that are correctly classified, and
fn is the number of false negatives, i.e., number of buggy
methods that are incorrectly classified. Higher recall means
PreMOSA is informed of more buggy methods, hence, it is
expected to increase the chances of detecting bugs.

Precision measures what percentage of methods that are
labelled as buggy by the defect predictor are actually buggy.
It can be calculated as in Equation. (3), where fp is the
number of false positives, i.e., number of non-buggy meth-
ods that are incorrectly classified as buggy methods. For
example, if precision is 50%, that means half of the methods
that are labelled as buggy are not actual buggy methods.
Higher precision means that PreMOSA does not concentrate
more on covering non-buggy code, which otherwise will
likely be ineffective in terms of detecting bugs.

recall =
tp

tp+ fn
(2)

precision =
tp

tp+ fp
(3)

Algorithm 3 Defect Predictor Simulation
Input:
r . recall
p . precision
M = fm1; : : : ;mkg . ground truth

1: procedure SIMULATEDEFECTPREDICTOR
2: d COUNT(mi) for mi 2M s.t. mi = 1
3: nd jM j � d
4: Mb  fi j 8i 2 [1; k] ^mi = 1g
5: Mn  fi j 8i 2 [1; k] ^mi = 0g
6: tp d � r
7: fp tp � (1� p)=p
8: Cb  RANDOMCHOICE(Mb; tp) [ RANDOM-

CHOICE(Mn; fp)
9: C  fci = 1 j 8i 2 [1; k] ^ i 2 Cb, ci = 0 j 8i 2

[1; k] ^ i =2 Cbg
10: RETURN(C)

Algorithm 3 illustrates the steps of simulating the defect
predictor outputs for a given recall and precision. The
procedure SIMULATEDEFECTPREDICTOR receives the set of
methods in the project with the ground truth labels for their
defectiveness, M = fm1; : : : ;mkg. mi = 1 if the ith method
is buggy and mi = 0 if the ith method is not buggy. First, it
calculates the number of buggy (d) and non-buggy methods
(nd) in the project (lines 2-3 in Algorithm 3). Next, it finds
the set of indices of all the buggy (Mb) and non-buggy
methods (Mn) in the project (lines 4-5). Then, it calculates
the number of true positives (tp) and false positives (fp)
for the given recall (r) and precision (p) (lines 6-7). The
RANDOMCHOICE(S; n) procedure returns a set of randomly
picked n items from the set S. Likewise, at line 8, Cb is as-
signed a set of randomly picked tp number of buggy and fp

number of non-buggy method indices. Cb denotes the set of
buggy method indices as classified by the simulated defect
predictor. Finally, at line 9, the output C = fc1; : : : ; ckg is
formed where ci = 1 if the ith method is labelled as buggy
and ci = 0 if the ith method is labelled as not buggy by the
defect predictor.

5.2 Time Budget

We set 2 minutes as the time budget for test generation per
class. In practice, the time reserved for test generation for a
project depends on the project size and resource availability
in the organisation. If the project is small and has a few
number of classes, then it takes a very short time to run test
generation on all the classes. Perhaps, the test generation
can be done on developer machines outside of the working
hours. If the project is large, which is usually the case, then
it may not be possible to run SBST on developer machines
as it may run for a longer duration and also slow down
them [41].

For example, running SBST for 2 minutes per class on a
project having several hundreds of classes could take up to
30 hours to finish test generation for the whole project. In a
situation like this, SBST tools can be setup in the continuous
integration (CI) system [42] of the organisation. Although,
if the organisation wants to run an SBST tool in their CI
system, then it should use as little resources as possible, such
that it will not cause any impact (e.g., idling other jobs) on
the existing processes in the system (e.g., regression testing,
code quality checks, project builds etc.) [8]. Therefore, we
decide that 2 minutes per class is a reasonable time budget
in a usual resource constrained environment.

5.3 Experimental Subjects

We use the Defects4J dataset (version 1.5.0) [29, 43] as our
benchmark. It contains 438 real bugs from 6 real-world open
source Java projects. We remove 4 deprecated bugs, 12 bugs
that do not have buggy methods, and 2 bugs for which
SBST generated uncompilable tests (e.g., method signature
is changed in the bug fix). This results in the following 18
bugs that are not part of the experiments: Lang-2, 23, 25, 30,
56, 63, Math-12, 104, Time-11, 21, Chart-23, Closure-15, 28,
63, 83, 93, 111 and Mockito-26 are removed. Thus, we eval-
uate PreMOSA against the baseline on a total of 420 bugs1.
The 420 bugs are from the following projects; JFreeChart (25
bugs), Closure Compiler (170 bugs), Apache commons-lang
(59 bugs), Apache commons-math (104 bugs), Mockito (37
bugs), and Joda-Time (25 bugs).

For each bug, the Defects4J benchmark gives a buggy
version and a fixed version of the program. The difference
between these two versions of the program is the applied
patch to fix the bug, which indicates the location of the bug.
We label all the methods that are either modified or removed
in the bug fix as buggy methods [44].

Defects4J is widely used for research on automated unit
test generation [5, 8, 45], automated program repair [46],
fault localisation [47], test case prioritisation [23] etc. This

1. While there may be more unlabelled bugs in the six projects, we
use only the labelled bugs in the Defects4J dataset. The experimental
results and the conclusions are based on these bugs.
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makes Defects4J a suitable benchmark for evaluating our
approach, as it allows us to compare our results to existing
work.

5.4 Baseline
We use the current state-of-the-art SBST technique, Dy-
naMOSA [3], as the baseline. It is more effective at achieving
high branch, statement and strong mutation coverage than
previously proposed SBST techniques ([1, 2, 26]) [3]. Dy-
naMOSA is implemented in the state-of-the-art SBST tool,
EvoSuite [36], and won the unit testing tool competition at
SBST 2019 [48].

We configure DynaMOSA to not remove the covered tar-
gets from the search, retain all the test cases generated, and
continue the search until the full time budget is consumed in
our experimental evaluation. DynaMOSA primarily focuses
on achieving high code coverage with a minimal test suite
size. Hence, it aims at generating only one short test case
to cover each target in the program. However, just covering
the buggy code is not sufficient to detect the bug. Perera et
al. [8] showed that DynaMOSA detects 79% more bugs on
average when it is configured to not remove covered targets
from the search, use the full time budget, and retain all the
generated tests in the final test suite (i.e., disable test suite
minimisation).

5.5 Prototype
We implement PreMOSA in the state-of-the-art SBST tool,
EvoSuite [36]. EvoSuite is an automated test generation
framework that generates JUnit test suites for java pro-
grams [49, 50]. To date, EvoSuite is actively maintained and
evaluated for its effectiveness on both industrial and open
source projects in terms of code coverage [2, 3, 4, 26, 51]
and bug detection capability [5, 6, 8, 45]. We implement
PreMOSA within EvoSuite version 1.0.7, forked from the
GitHub repository [49] on June 18th, 2019. The prototype
is available to download from here: https://github.com/
premosa-sbst

5.6 Parameter Settings
There are several parameters that need to be configured
in PreMOSA. Parameter tuning of search algorithms is a
long and expensive process [52]. Arcuri and Fraser [52]
showed that the default parameter values in EvoSuite give
reasonable results when compared to tuned parameters.
Moreover, Panichella et al. [3] also used these default values
in the state-of-the-art DynaMOSA. Therefore, we decide to
use the default parameter values used in EvoSuite [1] and
DynaMOSA [3] except for the following parameters.

Coverage criteria: We use branch coverage as coverage
criterion in PreMOSA inline with the prior studies which
investigated bug detection effectiveness of EvoSuite [5, 6].
EvoSuite with branch coverage was shown to be the most
effective coverage criterion in terms of detecting bugs when
compared with other criteria like line, output and weak
mutation coverage [7, 45].

Termination criteria: We use the maximum time budget as
the termination criterion. We find that stopping the search
after it covers all the coverage targets is detrimental to bug

detection. Just covering the buggy code is not sufficient to
detect the bug. Thus, the search needs to utilise the full
time budget to generate more tests in order to increase the
chances of detecting bugs. Therefore, we run PreMOSA until
it consumes the allocated time budget.

Test suite minimisation: We disable test suite minimisation
since all the test cases in the archive form the final test suite
(see Section 4.2).

Assertion strategy: Mutation-based assertion filtering can
be computationally expensive and can lead to timeouts.
Therefore, following a similar approach to previous work [5,
8], we choose all possible assertions as the assertion strategy.

Similar to PreMOSA, we configure the baseline tech-
nique, DynaMOSA, as described above.

Finally, following the results of our pilot runs, we use
50 consecutive iterations for the parameter maximum number
of iterations without coverage improvement (I) in PreMOSA.
Furthermore, we configure PreMOSA to add non-buggy
targets to the search if it cannot cover any buggy target in
the first 25 iterations in the search. For some of the classes,
PreMOSA cannot find a test that covers the buggy targets
until the trigger is fired to add non-buggy targets to the
search. Thus, all the search resources spent until this point
are ineffective in terms of detecting bugs. Our preliminary
results suggest that for a significant number of classes,
PreMOSA covers the first buggy target within the first 25
iterations. Therefore, we decide to add non-buggy targets to
the search if PreMOSA fails to cover at least one target after
25 iterations.

5.7 Experimental Protocol

We run experiments with PreMOSA using 2 instances of
simulated defect predictors and DynaMOSA on 420 bugs.
For each bug in the Defects4J dataset, we take the buggy
version of the project and collect the ground truth labels for
the buggy and non-buggy methods. Next, for each of the six
projects in Defects4J, we combine all the ground truth labels
from the bugs of those projects. For example, for Apache
commons-lang project, we combine the labels from all the
59 bugs. Then, we simulate the defect predictor outcomes
using the Algorithm 3 for each of the six projects in separate.

Our intended application scenario is generating tests to
detect bugs that already exist in the system. Hence, we
run test generation on the buggy version of the projects.
Since we are measuring the bug detection capability of both
approaches only on the Defects4J bugs, we do not run test
generation on the non-buggy classes, i.e., classes that are not
modified in the bug fixes of the Defects4J bugs.

To take the randomness of SBST into account, we repeat
each test generation run 25 times. Due to the randomness
of the Defect Prediction Simulation Algorithm, we repeat
the simulation runs 5 times for the recall=precision=75%
experiments. For each of these simulated defect predictor
instances, we repeat test generation runs 5 times. Conse-
quently, we have to run a total of 3 (approaches) � 25
(repetitions) � 482 (buggy classes) = 36,150 test generations.

We evaluate if the 36,150 generated test suites detect the
selected Defects4J bugs by using the interfaces provided
by Defects4J [29]. First, the flaky test cases are removed
from the test suites using the ‘fix test suite’ interface in

https://github.com/premosa-sbst
https://github.com/premosa-sbst
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Defects4J [29] as described in [5]. We use the fixed versions
of the programs as the test oracles [53]. If a test suite running
against the buggy version of a program produces a different
output compared to what it produces when it is run against
the fixed version, then it means the test suite detects the
bug. The ‘run bug detection’ interface uses the fixed version
as the test oracle and determines if a test suite detects
a bug by comparing the test execution results between
the two versions. EvoSuite generates assertions assuming
the program under test is correct, therefore the generated
tests should always pass when they are run against the
buggy version. A test suite is considered broken, if it is not
compilable or fails when it is run against the buggy version.
The test suite is considered it has missed detecting the bug,
if the test execution results are same when it is run against
the buggy and fixed versions of the program, if the results
are different, then it is considered as it has detected the bug.

The ‘run bug detection’ interface logs the test cases that
produce different test execution results when run against the
buggy and fixed versions. We configure both PreMOSA and
DynaMOSA to log the time taken to generate each test case
since the start of the search (in milliseconds). Figure 4 shows
a sample test case with the time taken to generate it logged
as a comment. Hence, we can find the time taken to generate
test cases that detect the bugs by each approach, which will
be used to evaluate the efficiency of the two approaches
(RQ2).

Fig. 4: A sample test case with the time taken to generate

6 RESULTS

We present the results for our research questions following
the method described in Section 5. Our main aim is to
evaluate if PreMOSA is more effective and efficient than the
state-of-the-art DynaMOSA.

RQ1: Is PreMOSA effective in detecting bugs?

As we described in Section 5, we perform 25 runs of
PreMOSA using defect predictions at recall=precision=75%
(PreMOSA-75) and recall=precision=100% (PreMOSA-100),
and DynaMOSA against each buggy program in Defects4J
(Section 5.3) and report the bug detection results as box-
plots in Figure 5. As we can see, both PreMOSA-100 and
PreMOSA-75 detect more bugs than DynaMOSA.

We report the means and medians of the number of
bugs detected and the results from the statistical analy-
sis in Table 1. DynaMOSA detects 197.16 bugs on aver-
age in 2 minutes. PreMOSA-100 and PreMOSA-75 outper-
form DynaMOSA, and detect 213.56 and 212.6 bugs on
average, which are average improvements of 16.4 (+8.3%)
and 15.44 (+7.8%) more bugs than DynaMOSA, respec-
tively. The differences of the number of bugs detected by
PreMOSA-100/PreMOSA-75 and DynaMOSA are statisti-
cally significant according to the Mann-Whitney U-Test (p-
value <0.0001) with large effect sizes ( bA12 � 0.98). Thus, we
conclude that PreMOSA is significantly more effective than
DynaMOSA when using any acceptable defect predictor
(i.e., recall, precision � 75%).

PreMOSA-75 detects only 0.96 (-0.4%) less bugs on aver-
age than PreMOSA-100. According to the one-tailed Mann-
Whitney U-Test, this difference is not statistically significant
(p-value = 0.5512), and the bA12 statistic indicates a negligible
effect size of 0.53. Therefore, we can confirm PreMOSA
successfully accounts for errors in the predictions of defect
predictors in the acceptable range.

Certain bugs are harder to detect than others. We identify
a bug as a unique bug if it is only detected by one approach,
i.e., PreMOSA or DynaMOSA. The number of unique bugs
detected by an approach is an indication of the ability of that
approach to detect the bugs that are not detected otherwise
in the given time budget, which is an important strength
given how hard it is to detect a bug [54].

Table 2 shows a summary of the bug detection results of
PreMOSA and DynaMOSA. PreMOSA-100 and PreMOSA-
75 detect 287 and 292 bugs altogether, which is 68.3% and
69.5% of the total bugs respectively, whereas DynaMOSA
detects only 280 (66.7%) bugs. PreMOSA-100 detects 17
unique bugs that DynaMOSA cannot detect in any of the
runs, whereas DynaMOSA only detects 10 such unique
bugs. Similarly, PreMOSA-75 detects 22 unique bugs that
are not detected by DynaMOSA, whereas DynaMOSA only
detects 10 unique bugs that PreMOSA-75 cannot detect in
any of the runs. This shows that PreMOSA is capable of
detecting more bugs that are not detected by DynaMOSA.

We find that PreMOSA-100 detects less bugs in total
and less unique bugs than PreMOSA-75 when the bugs are
isolated in buggy methods with private access modifier (i.e.,
private buggy methods). For example, PreMOSA-75 detects
Closure-25, 50, 55, 57, 67, 68, 143, 154 bugs, which all have
only private buggy methods, while PreMOSA-100 detects
none of them. PreMOSA-100 starts the search for test cases
to cover only the buggy targets. When all the buggy targets
are in private methods, PreMOSA-100 has only limited
guidance to cover these targets since it cannot directly call
the private buggy methods. PreMOSA-100 will get further
guidance to cover these targets only after the non-buggy
targets are added to the search (line 19 in Algorithm 1). It
will be able to indirectly call the buggy targets in private
methods through non-buggy methods with non-private ac-
cess modifier. In contrast, PreMOSA-75 is more likely to start
with non-buggy targets incorrectly predicted as buggy or all
likely non-buggy targets (line 7 in Algorithm 1). This means
PreMOSA-75 has a better chance of having more guidance to
cover buggy targets in private methods from the beginning
of the search compared to PreMOSA-100, and as a result, it
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is able to detect more bugs in total and more unique bugs
than PreMOSA-100.

If we consider a bug as detected only if all the 25 runs by
an approach detect that bug (i.e., success rate = 1.0), then the
number of bugs detected by PreMOSA-100 and PreMOSA-
75 becomes 140 and 127 respectively, whereas it is only 114
bugs for DynaMOSA. We further find that PreMOSA-100
detects 108 bugs more times than DynaMOSA, while for
DynaMOSA, this is only 62 bugs. Similarly, PreMOSA-75
detects 124 bugs more times than DynaMOSA, whereas it is
only 61 bugs for DynaMOSA. Altogether, this demonstrates
that PreMOSA is also more robust in detecting bugs when
compared to DynaMOSA.

DynaMOSA PreMOSA-75 PreMOSA-100
mode

180

190

200

210

220

230

Number of Bugs Detected

Fig. 5: The number of bugs detected by PreMOSA and
DynaMOSA in 2 minutes time budget

TABLE 1: Mean and median number of bugs detected by
PreMOSA and DynaMOSA in 2 minutes time budget.

Mean Median p-value bA12

PreMOSA-100 213.56 213
PreMOSA-100 vs.

DynaMOSA
<0.0001 0.99

PreMOSA-75 212.6 212
PreMOSA-75 vs.

DynaMOSA
<0.0001 0.98

DynaMOSA 197.16 198
PreMOSA-100 vs.

PreMOSA-75
0.5512 0.53

TABLE 2: Summary of the bug detection results at 2 minutes.

Bugs
detected

Bugs detected
in every run

Unique
bugs

PreMOSA-100 287 140 17
PreMOSA-75 292 127 22
DynaMOSA 280 114 10

In summary, PreMOSA is significantly more effective
than the state-of-the-art DynaMOSA with large effect
sizes when using any acceptable defect predictor.
The superior performance of PreMOSA is supported
by both its capability to detect new bugs that are not
detected by DynaMOSA and the robustness of the
approach.

RQ2: Is PreMOSA efficient in generating test cases that
can detect bugs?
As described in Section 5, for each approach, we calculate
the mean time to generate the first test case that detects each
bug. In the case of a bug that is detected by both PreMOSA-
100 and DynaMOSA, we then calculate the difference of
the mean times to generate the first bug detecting test by
the two approaches, i.e., mean time to generate the first
bug detecting test by DynaMOSA - mean time to generate
the first bug detecting test by PreMOSA-100. We repeat the
same procedure for PreMOSA-75 and DynaMOSA as well.
If the difference is positive, that means PreMOSA generates
a bug detecting test in a shorter time on average. A negative
difference means PreMOSA has a worst performance.

We report the means and medians of the differences
of the time taken to generate bug detecting tests and the
results from the statistical analysis in Table 3. The average
difference of mean time to generate bug detecting tests be-
tween PreMOSA-100 and DynaMOSA is 2.59 seconds, and
it is 2.02 seconds between PreMOSA-75 and DynaMOSA.
According to the one-tailed Wilcoxon signed-rank test, these
differences are statistically significant with p-values <0.05.
However, we find that the effect sizes (i.e., r) estimated
using the Wilcoxon signed-rank test are small. The ef-
fect size of the difference of mean time to generate bug
detecting tests between PreMOSA-100 and DynaMOSA is
0.18, which translates to approximately 60% probability of
PreMOSA-100 generating a bug detecting test faster than
DynaMOSA [40]. The effect size of 0.11 between PreMOSA-
75 and DynaMOSA suggests that PreMOSA-75 generates a
bug detecting test faster than DynaMOSA approximately
56% of the time. Therefore, we can conclude PreMOSA
is significantly faster than DynaMOSA to generate a bug
detecting test when using any acceptable defect predictor.

TABLE 3: Mean and median difference of time taken to
generate bug detecting tests by PreMOSA and DynaMOSA.

Mean (s) Median (s) p-value r

PreMOSA-100 vs.
DynaMOSA

2.59 0.22 0.0016 0.18

PreMOSA-75 vs.
DynaMOSA

2.02 0.05 0.0347 0.11

The above analysis is carried out with respect to the time
to generate bug detecting test for each bug that is detected
by all the approaches in the comparison. In addition, we also
analyse the efficiency of PreMOSA and DynaMOSA with
respect to the number of bugs detected over the time budget
spent, which includes all the bugs in the dataset.

Figure 6 shows the median number of bugs detected
by each approach over the time budget spent. The num-
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Fig. 6: The number of bugs detected by PreMOSA and
DynaMOSA over the time budget spent

ber of bugs detected by an approach x (x 2 fPreMOSA,
DynaMOSAg) at time t (t 2 [0, 120]) is equal to the number
of bugs that can be detected by the tests generated by x
after t seconds of test generation. The shaded area around
the curves depicts the interquartile range. The dashed lines
depict the average improvements of PreMOSA-100 and
PreMOSA-75 relative to the baseline DynaMOSA.

In the first 2 seconds, DynaMOSA has a head start,
due to the slight additional overhead of PreMOSA in fil-
tering targets and calculating number of independent paths
(Sections 4.1 and 4.3). However, both PreMOSA-100 and
PreMOSA-75 outperform DynaMOSA after 2 seconds.

According to the Mann-Whitney U-Test (� = 0:05),
PreMOSA-100 and PreMOSA-75 detect significantly more
bugs than DynaMOSA with large effect sizes ( bA12 � 0:87)
at any time after 3 seconds. This confirms that PreMOSA
not only detects more bugs than DynaMOSA at the end of
120 seconds, but also is ahead of DynaMOSA from the very
beginning of the search (i.e., after 2 seconds).

The relative improvement by PreMOSA using any ac-
ceptable defect predictor is much higher when it is given
a tight time budget. In particular, the average relative im-
provements of PreMOSA-100 and PreMOSA-75 reach max-
imums of 16.1% and 13.0% at 11 seconds respectively. We
also find that both PreMOSA-100 and PreMOSA-75 have
an average improvement more than 10% in the interval of
6 and 38 seconds. This further demonstrates the increased
efficiency of PreMOSA compared to DynaMOSA, such that
the large improvements of PreMOSA occur when it is given
tight time budgets like in a usual resource constrained
scenario.

In summary, PreMOSA is significantly more efficient
than the state-of-the-art DynaMOSA with small ef-
fect sizes when using any acceptable defect predic-
tor. Overall, PreMOSA not only detects more bugs
than DynaMOSA when they are given a reasonably
large time budget, but also when they are given
tight time budgets like in a resource constrained
environment.

7 DISCUSSION

The execution time of PreMOSA is comprised of the time
taken by the defect predictor and the execution time of the
search process. With simulated defect predictors, it is not
possible to know the execution time of an actual defect
predictor. Also, the run-time of an actual defect predictor
changes from one model to another model depending on
several factors like the classifier used in the model etc.
Therefore, in the experimental evaluation, we do not ac-
count for the time taken by the defect predictor, and allocate
the full time budget of 2 minutes to the search process.
However, we find that PreMOSA with an acceptable defect
predictor reaches the final number of bugs detected by
DynaMOSA in 79.2 seconds on average. This suggests that
even if the defect predictor takes 40.8 seconds to run on
average per CUT, PreMOSA will still perform on par with
DynaMOSA. Furthermore, Perera et al. [8] reported the
defect predictor used in their study spent 0.68 seconds per
class on average (with a standard deviation of 0.4 seconds).
Therefore, the execution time of an actual defect predictor is
not expected to affect the conclusions of this study.

PreMOSA is guided by coverage and defect prediction
information. It first attempts to cover the likely buggy
targets and starts finding tests to cover likely non-buggy tar-
gets once it deems to have searched enough in likely buggy
targets. On the other hand, DynaMOSA is only guided by
coverage and aims at maximising code coverage. In our
experiments, PreMOSA-100, PreMOSA-75 and DynaMOSA
achieved 57.89%, 59.14% and 62.94% branch coverage of the
classes under test on average, respectively.

In the experimental evaluation, we do not consider ad-
ditional cost factors such as the effort required to insert test
oracles manually or automatically and the execution time of
test suites. PreMOSA generates more than one test case for
each target in the CUT and retains all these test cases. Dy-
naMOSA is also configured to do the same as described in
Section 5.4. In our experiments, PreMOSA-100, PreMOSA-
75 and DynaMOSA generate 12548, 13004 and 14344 test
cases on average per test suite, respectively. Both PreMOSA
and DynaMOSA are implemented in EvoSuite, which gen-
erates assertions in the tests assuming the program under
test is correct. EvoSuite uses a mutation-based assertion
filtering strategy to minimise the number of assertions in
the generated test suites. However, we disable this in our
experiments since it can be computationally expensive and
can lead to timeouts. Therefore, in the experiments, there
are 1,416,817, 1,462,391 and 1,277,024 assertions generated
on average per test suite by PreMOSA-100, PreMOSA-75
and DynaMOSA, respectively. In practice, these assertions
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need to be updated manually or automatically for generated
tests to reveal the bugs, which can be problematic when the
test suites become large. Appropriate test suite minimisation
techniques can be applied to the test suites generated by
PreMOSA to mitigate this problem.

For completeness, we report the accuracy and Matthews
correlation coefficient (MCC) [55] of the defect predic-
tors used in PreMOSA. For recall=precision=100%, the
accuracy of the defect predictor is 100%, and for re-
call=precision=75%, the accuracy is on average 99.97%.
A high accuracy is observed for the defect predictor
with recall=precision=75% because of the highly imbal-
anced nature of the Defects4J dataset, which we discuss
in threats to construct validity (Section 8). MCC of the
recall=precision=100% and recall=precision=75% predictors
are 1.0 and 0.75 on average, respectively.

The baseline method, DynaMOSA, does not use a defect
predictor and aims to cover all the targets in the CUT
equally. This means that in the eyes of DynaMOSA, all the
methods in a class are likely buggy, which translates to a
100% recall and precision per project as follows; Lang -
0.06%, Math - 0.03%, Time - 0.05%, Chart - 0.02%, Closure -
0.02% and Mockito - 0.15%.

8 THREATS TO VALIDITY

Construct Validity. The defect prediction simulator assumes
a uniform distribution of predictions. This means each
method has an equal chance of being labelled as buggy
or non-buggy by the simulator. However, the prediction
distributions of real defect predictors are likely to deviate
from a uniform distribution depending on the underlying
characteristics and nature of the prediction problem. This
could impact the realism of our defect prediction simula-
tions. Nevertheless, in the absence of prior knowledge about
defect prediction distributions, the reasonable choice is to
assume a uniform distribution of predictions.

In the experimental evaluation, we simulate defect pre-
dictors for a given recall and precision, and consider an
acceptable defect predictor with respect to these metrics
(Section 5.1). Recall and precision have been widely used
in previous work to report the performance of defect pre-
dictors [37, 56]. However, recall and precision can be biased
in the case of highly imbalanced datasets, which is usually
a commonplace situation for defect datasets as there are
only a few number of buggy methods compared to non-
buggy ones [57]. Thus, future works need to be done with
defining and simulating acceptable defect predictors with
unbiased performance metrics like Matthews correlation
coefficient (MCC) [55]. Even though our experiments are
designed to be driven by recall and precision, the MCC
corresponds to 0.75 on average for the most conservative
defect predictor (i.e., recall=precision=75%), and 1.0 for the
ideal defect predictor.

We only consider the labelled bugs in the Defects4J
dataset in our experimental evaluation, which is likely
smaller than the set of actual bugs in the dataset. In order to
check how many actual bugs are detected by PreMOSA and
DynaMOSA, we have to manually validate all the 36,150
generated test suites, which is not a feasible task. Therefore,
in line with previous work [7, 45], we choose to conduct the

experimental evaluation considering only the labelled bugs
in Defects4J dataset.

Internal Validity. To account for the randomness of
the simulated defect predictor, we repeat the simulations
for 5 times for recall=precision=75% configuration. Then,
for each simulation, we repeat the test generation for 5
times to account for the non-deterministic behaviour of
PreMOSA. For PreMOSA-100 and DynaMOSA, we repeat
the test generation runs for 25 times to account for the
non-deterministic behaviour of the two techniques. To de-
rive conclusions from the results of our experiments, we
conduct sound statistical tests; one-tailed non-parametric
Mann-Whitney U-Test, Vargha and Delaney’s bA12 statistic,
one-tailed Wilcoxon signed-rank test, and its effect size, r.

The parameter maximum number of iterations without cov-
erage improvement (I) in PreMOSA is configured based on
the results of our pilot runs. We expect the performance
of PreMOSA can be further improved by fine-tuning the
parameter.

A threat to internal validity exists from the use of the
term experiment in our study. According to the hallmarks
characterised by Ayala et al. [58], our study corresponds to
an experiment with limited control. This is because we use a
retrospective repository (i.e., Defects4J) as the dataset, hence
our experimental design does not fully cover the control
hallmark [58].

External Validity. Our experimental evaluation is done
using 420 real bugs from Defects4J dataset. These bugs are
drawn from 6 open source projects. At the time of writing
this paper, 401 more bugs were added to the Defects4J
benchmark from additional 11 projects. Nevertheless, these
open source projects do not represent all program charac-
teristics, especially industrial projects. However, Defects4J
has been widely used in related literature as a bench-
mark [5, 7, 8, 23, 47, 59]. We expect that future work needs
to be done on evaluating the performance of PreMOSA on
other bug datasets.

We implement PreMOSA in the state-of-the-art SBST
tool, EvoSuite, that generates JUnit test suites for Java
programs. Therefore, we may not be able to generalise
our findings to other programming languages. However,
the concept behind PreMOSA is not language dependent
and can be applied to other object oriented programming
languages.

Our findings may not be generalised to the defect
predictors which have recall or precision less than 75%.
We experimentally assess the bug detection performance
of PreMOSA when using theoretically most conservative
and acceptable defect predictors (recall=precision=75%) and
ideal defect predictor (recall=precision=100%). The experi-
mental results demonstrate the improved performance of
PreMOSA when using either of the defect predictors, which
suggest PreMOSA is significantly better at detecting bugs
than DynaMOSA when using defect predictors having re-
call and precision greater than 75%. We choose 75% recall
and precision as the lower bound for an acceptable defect
predictor with the justification that Zimmermann et al. [25]
recommended only the defect predictors having recall and
precision more than 75% as acceptable defect predictors.
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9 RELATED WORK

9.1 Search-Based Software Testing
Search-based software testing (SBST) techniques use meta
heuristics search algorithms like genetic algorithms (GA)
to search for high quality test cases for a specific criteria
(e.g., maximise branch coverage). Mainly, this test gener-
ation problem can be formulated in two ways; i) single
objective formulation [26, 36], and ii) many-objective for-
mulation [2, 3]. In the latter one, the test generation problem
is approached as a many objective optimisation problem
whereas the single objective formulation is used in the
whole test suite approaches [26, 36]. In particular, Panichella
et al. [2] proposed many objective sorting algorithm (MOSA)
which simultaneously optimises test cases to satisfy hun-
dreds of coverage targets (e.g., branch coverage goals).
Previous work shows that these many objective sorting algo-
rithms [2, 3] are more effective and efficient than whole test
suite approaches in terms of code coverage [2, 3, 4]. In this
paper, we formulate the test generation problem as a many
objective optimisation problem and develop PreMOSA as a
many objective solver.

DynaMOSA [3] is the successor of the many objective
solver, MOSA, and stands as the state-of-the-art SBST tech-
nique. It considers all the coverage targets in the class
under test (CUT) as equally important to cover. Hence, it
simultaneously optimises test cases to cover all of the targets
in the CUT. However, only one or few methods in a class are
buggy, hence, it is likely to be ineffective to search for tests to
cover targets that contain non-buggy methods. Contrary to
DynaMOSA, PreMOSA initially searches for tests in likely
buggy methods, and introduces targets containing likely
non-buggy methods to the search only when it deems to
have searched enough for tests to cover likely buggy targets.

Results from previous work show that SBST techniques
have limitations in terms of bug detection [5, 6, 7]. We argue
that aiming at maximising code coverage alone is not suffi-
cient to maximise the number of bugs detected. In particular,
Salahirad et al. [7] showed that EvoSuite [36] - a state-of-
the-art SBST tool - is more effective when it is using fitness
functions based on maximising branch coverage compared
to other coverage criteria. However, EvoSuite only detected
an average of 25% bugs from the Defects4J dataset in a 10
minutes time budget even when using branch coverage in
the fitness function, suggesting that code coverage alone is
not enough to effectively detect bugs.

9.2 Defect Prediction
Zimmermann et al. [25] argued a defect predictor with
recall, precision and accuracy greater than 75% is a strong
defect predictor, and vice versa. Results from previous work
suggest that 75% recall and precision is an achievable level
of performance for a defect predictor [13, 17, 19]. In partic-
ular, Giger et al. [13] reported the prediction models built
with change metrics can locate buggy methods with 88%
and 84% of recall and precision, respectively. In our study,
we consider a defect predictor is acceptable if its recall and
precision are greater than 75%.

Previous work on integrating defect prediction and soft-
ware testing have used single instances of defect predictors
in their experimental evaluations [8, 23, 24]. The purpose of

our study is not to find the best defect predictor to be used in
PreMOSA. In our experimental evaluation, we intentionally
abstract the defect predictor in PreMOSA to avoid unfair
evaluation and bias from using a single defect predictor. We
simulate the defect predictor outcomes for different levels
of performance. In particular, we simulate defect predictor
outcomes at i) the most conservative performance of an
acceptable defect predictor, i.e., recall=precision=75% and
ii) the ideal performance, i.e., recall=precision=100%. The
conclusions derived from our results cover the full spectrum
of acceptable defect predictors.

There is plethora of defect predictors working at coarse-
grained level such as file and class levels [20, 22, 60]. Hata
et al. [12] hypothesise that the effort required to find bugs
using coarse-grained predictions is higher than using fine-
grained predictions such as method level. Their method
level prediction model built with historical metrics was
shown to outperform package and file level predictors in
terms of effort required to find bugs. Similar results were
also observed by Caglayan et al. [18] when using pre-release
bugs related metrics to build defect prediction models.
Any of these defect predictors are suitable to be used in
PreMOSA.

9.3 Defect Prediction in Software Testing

Defect predictors are shown to be effective at locating bugs
in software [10, 18, 19]. As a result, they have been used in
the industry to support developers in code reviews [20, 21]
and in testing [22]. While the main assumption of defect pre-
diction is to provide useful information to developers [20],
prediction outcomes have also been used successfully in
automated testing techniques [8, 23, 24, 44, 53].

Perera et al. [8] and Hershkovich et al. [24] introduced
defect prediction guided time budget allocation approaches
for SBST. Our work is the first to use defect prediction
information in the search process of SBST to effectively
guide the search for test cases to likely buggy methods.
Our proposed SBST technique, PreMOSA, is orthogonal to
the aforementioned budget allocation approaches [8, 24],
and can be used together by simply replacing the SBST
components in each of the approaches with PreMOSA to
further improve the performance of them.

G-clef [23] is a test prioritisation strategy that uses a
defect predictor based on change history related metrics
and prioritises test cases in terms of their likelihood of
finding bugs. It was shown to be effective at reducing the
number of test cases required to find bugs. FaRM [53] is
a mutant selection technique that selects and ranks fault
revealing mutants using prediction models based on source
code metrics. It was shown to outperform the state-of-the-
art mutant selection and mutant prioritisation methods in
terms of revealing faults. FLUCCS [44] is a fault localisation
approach that ranks methods according to their likelihood
of being faulty using pre-trained models based on source
code and change metrics. It was shown to outperform
the state-of-the-art spectrum based fault localisation (SBFL)
techniques. All these approaches are applied after the test
generation step, i.e., G-clef and FaRM can be used to pri-
oritise and select test cases, and FLUCCS can be applied
to localise the fault once a bug is detected through test
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generation. In contrast, PreMOSA uses defect prediction in
the test generation phase.

Perera et al. [61] incorporated buggy method predictions
outside of the search process in DynaMOSA and investi-
gated the impact of defect prediction imprecision on the
bug detection performance of DynaMOSA guided by defect
predictions. The bug detection effectiveness of DynaMOSA
significantly decreased as the recall of the defect predictor
decreased, while the effect of precision was not practically
significant. In contrast, PreMOSA uses buggy method pre-
dictions inside the search process, i.e., balancing between
likely buggy and non-buggy targets, and the experimental
results indicate that its bug detection performance is not sig-
nificantly impacted by the change of defect predictor perfor-
mance from recall=precision=100% to recall=precision=75%.
This shows that PreMOSA is able to successfully handle
the potential errors in the predictions, while DynaMOSA
with simply filtering out the likely non-buggy targets suffers
from loss of recall of the predictor.

10 CONCLUSION

We hypothesise that augmenting coverage information with
defect prediction information in the search process of SBST
improves the bug detection performance of the generated
test suites. We develop a many-objective solver for test
generation called predictive many objective sorting algo-
rithm (PreMOSA) that uses buggy methods predictions to
decide where to increase the test coverage in the CUT.
We experimentally assess the performance of PreMOSA
when using defect predictors having the theoretical up-
per and lower bound performance of acceptable defect
predictors. We validate our technique against 420 labelled
bugs from Defects4J dataset. Our experimental evaluation
demonstrates that PreMOSA is significantly more effective
than the state-of-the-art DynaMOSA with large effect sizes
when using any acceptable defect predictor. In particular, it
detects 8.3% and 7.8% more labelled bugs on average than
DynaMOSA when using an ideal defect predictor and most
conservative and acceptable defect predictor, respectively.
We also find PreMOSA is significantly more efficient than
DynaMOSA.

The performance of PreMOSA does not decrease sig-
nificantly when replacing the ideal defect predictor (i.e.,
recall=precision=100%) with most conservative defect pre-
dictor in the acceptable range (recall=precision=75%). On
the other hand, if defect predictions with errors, i.e., false
positives and false negatives, are directly used by develop-
ers, e.g., in code reviews and manual testing, it can lead to
waste of developer time, miss important bugs, etc [20]. Our
results show that PreMOSA successfully accounts for errors
in the predictions of defect predictors that are considered
acceptable [15].

We find that after 60 seconds of time budget, there is no
significant difference in the performances of PreMOSA with
an ideal defect predictor and with the most conservative
defect predictor. Therefore, in the context of combining
defect prediction and SBST, we recommend practitioners to
not focus on improving the defect predictor performance
beyond 75% recall and precision if their testing resources
allow reasonably large time budget for test generation. On

the other hand, if there is a tight time budget for test gen-
eration, then improving the defect predictor performance
would further improve the bug detection performance of
PreMOSA.

We identify the following directions as future works
to extend this study; i) integrate PreMOSA in a continu-
ous integration environment, ii) adapt an appropriate test
suite minimisation technique to address the generation of
large test suites, iii) define and simulate acceptable defect
predictors with respect to unbiased performance metrics
like MCC, and iv) validate PreMOSA against other bug
datasets [62, 63, 64].
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