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ABSTRACT The sensitivity of the millimeter-wave (mmWave) radio channel to blockages is a fundamental
challenge in achieving low-latency and highly-reliable connectivity. In this paper, we explore the viability
of using Coordinated Multi-Point (CoMP) transmission for delay bounded and reliable mmWave systems.
We propose a blockage-aware framework for the sum-power minimization problem under the user-specific
latency requirements in time dynamic mobile access networks. We use the Lyapunov optimization approach
and provide a dynamic control algorithm, which transforms a time-average stochastic problem into a
sequence of deterministic subproblems. A robust beamformer design is then proposed by exploiting the
queue backlogs and channel information, that efficiently allocates the required resources, by proactively
tuning the CoMP subsets from the available remote radio units (RRUs), according to the instantaneous
needs of the users. Further, to adapt to the uncertainties of the mmWave channel, we consider a pessimistic
estimate of the rates over link blockage combinations across the CoMP serving set. Moreover, after the
relaxation of coupled and non-convex constraints via the Fractional Program (FP) techniques, a low-
complexity closed-form iterative algorithm is provided by solving a system of Karush-Kuhn-Tucker (KKT)
optimality conditions. The simulation results manifest that, in the presence of random link blockages, the
proposed methods outperform the baseline scenarios and provide power-efficient, highly-reliable, and low-
latency mmWave communication.

INDEX TERMS JT-CoMP, reliable communication, queue backlogs, sum-power minimization, Lyapunov
framework, convex optimization, Karush-Kuhn-Tucker conditions.

I. INTRODUCTION
Themillimeter-wave (mmWave) and sub-terahertz (sub-THz)
communication are one of the key enabling technologies
for 5th-generation (5G) and beyond cellular systems, which
facilitates throughput-intensive and low-latency applications,
such as Industrial Internet-of-Things (IIoT), factory automa-
tion, augmented reality, and autonomous driving [2]. How-
ever, the full exploitation of the large available bandwidth
at higher frequencies, is mainly challenged by the sensitiv-
ity of directional radio links to the blockage, i.e., due to
relatively higher penetration and path-losses. These lead to
rapid degradation (i.e., strong dips) in the received signal
strength, and thus result in intermittent connectivity [3], [4].
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For example, a human blocker can obstruct the dominant
links for hundred of milliseconds, and may lead to discon-
necting the ongoing communication session, which severely
impacts the network’s reliability [3], [4]. Moreover, adapting
to unpredictable blockage demands critical latency and sig-
nalling overhead, i.e., searching for an unblocked direction
to re-establish the communication link [5]. Therefore, unless
being addressed properly, the blockage appears as the main
bottleneck that hinders the full exploitation of radio resources
and in achieving highly-reliable low-latency connectivity.

To tackle the mmWave radio channel uncertainties, the
use of macro-diversity via Coordinated Multi-Point (CoMP)
has gained great interest. In particular, the Joint Transmis-
sion (JT)-CoMP connectivity, where each user equipment
(UE) is coherently served by multiple spatially distributed
remote radio units (RRUs) [6], [7]. Further, CoMP schemes
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are also reconsidered in recent 3rd Generation Partnership
Project (3GPP) releases [8], and it is envisioned that the
use of multi-antenna spatial redundancies via geographically
separated transceivers will be of high importance in the future
mmWave and sub-THz based deployment scenarios. As a
proof-of-concept, Qualcomm has recently implemented a
CoMP testbed at mmWave frequencies [9], and empirically
shown the coverage and capacity improvements via flexible
deployments in IIoT and factory automation scenarios.

A. PRIOR WORK
The CoMP schemes are mainly employed to enhance the
system throughput, generally for the cell-edge users due to
adverse channel conditions (e.g., higher path-loss and inter-
ference from neighboring RRUs). The CoMP techniques,
such as, JT, Coordinated Beamforming (CB) and Dynamic
Point Selection (DPS) are standardized in 3GPP [8], and
has been widely studied in past decade under the context
of legacy 4G systems [10]–[12]. For example, in [12], it is
shown that JT-CoMP increases the coverage by up to 24% for
cell-edge users and 17% for general users compared to non-
cooperative scenarios. Recent studies have also considered
the CoMP schemes in the mmWave frequencies [13]–[16].

In [13], from extensive real-time measurements, the
authors showed a significant coverage improvement by
simultaneously serving a user with spatially distributed trans-
mitters. The network coverage gain for the mmWave system
with multi-point connectivity, in the presence of random
blockages, was also confirmed in [14], [15] using stochastic
geometry tools. The gains of macro-diversity for the achiev-
able rate and outage probability were quantified in [16],
and it was shown that CoMP connectivity, at the minimum
of four spatially distributed links, can provide up to 76%
capacity gains. However, CoMP schemes for the emerging
wireless systems were still devised with the sole scope of
enhancing the capacity and coverage [13]–[16], e.g., by effi-
ciently utilizing the multi-antenna spatial redundancies via
spatially separated RRUs. Thus, these techniques are not
originally designed for the stringent latency and reliability
requirements, which are inherent for industrial-grade criti-
cal applications. A step towards this direction is introduced
in our earlier work [6], where we provide reliable CoMP
transmission schemes in the presence of random block-
ages, by preemptively underestimating the achievable rates
over the potential link blockage combinations. However,
these algorithms are still designed for the time-invariant
and static case, i.e., the resource allocation problem for a
given instance is studied without taking into account net-
work dynamics and stringent latency conditions due to data
arrivals and evolving queue backlogs. Hence, these algo-
rithms are not always applicable for, e.g., long-term time-
dependent dynamics networks, and for retaining a robust
and resilient mmWave connectivity while satisfying the user-
specific latency requirements.

Thus, the limitations of retransmission events for,
e.g., delay bounded critical applications [17], [18] and the

difficulty of accurate estimation of random blocking events
motivate us to develop latency-constrained highly-reliable
transmission strategies for time dynamic networks. Specifi-
cally, we investigate on, how to use queue backlogs and chan-
nel information at the transmitter to efficiently allocate the
required radio and cooperation resources, and to proactively
exploit the multi-antenna spatial diversity according to the
instantaneous needs of the users for dynamicmmWave access
networks.

B. CONTRIBUTIONS
We develop a robust downlink transmission strategy, tai-
lored for a JT-CoMP based dynamic networks, satisfying
the user-specific latency requirements while retaining stable
and resilient connectivity under the uncertainties of mmWave
radio channel. Specifically, we consider an average sum-
power minimization problem subject to maximum allowable
queue length constraint per user in the presence of ran-
dom link blockages. The long-term time-average stochastic
problem is transformed into a sequence of deterministic and
independent subproblems using the Lyapunov optimization
framework [19]. The coupled and non-convex constraints are
approximated with the sequence of convex subsets by using
the Fractional Program (FP) techniques [20]. Further, the
proposed FP based relaxations allow an efficient implementa-
tion of closed-form iterative beamformer design that enables
tailored complexity and processing performance. The main
contributions of this paper are summarized as follow:

• A robust transmit beamformer design is proposed by
utilizing the multi-antenna spatial diversity and geo-
graphically separated transceivers in CoMP connectivity
scenarios. The average sum-power is minimized while
ensuring the latency requirements, where, for each user,
a pessimistic estimate of the rates overall possible sub-
set combinations of potentially blocked links is consid-
ered [6]. Thus, managing mutually coupled link blocked
combinations is more challenging than conventional
constrained optimization.

• To adapt with the uncertainties of the mmWave radio
channel, a proactive and dynamic selection of the user-
specific CoMP serving set from the available RRUs is
proposed, e.g., by exploiting the queue backlogs and
channel information. This preemptive rate estimate and
dynamic selection of the serving subset is shown to
greatly improve the reliability and average sum-power
performance while ensuring the latency requirements.

• After the relaxation of coupled and non-convex con-
straints via the Fractional Program (FP) techniques,
a low-complexity robust beamformer design framework
is proposed by solving a system of closed-form Karush-
Kuhn-Tucker (KKT) optimality conditions, and does not
require any generic (or tailored) convex solvers. This
leads to practical and computationally efficient imple-
mentation for, e.g., hardware-constrained devices with
limited processing capabilities.
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The paper is an extended version of our earlier published
conference paper [1]. In this paper, we have included the
following additional notable contributions that provide more
complete coverage and analysis. We propose an algorithm
for dynamic selection of user-specific CoMP serving subset,
which ensures the latency requirements with the minimum
sum-power, and efficiently adopts with the uncertainties of
mmWave radio channel. Specifically, leveraging the queue
backlogs and channel information at transmitter, we propose
a latency-reliability aware framework to efficiently allocate
the required radio and CoMP resources, and to proactively
exploit spatial diversity according to the instantaneous needs
of the users in time dynamic mobile network conditions.

We extend the FP quadratic transform techniques [20],
i.e., to take into consideration JT-CoMP transmission and
provide a novel grouping of amultitude of potentially coupled
and non-convex SINR conditions, that raise from the link
blockage subset combinations of CoMP serving set. Our pro-
posed extension to FP facilitates a low-complexity iterative
algorithm, where each step is efficiently computed in closed-
form expressions, and thus, enables tailored complexity and
convergence performance. All of the aforementioned results
have been further improved and extended in this paper while
accounting network dynamics and random link blockages.
Finally, we provide comprehensive and detailed numerical
examples to evaluate the performance advantage of the pro-
posed solutions. Specifically, we quantify the underlying
trade-offs in terms of average sum-power, achievable rates,
and reliable downlink transmissions, under the uncertainties
of mmWave radio channel and random link blockages.

C. ORGANIZATION AND NOTATIONS
The remainder of this paper is organized as follows.
In Section II, we illustrate the system, blockage, and queuing
model, as well as, provide the formulation of the prob-
lem. Section III provides a dynamic control algorithm.
In Section IV, we describe the proposed beamformer designs.
Section V provides an algorithm for dynamic serving set
selection and theoretical analysis of outage. The valida-
tion of our proposed methods with the numerical results
are presented in Section VI, and conclusions are given in
Section VII.
Notations: In the following, we denote vectors and matri-

ces with boldface lowercase and uppercase letters, respec-
tively. The inverse, conjugate transpose and transpose oper-
ation is represented with the superscript (·)−1, (·)H and (·)T,
respectively. Cardinality of a set X is denoted with |X |. The
norm and the real part of a complex number is represented
with | · | and <{·}, respectively. Notation CM×N is a M×N
matrix with elements in the complex field. [a]n is the nth
element of a, and (a)+,max(0, a). Notation∇xy(x) represent
the gradient of y(·) with respect to x.

II. SYSTEM ARCHITECTURE
We consider a downlink transmission in a mmWave
based cloud (or centralize) radio access network (C-RAN)

FIGURE 1. C-RAN with network queues, B transmitters (RRUs), and
K receivers (UEs) in the presence of randomly distributed blockers.

architecture, where all RRUs are connected to the edge
cloud by the fronthaul links, as illustrated in Fig. 1.
Each RRU is equipped with N transmit antennas. We use
K = {1, 2, . . . ,K } to denote the set of all single antenna UEs,
and B = {1, 2, . . . ,B} to denote the set of all RRUs. Further,
the set of RRUs that serve kth UE is denoted by Bk , such that
Bk ⊆ B, ∀k ∈ K. We assume JT-CoMP connectivity [7],
where each user k receives a synchronous signal from its
serving RRUs Bk ∀k . We assume that the network operates
in a time-slotted manner, and the slots are normalized to an
integer value, e.g., t ∈ {1, 2, . . .}. Further, we assume that
all RRUs use the same time-frequency resources for data
transmission.

Let fb,k (t)∈CN×1 denote the transmit beamforming vector
from bth RRU to kth UE. Then, the received signal yk (t) at
kth UE during time slot t can be expressed as

yk (t) =
∑
b∈Bk

hHb,k (t)fb,k (t)dk (t)

+
∑

u∈K\k

∑
g∈Bu

hHg,k (t)fg,u(t)du(t)+ wk (t), (1)

where hb,k (t)∈CN×1 is the channel vector between RRU-UE
pair (b, k). Notation dk (t) is data symbol associated with
kth UE, and wk (t) ∈ CN (0, σ 2

k ) is circularly symmetric addi-
tive white Gaussian noise (AWGN). Moreover, we assume
that data symbols are normalized and independent, i.e.,
E{|dk (t)|2} = 1 and E{dk (t)d∗u (t)} = 0 for all k, u ∈ K. The
received signal-to-interference-plus-noise ratio (SINR) of kth
UE during time slot t can be expressed as

0k (F(t)) =

∣∣∣ ∑
b∈Bk

hHb,k (t)fb,k (t)
∣∣∣2

σ 2
k +

∑
u∈K\k

∣∣∣ ∑
g∈Bu

hHg,k (t)fg,u(t)
∣∣∣2 , (2)

where F(t) , [f1,1(t), f1,2(t), . . . , fB,K (t)].
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A. BLOCKAGE MODEL AND ACHIEVABLE RATE
In mmWave frequency band, the radio channel is spatially
sparse due to low-scattering, reduced diffraction, and higher
penetration and path losses [3], [4]. Hence, a mmWave com-
munication link is inherently unreliable due to its suscepti-
bility to blockages. The channel measurements in a typical
mmWave outdoor scenarios have empirically shown that a
link outage occurs with 20% − 60% probability [3], and
may lead to a 10−fold decrease in the achievable sum-rate
performance [4]. Therefore, unless being addressed properly,
the random link blockage appears as the main bottleneck hin-
dering the full exploitation of the large available bandwidth at
higher frequencies. Thus, to characterize the aforementioned
uncertainties of the mmWave channel, we consider a prob-
abilistic binary blockage model [21], [22]. Specifically, the
radio channel hb,k (t) between RRU-UE pair (b, k) can have
one of two states, i.e., it is either fully-available or completely
blocked. Furthermore, we consider link specific blockage,
and the blocking of channel {hb,k = 0}b∈B,k∈K for all t
is independent. The methodology can easily be extended to
more elaborate channel blocking models, e.g., by considering
the distance and the spatio-temporal correlations [23]. In fact,
this is an interesting topic for future extensions.

Similarly to [6], for improving system reliability and
avoiding outage under the uncertainties of mmWave channel,
we preemptively underestimate the achievable SINR assum-
ing that a portion of CoMP links would be blocked during
the downlink data transmission phase. This is specifically
required in the mmWave communication because of dynamic
blockages, which are, in general, not possible to track during
the channel estimation phase. Let baseband processing unit
(BBU) assume that each user k have at least Lk (t)∈

[
1, |Bk |

]
available links (i.e., unblocked RRUs). Then, we allow BBU
to proactively model the lower-bound of achievable SINR
over all possible subset combinations, e.g., by excluding the
potentially blocked links, and allocate the pessimistic rate to
users. As an example, let the set of RRUs that are used to
serve kth UEwith RRU indicesBk = {1, 2, 3}. Then, with the
assumption of at least Lk (t) = 2 available links, the serving
set of unblocked RRUs available to kth UE can be any one of
following combinations:

B̂k (Lk (t)) =
{
{1, 2}, {1, 3}, {2, 3}, {1, 2, 3}

}
. (3)

Let C(Lk (t)) represent the cardinality of set B̂k (Lk (t)),
defined as C(Lk (t))=

∑|Bk |
l=Lk (t)

|Bk |!
l! (|Bk |−l)! . We use Bc

k to denote

the c-th subset of B̂k (Lk (t)), i.e., Bc
k ∈ B̂k (Lk (t)) such that

cardinality |Bc
k | ≥ Lk (t) for all c = 1, . . . ,C(Lk (t)) dur-

ing time slot t . Then, the received SINR of kth UE for Bc
k

(i.e., c-th subset) is obtained by excluding the potentially
blocked RRUs in expression (2), and it can be expressed as

0k (F(t),Bc
k ) =

∣∣∣ ∑
b∈Bc

k

hHb,k (t)fb,k (t)
∣∣∣2

σ 2
k +

∑
u∈K\k

∣∣∣ ∑
g∈Bu\Dc

k

hHg,k (t)fg,u(t)
∣∣∣2 , (4)

where Dc
k = Bk\Bc

k denotes a subset of potentially blocked
RRUs which are excluded from the interfering links to
kth UE. Thus, the pessimistic achievable rate for kth UE
during time slot t can be expressed as

rk (t) = log2
(
1+ γk (t)

)
, (5)

where γk (t) = min
c

(
0k (F(t),Bc

k )
)
,∀k, c = 1, . . . ,C(Lk (t)).

In practice, the adverse channel condition and signaling over-
head limits the maximum number of cooperating RRUs for
each user (i.e., Bk ∀k) [24]. Thus, the subset combinations
C(Lk (t)) are fairly small for modestly sized systems [6].

It should be noted that each UE k still coherently receives
the signal from all Bk , unless RRUs are not available during
the downlink data transmission phase due to random block-
age. However, the actual RRUs available to serve kth UE can-
not be known a priori in the dynamic blockage environment.
Therefore, to maintain a reliable connectivity at each time
slot, BBU preemptively underestimate the achievable SINR
over all possible subset combinations Bc

k ∈ B̂k (Lk (t)), which
is associated with the design parameter Lk (t) ∀k , as it will
become clear in Section V.

B. NETWORK QUEUEING MODEL
Due to the stochastic nature of the mmWave channel, time-
varying link qualities, and limited radio resources, there exists
a possibility that the link between the RRU-UE pair is in poor
conditions (i.e., in a deep fading state). Thus, scheduling such
UEs will provide a little (if any) benefit. However, saving
the network power and waiting for better channel conditions
may lead to improved system performance [25]. Therefore,
we assume that the BBU maintains a set of internal queues
for storing network layer data of all UEs [19, Ch. 5]. Note
that queue buffer provides a new degree-of-freedom to sched-
ule the transmissions and flexibility to dynamically allocate
resources over the fading channel states, while capturing the
non-stationary evolution of data traffic per user. Let Qk (t)
denote the current queue backlog of kth UE during time slot t ,
and Ak (t) represents the amount of data that exogenously
arrive to it, with the mean arrival rate of E[Ak (t)]=λk . Then
the dynamics of queue Qk (t) can be expressed as

Qk (t + 1) =
[
Qk (t)− rk (t)+ Ak (t)

]+
, ∀k ∈ K, (6)

where rk (t) is transmission rate defined in expression (5). Fur-
thermore, let Qk denote the time-averaged queue associated
with kth UE, defined as

Qk , lim
T→∞

1
T

T−1∑
t=0

E
[
Qk (t)

]
, (7)

where the expectation E[·] depends on the control policy, and
is with respect to the random channel states and data arrivals.

According to the Little’s law, the average delay is directly
proportional to the average queue length Qk [26, Ch. 1.4].
Hence, for kth UE, we can achieve the desired latency
requirements by imposing a constraint on its queue length at
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each time slot. Here, we use a probabilistic constraint on the
queue length, which is defined as

Pr
{
Qk (t) ≥ Qth

k
}
≤ ε, ∀t, (8)

where Qth
k is the allowable queue backlogs for kth UE and

ε�1 is the tolerable queue length violation probability.

C. PROBLEM FORMULATION
Our objective is to develop a power-efficient and reliable
downlink transmission strategy for C-RAN based dynamic
mmWave systems, while satisfying the user-specific latency
requirements. Specifically, we consider a problem of time-
average sum-power minimization for mmWave communica-
tion with random link blockages, subject to the maximum
allowable queue length constraint for each UE, expressed as

min
F(t),γk (t), ∀t

lim
T→∞

1
T

T−1∑
t=0

(∑
b∈B

∑
k∈K

E
[
‖fb,k (t)‖2

])
(9a)

s.t. Pr
{
Qk (t) ≥ Qth

k
}
≤ ε, ∀k ∈ K, ∀t (9b)

γk (t) = min
c

(
0k (F(t),Bc

k )
)
,

∀c = 1, . . . ,C(Lk (t)), ∀k ∈ K, ∀t, (9c)

where the function 0k (F(t),Bc
k ) is defined in (4). The con-

straint (9b) ensures that the queue backlog of each user is
less than Qth

k at each time slot with the probability (1 − ε),
and thus ensures the desired probabilistic latency require-
ments. Note that for each user k , the constraint (9c) is a
pessimistic estimate of achievable SINR. More specifically,
for a given parameter Lk (t), BBUmodels the SINR of kth UE
over all possible subset combinations of potentially available
RRUs Bc

k from the serving set B̂k (Lk (t)) (see Section II-A).
Then, we allow BBU to proactively use the pessimistic
estimate of SINR in order to allocate the downlink rate
for the users such that transmission reliability is improved
(i.e., to minimize the outage due to random link blockages
that appear during the downlink transmission phase).

III. DYNAMIC CONTROL ALGORITHM
The problem (9) is intractable as it consists of a long-term
time-average sum-power objective function (9a), non-linear
probabilistic queue length constraint (9b), and a large num-
ber of coupled non-convex SINR expressions (9c). In this
section, we handle the first two sources of intractability, and
derive a dynamic control algorithm for (9) by using the Lya-
punov optimization framework [19]. The proposed convex
relaxations via FP techniques and the closed-form iterative
algorithms are then provided in Section IV.

We start by upper-bounding the probabilistic queue length
constraint (9b) as a time-average constraint using well-known
Markov’s inequality, i.e., Pr{Qk ≥ Qth

k } ≤ E[Qk ]/Qth
k , ∀k

[26]. Thereby, problem (9) can be rewritten as

min
F(t),γk (t), ∀t

lim
T→∞

1
T

T−1∑
t=0

(∑
b∈B

∑
k∈K

E
[
‖fb,k (t)‖2

])
(10a)

s.t. lim
T→∞

1
T

T−1∑
t=0

E
[
Qk (t)

]
≤εQth

k , ∀k ∈K, ∀t

(10b)

γk (t) ≤ 0k (F(t),Bc
k ),

∀c = 1, . . . ,C(Lk (t)), ∀k ∈ K, ∀t. (10c)

Note that we have relaxed (9c) while writing constraint (10c),
and both these constraints are equivalent at the optimality.

Now, we use the Lyapunov framework, specifically, a drift-
plus-penalty method [19] to find a solution of problem (10).
We enforce the long-term time-average constraint (10b) by
transforming it into a queue stability problem [19, Ch. 5].
Specifically, a virtual queue associated with (10b) for each
user k is introduced, and the stability of these virtual queues
implies that the constraint (10b) is met.

Let Zk (t) be the virtual queue associated with (10b) for
kth UE, and we update Zk (t) as

Zk (t + 1) =
[
Zk (t)+ Qk (t + 1)− εQth

k
]+
, ∀k ∈ K. (11)

The expression (11) can be interpreted as a queue dynamics
for kth UE with arrival rate Qk (t + 1) and service rate εQth

k .
It can be observed from (11) that if the queue length of
a user is larger than the delay tolerance, the virtual queue
will increase. Therefore, if the virtual queues {Zk (t)}k∈K are
stable, then by using [19, Theorem 2.5] we can show that
constraint (10b) is satisfied.

We now define Lyapunov function and its drift, which is
used to stabilize queues {Zk (t)}k∈K. For a compact repre-
sentation, let 9(t) = [Z1(t), . . . ,ZK (t),Q1(t), . . . ,QK (t)]T

denote a collection of virtual and actual queues. Then we
define following quadratic Lyapunov function [19, Ch. 3]:

L(9(t)) ,
1
2

∑
k∈K

Zk (t)2. (12)

Intuitively, we can observe that if L(9(t)) is small, then all
queues {Zk (t)}k∈K are small. Contrarily, if L(9(t)) is large
then at least one of the queues is large. Thus, by minimizing a
drift of L(9(t)) from one time slot to another, queues virtual
{Zk (t)}k∈K can be stabilized, and thus, pushing the network
queue backlog towards the desired requirements.

Then the Lyapunov drift [19, Ch. 5], which describes
the change in network congestion between consecutive time
slots, can be expressed as

4(9(t)) = E
[
L(9(t + 1))− L(9(t))|9(t)

]
=

1
2
E
[ ∑
k∈K

(
Zk (t + 1)2 − Zk (t)2

)∣∣9(t)
]
. (13)

Next, by using expressions (6) and (11) in (13), an upper
bound of drift 4(9(t)) can be expressed as1

4(9(t)) ≤ ζ +8(t) − E
[ ∑
k∈K

(Qk (t)+ Ak (t)

+Zk (t))rk (t)
∣∣9(t)

]
, (14)

1To obtain (14), we have used the fact that ([a+b−c]+)2 ≤ (a+b−c)2 for
any a ≥ 0, b ≥ 0, and c ≥ 0.
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where ζ and 8(t) are positive constants, and satisfy the
following condition2 for all time slots:

ζ ≥
1
2
E
[ ∑
k∈K

{
Ak (t)2 + rk (t)2

}∣∣9(t)
]
,

8(t) =
∑
k∈K

[1
2
(εQth

k )
2
+

1
2
Qk (t)2

+ Zk (t)Qk (t)+
(
Qk (t)+ Zk (t)

)
Ak (t)

]
.

Now we define following drift-plus-penalty function [19]
for problem (10):

4(9(t))+ VE
[∑
b∈B

∑
k∈K
‖fb,k (t)‖2

∣∣9(t)
]
, (15)

where V ≥ 0 is a trade-off parameter.3 By using expres-
sion (14) in (15), and minimizing the upper bound of (15)
subject to constraint (10c) at each time slot, we can stabilize
queues {Zk (t)}k∈K and minimize the sum power objective
function of problem (10). Thus, we utilize the concept of
opportunistic minimization of an expectation [19, Ch. 1.8]
to minimize the drift-plus-penalty function (15), and obtain
a dynamic control algorithm as detailed in Algorithm 1.

Algorithm 1 Dynamic Control Algorithm for (9)
For a given time slot t , observe current queue backlogs{
Qk (t), Zk (t)

}
and solve following problem:

min
F(t),γk (t)

V
∑
b∈B

∑
k∈K
‖fb,k (t)‖2 −

∑
k∈K

(
Qk (t)

+ Ak (t)+ Zk (t)
)
log2

(
1+γk (t)

) (16a)

s.t. γk (t) ≤ 0k (F(t),Bc
k ), ∀c, ∀k ∈ K. (16b)

Update queues Qk (t + 1) and Zk (t + 1) by using (6) and
(11), respectively, for all k ∈ K
Set t = t + 1, and go to step 1

We can observe from Algorithm 1 that the queue length of
current unserved requests buffer will subsequently impact the
resource assignment decision in the next slot due to evolving
queue backlog. At each time slot of Algorithm 1, we need to
solve problem (16) to find beamforming vectors. Therefore,
we derive iterative algorithms for this in the next section.

IV. ITERATIVE ALGORITHMS FOR PROBLEM (16)
The problem (16) is intractable as-is, mainly due to coupled
and non-convex SINR expressions (16b). In this section,
we elaborate on finding the solution of problem (16) by
using the FP quadratic transform techniques [20]. In addi-
tion, we also provide a low-complexity beamformer design
via iterative evaluation of the closed-form KKT optimality
conditions.

2We have assumed that second moments of arrival and transmission
processes are bounded [19]. The derivation is omitted due to lack of space,
and we refer the reader to [19] for the details.

3Note that V is a control parameter, reflecting the importance of objective
function, i.e., higher values of V emphasize the minimization of the sum-
power at the expense of linearly increasing the queue length, and vice versa.

It is worth highlighting, in the FP techniques [20], [27],
[28], all non-convex constraints are approximated with the
sequence of convex subsets, and the underlying convex
subproblem is then iteratively solved until the desired con-
vergence of objective function. The FP quadratic trans-
form based solutions have been widely studied in many
applications, e.g., power control, energy efficiency, and
multi-antenna interference coordination [20], [27], [28]. For
example, the non-convex SINR relaxation via FP techniques
is provided for downlink in [20, Section IV], [28, Section III]
and for uplink in [27, Section V], assuming perfect CSI and
no blockages. Further, all these algorithms are studied for
the static case (i.e., the resource allocation problem for a
given instance). In view of the prior works, there lacks a sys-
temic approach for the design of beamforming vectors in the
JT-CoMP scenarios, while accounting for the uncertainties of
mmWave radio channel, in a time-average dynamic network,
with the stringent user-specific latency and reliability require-
ments, and thus, motivating the current work.

A. SOLUTION VIA FP TECHNIQUES
We start by using the expression of 0k (F,Bc

k ) (see (4)), and
compactly rewrite (16b) as

γk (t) ≤
|hcHk (t)fk (t)|2

σ 2
k +

∑
u∈K\k

∣∣hcHk (t)fu(t)
∣∣2 , (17)

where fk (t), [1Bk(1)f
T
1,k (t), . . . ,1Bk(B)f

T
B,k (t)]

T
∈ C|B|N×1

and hck (t) , [1Gc
k
(1)hT1,k (t), . . . ,1Gc

k
(B)hTB,k (t)]

T
∈ C|B|N×1

denotes the stacked beamformer and channel, respectively.
The indicator function 1Gc

k
(b) and 1Bj (b) are defined as

1Bk (b) =
{
1 if and only if b ∈ Bk
0 otherwise.

1Gc
k
(b) =

{
1 if and only if b ∈ B \Dc

k
0 otherwise,

whereGc
k = B\Dc

k for all c = 1, . . . ,C(Lk ) and k ∈ K. In this
section, we omit time index t to simplify the notations.

Let us now examine the characteristic of the objective
function in problem (16). We can observe that the right-hand-
side (RHS) of (16b) is a typical function of multiple fractional
parameters (i.e., SINR expressions (17)). Thus, problem (16)
can be recast as a multi-ratio fractional problem. Motivated
by the findings in [20], here we adopt the FP quadratic trans-
form techniques, wherein the non-convex problem is recast
as a sequence of convex subproblems, and then iteratively
solved until the desired convergence of objective function.
We extend the approaches [20] to take into consideration
coherent multi-point transmission and provide a novel group-
ing of a multitude of potentially coupled and non-convex
SINR conditions, that raise from the link blockage subset
combinations of RRUs.We develop the following proposition
based on the FP techniques [20, Theorem 1].
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Proposition 1: The fractional terms in RHS of (17)

|hcHk fk |2

σ 2
k +

∑
u∈K\k

∣∣hcHk fu
∣∣2 , (18)

is equivalent to

2<
{
ν∗k,ch

cH
k fk

}
− ν∗k,c

[
σ 2
k +

∑
u∈K\k

∣∣hcHk fu
∣∣2]νk,c, (19)

when the auxiliary variable {νk,c} has the optimal value as

ν
(?)
k,c =

hcHk fk

σ 2
k +

∑
u∈K\k

∣∣hcHk fu
∣∣2 , (20)

for all c = 1, . . . ,C(Lk ) and k ∈ K. The Proposition 1 can
easily be proved by following the steps in [20, Section IV].

Thereby using Proposition 1, we can obtain a solution for
problem (16) by iteratively solving a sequence of convex
subproblems [20]. For example, the convex subproblem for
i-th iteration along with dual variables can be expressed as

min
F,γk

V
∑
k∈K
‖fk‖2−

∑
k∈K

(Qk + Ak + Zk ) log2(1+ γk ) (21a)

s.t. ek,c : γk ≤ 2<
{
ν
∗(i−1)
k,c hcHk fk

}
− ν
∗(i−1)
k,c

[
σ 2
k +

∑
u∈K\k

∣∣hcHk fu
∣∣2]ν(i−1)k,c , ∀c, ∀k ∈ K,

(21b)

where {ek,c} are non-negative Lagrangian multipliers asso-
ciated with constraints (21b). Note that (21) provides an
approximate solution for (16) in the vicinity of a fixed operat-
ing point {ν(i−1)k,c }. Specifically, for fixed auxiliary variables,
we first optimize the primal optimization variables, and then
update auxiliary variables with the current solution using
expression (20). Hence, by iteratively solving (21) while
updating the auxiliary variables {ν(i)k,c} with current solution,
we can find a best solution for (16), using existing convex
optimization toolboxes, such as CVX [29]. The beamformer
design with the proposed FP relaxations has been summa-
rized in Algorithm 2.

Algorithm 2 FP based Algorithm for (16)

Set i = 1 and initialize with a feasible
{
ν
(0)
k,c

}
, ∀c, ∀k

repeat
Solve (21) with

{
v(i−1)k,c

}
and denote the local

solution as
{
f(i)k , γ

(i)
k

}
Obtain ν(i)k,c using (20) with updated

{
f(i)k
}

Set i = i+ 1
until convergence or for fixed number of iterations

B. SOLUTION VIA KKT CONDITIONS
We can observe that for fixed auxiliary variables {νk,c}, each
subproblem (21) is a convex problem with respect to vari-
ables {fk , γk}. Thus, we can efficiently obtain the solution

by the Lagrangian multiplier method. Here, we tackle (21)
by iteratively solving a system of KKT optimality conditions
[30, Ch. 5.5], and, in general, it admits a closed-form solution
that does not rely on generic (or tailored) convex solvers. The
Lagrangian LFP(F, γk , νk,c, ek,c) of problem (21) is given
in (22), as shown at the bottom of the next page. The
stationary conditions for kth UE is obtained by differen-
tiating (22) with respect to associated primal optimization
variables {fk , γk} for all k ∈ K (refer to [30, Ch. 5.5.3] for
details). Thus, the stationary conditions of each user k for
problem (21) can be expressed as

∇γk :

C(Lk )∑
c=1

ek,c =
Qk + Ak + Zk

1+ γk
, (23a)

∇fk :
C(Lk )∑
c=1

ek,c
(
ν
∗(i−1)
k,c hcHk

)
= fHk

(
V1+

∑
u∈K\k

C(Lu)∑
c=1

eu,cν∗(i−1)u,c
(
hcuh

cH
u
)
ν(i−1)u,c

)
.

(23b)

In addition to (23) and primal-dual feasibility constraints, the
KKT conditions also include the complementary slackness as

ek,c ≥ 0; ek,c

{
γk − 2<

{
ν
∗(i−1)
k,c hcHk fk

}
+ ν
∗(i−1)
k,c

[
σ 2
k

+
∑

u∈K\k

∣∣hcHk fu
∣∣2]ν(i−1)k,c

}
=0, ∀c, ∀k ∈ K.

(24)

Note that the user-specific SINR constraint (21b) is mutu-
ally coupled and interdependent over the serving set combi-
nations (see Section II-A). Hence, obtaining a closed-form
solution for the associated Lagrangian multipliers {ek,c} in
expression (23) is considerably more difficult than the case
with single and non-coupled QoS constraint per user [7],
[28]. Thus, to overcome this challenge, we resort to the
subgradient approach, where all non-negative Lagrangian
multipliers {ek,c} are iteratively solved using the subgradi-
ent method [31]. Furthermore, to avoid separate updates for
inner and outer loops, and hence, to improve the convergence
speed, the fixed operating point {ν(i)k,c} is also heuristically
updated, in each iteration, along with primal variables and
associated Lagrange multipliers. Thus, in general, the mono-
tonic convergence can not be guaranteed, and it may not
necessarily converge to the same solution as Algorithm 2.
It is shown by numerical examples in Section VI that this
still provides good performance with a fairly small number
of approximation point updates. The closed-form steps in the
proposed iterative algorithm are:

f(i)Hk =

C(Lk )∑
c=1

e(i−1)k,c

(
ν
∗(i−1)
k,c hcHk

)
×

{
V1+

∑
u∈K\k

C(Lu)∑
c=1

e(i−1)u,c ν∗(i−1)u,c
(
hcuh

cH
u
)
ν(i−1)u,c

}−1
,

(25a)
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γ
(i)
k =

Qk + Ak + Zk
C(Lk )∑
c=1

e(i−1)k,c

− 1, (25b)

0
(i)
k (F,Bc

k ) =
|hcHk f(i)k |

2

σ 2
k +

∑
u∈K\k

∣∣hcHk f(i)u
∣∣2 , (25c)

e(i)k,c =
(
e(i−1)k,c + βe

[
γ
(i)
k − expression (19)

])+
, (25d)

ν
(i)
k,c =

hcHk f(i)k
σ 2
k +

∑
u∈K\k

∣∣hcHk f(i)u
∣∣2 . (25e)

where βe is small positive step-size.4 In expression (25d),
the dual variables {ek,c} are iteratively updated based on
the violation of SINR constraint, e.g., the complementary
slackness conditions (24), using the subgradient method [31].
The proposed beamformer design by solving a system of
closed-form KKT expressions is summarized in Algorithm 3.

Algorithm 3 KKT based Iterative Algorithm for (21)

Set i = 1 and initialize
{
v(0)k,c

}
, ∀c, ∀k

repeat
Solve f(i)k from (25a) with

{
ν
(i−1)
k,c , e(i−1)k,c

}
Obtain γ (i)

k from (25b)
Calculate 0(i)

k (F,Bc
k ) from (25c) with

{
f(i)k
}

Update e(i)k,c using (25d)
Solve ν(i)k,c from (25e) with updated

{
f(i)k
}

Set i = i+ 1
until convergence or for fixed iterations

C. INITIALIZATION AND COMPLEXITY ANALYSIS
1) FEASIBLE INITIALIZATION
In the FP methods, the non-convex constraints (16b) are
approximated with the sequence of convex subsets, and then
iteratively solved until the convergence of objective func-
tion to a stationary point solution. Thus, it is important to
initialize the proposed iterative algorithms with a feasible
starting point, as it impacts the problem feasibility and the
rate of convergence [20], [27]. To this end, one possible
option for a feasible {f(0)k } is to use any randomly gener-
ated beamforming vector. Then, compute the lower bound of
achievable SINR from (4), i.e., γ (0)

k = min
c

(
0k (Bc

k )
)
for all

c = 1, 2, . . . ,C(Lk ), k ∈ K. Furthermore, with the feasible

4The step size depends on the system model, as it directly affects the
convergence rate and controls the oscillation in the objective function [31].

{f(0)k }, the initial values of the auxiliary variables {ν(0)k,c} can
easily be computed using (20). The non-negative Lagrangian

multiplier {e(0)k,c} in Algorithm 3 are initialized such that∑C(Lk )
c=1 e(0)k,c > 0, e.g., at least one of the coupled SINR

constraint is active for each user (see (23a) and (25b) for
more details). It is worth noting that the initialization of
the iterative algorithms with different feasible initial val-
ues

{
f(0)k , γ

(0)
k , ν

(0)
k,c, e

(0)
k,c

}
, in general, does not impact the local

solution of problem (16), provided a sufficient number of iter-
ations [30]. For detail on the convergence and the stationary
point solution, we refer the readers to [20], [27].

2) COMPUTATIONAL COMPLEXITY ANALYSIS
The approximated convex subproblem (21) can be solved in
a generic convex optimization solver, i.e., as a sequence of
second-order cone programs (SOCP) [32]. The interior points
methods are generally adopted to efficiently solve the SOCP
formulations, wherein, the computational complexity of each
iteration scales with the length of system wide joint beam-
forming vectors (|B|N ) and the number of constraints [32].
In this case, it can be shown that solving each subprob-
lem (21) requires O

(
(|B|N )3.5

)
arithmetic operations. The

computational complexity of the iterative algorithms, e.g.,
by solving a system of closed-form KKT optimality con-
ditions, is mainly dominated by expression (25a) for each
subproblem (21). We can observe that expression (25a)
consists of matrix multiplications and inverse operations,
and each iteration requires O

(
(|Bk |N )2.37

)
arithmetic oper-

ations using, e.g., Coppersmith–Winograd algorithm [33],
[30, Appendix C]. Thus, algorithms based on iterative eval-
uation of closed-form KKT optimality conditions provide
relatively lower complexity.5 compared to the joint beam-
former optimization across all RRUs, and does not require
any convex solver. As an example, let |B|=|Bk |=4 and Nt=
{4, 16}, Algorithm 3 resutls in the complexity reduction by
{95.6%, 99%}, and thus, provides a solution for the practical
implementations.

V. DYNAMIC SERVING SUBSET SELECTION
We assume that the blockers are randomly distributed and
independent for each time slot. Further, the position of
each blocker and/or blockage event can not be known
during the downlink data transmission phase. Therefore,
to improve system reliability under these uncertainties of
mmWave radio channel, we preemptively underestimate

5As an alternative implementation, the matrix inversion in (25a) can be
replaced with the best response framework [7, Section IV] [34], which
efficiently parallelizes the beamformer updates across the RRU antennas.

LFP(F, γk , νk,c, ek,c) =
K∑
k=1

[
V‖fk‖2 − (Qk + Ak + Zk ) log2(1+ γk )+

C(Lk )∑
c=1

ek,cγk

−2
C(Lk )∑
c=1

ek,c<
{
ν
∗(i−1)
k,c hcHk fk

}
+

C(Lk )∑
c=1

ek,c|ν
(i−1)
k,c |

2σ 2
k +

∑
u∈K\k

C(Lu)∑
c=1

eu,cν∗(i−1)u,c |hcHu fk |2ν(i−1)u,c

]
. (22)
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the achievable rate of each user, assuming that a portion of
CoMP links would be blocked during the data transmission
phase (see Section II-A). Let BBU assume that each user k
have at least Lk (t) available links (i.e., unblocked RRUs).
Then we allow BBU to proactively model the pessimistic
estimate of SINR over all possible subset combinations, e.g.,
by excluding the potentially blocked links, and allocate the
rate to users such that transmission reliability is improved
(for more details see Section II-A). Hence, the user-specific
CoMP subset combinations Lk (t) ∈ [1, |Bk |] ∀k is a design
parameter, which can be tuned for each time slot t , e.g.,
based on available queue backlogs and channel information,
to achieve desired rate, reliability, and user-specific latency
requirements.

Let %k (t) ∈ [0, 1] denote the blockage probability of kth
UE during time slot t . Then, for a fixed subset combina-
tions Lk (t), the success probability of kth UE can be approx-
imated as (refer to [6, Section III] for details)

pk
(
Lk (t)

)
=

|Bk |−Lk (t)∑
l=0

(
|Bk |
l

)(
1− %k (t)

)|Bk |−l(%k (t))l . (26)

Since all users are independent, the outage probability of kth
UE can be expressed as

Poutk
(
Lk (t)

)
= 1− pk

(
Lk (t)

)
, ∀k ∈ K. (27)

From expression (27), we can observe that the outage
Poutk

(
Lk (t)

)
is a monotonically increasing function of param-

eter Lk (t). As an example, we can improve the system
reliability and avoid the outage by preemptively assum-
ing that a significant portion of the available CoMP RRUs
(i.e., |Bk |−Lk (t), ∀k) are potentially blocked. However, this
pessimistic assumption on available links may lead to a lower
SINR estimate (see Section II-A), and hence, a lower rate
to each user (5). Thus, to ensure the user-specific latency
requirements (9b), the network consumes more power, and
attempt to increase the instantaneous achievable rate over the
subset of potentially available RRUs, Bc

k ∀k ∈ K.
Conversely, a less pessimistic assumption on subset size

(i.e., a higher value of Lk (t) ∀k) can provide higher instan-
taneous SINR (4), but it can be more susceptible to the
outage, and results in less stable connectivity.Moreover, these
outage events will eventually increase the queue backlogs (6),
i.e., due to unsuccessful downlink data transmissions. Thus,
to guarantee the desired average latency requirements (9b),
the network consumes more power, and tries to increase the
achievable rates in the following transmit intervals. Clearly,
there is a trade-off between reliable connectivity and sum-
power performance, while ensuring the latency requirements.

Therefore, for each time slot t , first we need to choose
parameter Lk (t) ∈ [1, |Bk |], and then solve problem (16)
over a given subset combinations C(Lk (t)) for all k ∈ K.
Specifically, the parameter Lk (t), such that the solution of
problem (16) satisfy (9b) with the minimum sum-power is of
our interest. Thus, we can observe that the constraint (9b) can
be met with minimum sum-power, if the success probability

of each user k satisfy pk
(
Lk (t)

)
≥ 1− ε, ∀k ∈ K. Hence, the

parameter Lk (t) for kth UE during time slot t can be computed
by solving following:

min
Lk (t)

pk
(
Lk (t)

)
(28a)

s.t. pk
(
Lk (t)

)
≥ 1− ε, ∀Lk (t) ∈

[
1, |Bk |

]
. (28b)

It should be noted that the blockage probability %k (t) ∀k is
still an unknown parameter, and thus hinders solving (28).
However, an approximation of blockage %̃k (t) ∀k can be
obtained by, e.g., exploiting the available queue backlog
information at the BBU. For example, in the considered
C-RAN architecture, the centralized BBU is aware of the
instantaneous arrivals, current queue backlogs, and channel
information, for the design of beamforming vectors. Thus,
user k during time slot t can be in outage, if the assigned
downlink rates rk (t) 6= 0 and the queue backlogs grow as
Qk (t + 1) = [Qk (t) + Ak (t)]+, ∀k ∈ K (see expression (6)
and (31) for more details). Therefore, the outage of kth UE
during time slot t can be approximated as

1Pk (t) =

 1 if
{
rk (t) 6= 0

}⋂{
Qk (t + 1) = [Qk (t)+ Ak (t)]+

}
,

0 otherwise.

where 1Pk (t) is indicator function. Alternatively, the out-
age event can be (more accurately) computed based on UE
acknowledgments. However, in the presence of random link
blockages, the mmWave feedback links are inherently unre-
liable, and hence, results in overestimation and increased
delays [17], [18]. In fact, this is an interesting topic for
future extensions. Thus, at each time slot t , BBU exploits
the available channel and queue backlogs information of each
user k to compute the approximated blockage as

%̃k (t) =
1
δk

t−1∑
i=t−δk

1Pk (i), (29)

where δk is maximum averaging length. Hence, using the
estimated time-averaged blocking, the BBU first computes
the adequate size of the subset combinations from (28), and
then solves problem (16) to obtain the beamforming vectors.

VI. SIMULATION RESULTS
This section provides numerical examples to quantify the
performance advantage of the proposed iterative algorithms.
We consider a mmWave based donwlink transmission with
UEs K = 4, RRUs B = 4, and each RRU is equipped with
a uniform linear array (ULA) of N = 16 antennas. Further,
RRUs are placed in a 50×50 meters square layout (resem-
bling, e.g., a factory-type IIoT setup), and are connected to a
common BBU in the edge cloud. All single antenna UEs are
randomly dropped within the coverage region, thus each UE
has a different path-gain and angle with the RRUs.
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The mmWave channel hb,k (t) between a RRU-UE pair
(b, k) is based on sparse geometric model [35], and defined as

hb,k (t) =

√
N
M

M∑
m=1

ωb,k (t)d
−ψm(t)
b,k (t)aHT (φ

m
b,k (t)), (30)

where M is the number of independent paths, which we
set as M = 3, and ωb,k (t) is random complex gain with
zero mean and unit variance. The distance between RRU-UE
pair is represented with db,k , and the notation ψm denote a
random path-loss exponent. In the simulation, we consider
ψm(t) ∈ [2, 6], ∀(m, t). The array response vector for
ULA is represented with aT (φmb,k (t)) ∈ CN×1, and rela-
tive to the boresight of the RRU antenna array, the angle-
of-departure (AoD) for each path is uniformly distributed,
i.e., φmb,k (t) ∈ [−π/2, π/2], ∀(m, t). For simplicity,
we assume a probabilistic binary blockage model [21], [22],
where the radio channel between RRU-UE pair during down-
link transmission phase, is either fully available, i.e., as in
expression (30) or completely blocked, i.e., {hb,k (t) = 0},
with the link blockage probability of q ∈ [0, 1] for all b ∈ B
and k ∈ K.
Recall that to improve the communication reliability and

avoid outage under the uncertainties of mmWave radio
channel, we use parameter Lk (≤ |Bk |) in problem (9), and
proactively model the SINR over the link blockage combina-
tions (see Section II-A). For simplicity, but without loss of
generality, we assume identical parameters for each user k ,
i.e., serving set |Bk | = 4, Lk = L, data arrival Ak ∼ Pois(λ)
with λ = 3.5 bits/slot and maximum queue backlogs Qth

k =

5 bits with tolerable violation probability ε = 0.1 in prob-
lem (9) [1]. In the simulations, we set the frequency fc =
28 GHz, and the step size βe=0.01 in expression (25d).

The outage event occurs if the instantaneous transmit
rate rk (t) exceeds the supported rate6 ck (t) for all k ∈ K.
Then, the queue dynamics Qk (t) in (6) can be expressed as

Qk (t + 1)=
[
Qk (t)− rk (t)1{rk (t)≤ck (t)}+ Ak (t)

]+
, ∀k, (31)

where 1{·} is an indicator function. Specifically, expres-
sion (31) implies that queue backlogs also increase with each
unsuccessful downlink transmission due to random block-
ages. In our study, we will make use of subset size L to
analyze the network performance. For the baseline methods,
we consider CB (i.e., |Bk | = 1, ∀k) [10] and full-JT (i.e.,
Lk = |Bk |, ∀k) [7] based downlink beamformer designs.

A. CONVERGENCE ANALYSIS
In Fig. 2, we examine the convergence behavior of proposed
iterative algorithms for given randomly generated channel

6For a give time slot t , let Sk (t) = {γ ?k (t), f
?
k (t)}k∈K denote solution of

problem (9). Then, for each UE k , the transmission rate is given by rk (t) =
log2(1+γ

?
k (t)). However, the actual supported rate (i.e., link capacity) for kth

UE depends on the obtained beamformers {f?k (t)}k∈K and current channel
state {hb,k (t)}b∈B,k∈K. However, channel can not be exactly known to the
BBU during data transmission phase due to random blockages. Thus, the
supported rate can be calculated by using the actual SINR values (2), i.e.,
ck (t) = log2(1+0k (F

?(t))), ∀k ∈ K, and these supported link rates are
unknown to the BBU.

FIGURE 2. Convergence performance of Algorithm 2 and Algorithm 3.

realizations. For simplicity but without loss of generality,
we set parameters V =1, L=3, and q=0. Note that the solu-
tion of Algorithms 2 is obtained directly by using the convex
optimization toolbox, SeDuMi [29]. In contrast, Algorithm 3
is solved from a system of closed-form KKT optimality con-
ditions in an iterative manner (see (25)). We can observe that,
with the considered parameter settings, both algorithms con-
verge to the same solution with a fairly small number of iter-
ations. It is worth highlighting, in general, the convergence
of Algorithm 3 cannot be guaranteed to be monotonic due to
only a single subgradient updates (25d) in each iteration along
with other variables (see Algorithm 3). We refer the reader
to [31] on the convergence properties of the subgradient
approach with different step size rules. To summarize, the
Algorithm 2 provides monotonic and faster convergence in
terms of required approximation point updates. On contrary,
Algorithm 3 achieves comparable performance with a notable
reduction in the per-iteration computational complexity and
does not require any generic (or tailored) convex solvers,
which can be useful for, e.g., hardware constrained devices
with limited processing capabilities.

B. IMPACT OF PARAMETER V
First, in Fig. 3, we illustrate the latency performance with
trade-off parameter V = 1 and blockage q= 10%. The result
shows that our proposed and baseline methods satisfy the
maximum queue backlogs of each user k (i.e., Qth

k = 5 bits)
within the allowable queue tolerance level ε = 0.1. Thus,
problem (9) is feasible, and the proposed convex relaxations
still allow to achieve the desired user-specific latency require-
ments (i.e., constraint (9b) is met). However, our proposed
beamformer designs, i.e., by considering a pessimistic esti-
mate of rates over the subset combinations of potentially
blocked CoMP RRUs, substantially improve the average
sum-power performance, while ensuring the same latency
requirements, as shown in Fig. 4. As an example, for the
parameter V = 1 and L = 2, our proposed method improves
the average sum-power performance by 8 dBm and 18 dBm
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FIGURE 3. Queue backlogs with V = 1 and blockage of 10%.

FIGURE 4. Average sum-power with increasing V and blockage of 10%.

compared to baseline CB and full-JT, respectively. Hence, the
proposed methods significantly outperform the conventional
full-JT [7] and CB [10] based downlink beamformer design,
and thus provides power-efficient and latency-constrained
highly-reliable mmWave communication.

Further, it can be observed from Fig. 4 that for a fixed
queue length constraint, the average sum-power decreases
with the increase in the value of parameter V . This behavior
is expected, since higher values of V linearly emphasize
the minimization of the sum-power objective over the queue
length, until the queue backlogs become substantially larger
than the sum-power objective values (see (16a) for details).

Fig. 5 and Fig. 6 shows the evolution of the network
queues {Qk (t)} and the associated virtual queues {Zk (t)} over
time with the blockage q = 10% and the parameter L = 3,
for user k = 1. Note that, we can observe similar behavior
for all other users, but these are not included due to space
limitations. It can be concluded from Fig. 5 that the queue
backlogs increases differently for different values of trade-off
parameters V , until it saturates and reaches a certain value

FIGURE 5. Network queue dynamics with blockage of 10%.

FIGURE 6. Virtual queue dynamics with blockage of 10%.

(e.g., for V = 10 around t = 115 time slots), and then
it oscillates, so as the constraint Pr

{
Qk (t) ≥ Qth

k

}
≤ ε,

is strictly ensured, i.e., to achieve the average user-specific
latency requirements. This is mainly because of the negative
drift property of the Lyapunov function [19, Ch. 4.4]. Thus,
the stability of associated virtual queues {Zk (t)}, i.e., as in
Fig. 6, ensures that the network queues are bounded, and
achieves the desired queue backlogs performance per user,
i.e., constraint (9b) is satisfied.

C. DYNAMIC SELECTION OF PARAMETER L
Next, we investigate the dynamic selection of the serving set
size, i.e., parameter L(t) for each time slot t , which is obtained
by solving (28). To do that, first in Fig. 7, we show the time-
averaged blockage computed from expression (29) with the
maximum averaging length δk = min{τ, (t − 1)}, and we
set τ = 50. It can be concluded that the estimate of the
blockage in (29) closely matches with actual blockage prob-
ability, with a small number of random channel realizations.
Thus, expression (29) provides a fair approximation, and the
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FIGURE 7. Approximation of blockage probability using (29).

FIGURE 8. Dynamic selection of subset size L(t) by solving (28).

resulting gap is mainly due to unpredictable blockage events
and uncertainties in the mmWave radio channel.

Further, it can be observed from Fig. 8 that the instan-
taneous choice of serving set size, i.e., to meet the success
probability (28b), mainly depends on the accuracy of esti-
mated blockage. Furthermore, the oscillations in Fig. 8 is
due to limited (and discrete) choices of parameter Lk (t) ∈
[1, |Bk |], ∀k , and possibly the minimum subset size satisfy-
ing (28b) can be in between the integer values. It is worth
highlighting that the problem (28) aims at finding serving
set size, such that solving problem (16) satisfy the (9b) with
minimum sum-power. Therefore, large values of L may result
in lower sum-power, but it may lead to higher outage, and thus
it dynamically switches to a more pessimistic SINR estimate,
i.e., to lower values of parameter L in the following time slot,
to meet the average latency requirements. Hence, there is a
trade-off between average sum-power, achievable rate, and
reliability, as will be demonstrated in the following.

Fig. 9 illustrates the impact increasing blockage probability
on constraint (9c) and sum-power performance. For exam-
ple, the worst-case pessimistic assumption on available links
(i.e., L = 1) leads to a lower SINR estimate. Thus,

FIGURE 9. Average sum-power with increasing blockage and V =1.

FIGURE 10. Downlink user-rate with V =1 and blockage of 10%.

to ensure the user-specific latency requirements (9b), the
network strives to increase the users’ rate over the available
subset of RRUs Bc

k ∀k ∈ K, i.e., by consuming higher
network power. Thus, it results in relatively lower average
sum-power performance, as shown in Fig. 9. Conversely,
a least pessimistic assumption on subset size (i.e., JT-CoMP,
L = B) can provide higher instantaneous SINR (4), but it
is more susceptible to the communication outage with the
slight increase in blockage probability. Note that the prob-
lem (16) may also become infeasible for large values of link
blockage probability due to the evolution of queue length
buffer. More specifically, these outage events will eventu-
ally increase the queue-backlogs (31), i.e., due to unsuccess-
ful data transmissions. Therefore, to guarantee the average
latency requirements (9b), the network consumes much more
power, and attempts to increase the achievable rates during
potentially unblocked events. Thus, it results in a lower sum-
power performance with increasing blockage, as shown in
Fig. 9. Furthermore, our proposed dynamic choice of serving
set size ensures the same average latency requirements with
the minimum sum-power, and efficiently adopts with the
uncertainties of mmWave radio channel and unpredictable
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blockage events. Note that the resulting gap in the dynamic
subset selection around blockage probability q=20% relative
to the lower envelope, i.e., the parameter L = 2, is mainly
due to the limited and discrete choices of parameter L, and
also the approximation error of the time-averaged blockage
in (29), as also illustrated in Fig. 7.

Fig. 10 illustrates the trade-offs between downlink
rates and reliable mmWave connectivity with parameter
V = 1 and blockage q = 10%. However, similar behav-
ior can be observed for different parameter settings, which
is not included due to space limitations. It can concluded
from Fig. 10 that the communication outage is decreased
from 35% to less than 0.5% by changing parameter L from
4 (full JT-CoMP) to 2 (proposed), in problem (9). Thus,
the pessimistic SINR estimate over the link blockage sub-
set combinations of CoMP RRUs greatly improves the out-
age performance under the uncertainties of mmWave radio
channel. Clearly, there is a trade-off between reliable con-
nectivity, achievable rate, and sum-power performance. More
specifically, for a given queue length (i.e., latency require-
ments), we can guarantee a user rate with minimum sum-
power and vice-versa. However, compared to the baseline
schemes, the proposed method significantly outperforms,
and provides power-efficient and low-latency highly-reliable
mmWave connectivity.

VII. CONCLUSION
In this paper, we have studied the trade-off between
reliable downlink transmission and sum-power perfor-
mance, in mmWave based time dynamic mobile networks,
by exploiting the multi-antenna spatial diversity and CoMP
connectivity. We considered an average sum-power min-
imization problem subject to maximum allowable queue
length constraint per user. We have adapted the Lyapunov
optimization framework, and derived a dynamic control algo-
rithm for the long-term time-average stochastic problem.
We proposed a robust transmit beamformer design by consid-
ering a pessimistic estimate of rates and a proactive selection
of the serving set combinations of available CoMP RRUs.
Furthermore, the non-convex and coupled constraints are
handled using FP techniques. The closed-form algorithm is
then provided by iteratively solving a system of KKT opti-
mality conditions, while accounting for the uncertainties of
mmWave radio channel. The numerical results manifested
the robustness of the proposed beamformer design in the
presence of random link blockages. Specifically, the achiev-
able rate and sum-power performance with our proposed
methods outperform the baseline scenarios while ensur-
ing user-specific latency requirements, and thus, results in
power-efficient and latency-aware highly-reliable mmWave
communication.
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