MASTER’S THESIS

INTEGRATION OF LORA WIDE AREA NETWORK WITH THE 5G TEST NETWORK

Author Rumana Yasmin
Supervisor Prof. Ari Pouttu
Second Examiner Dr. Heikki Karvonnen

April 2017
The global communication network is going through major transformation from conventional to more versatile and diversified network approaches. With the advent of virtualization and cloud technology, information technology (IT) is merging with telecommunications to alter the conventional approaches of traditional proprietary networking techniques. From radio to network and applications, the existing infrastructure lacks several features that we wished to be part of 5th Generation Mobile Networks (5G). Having a support for large number of applications, Internet of Things (IoT) will bring a major evolution by creating a comfortable, flexible and an automated environment for end users. A network having the capability to support radio protocols on top of basic networking protocols, when blended with a platform which can generate IoT use cases, can make the expectations of 5G a reality.

Low Power Wide Area Network (LPWAN) technologies can be utilized with other emerging and suitable technologies for IoT applications. To implement a network where all the technologies can be deployed virtually to serve their applications within a single cloud, Network Functions Virtualization (NFV) and Software Defined Network (SDN) is introduced to implement such a networking possibility for upcoming technologies. The 5G Test Network (5GTN), a testbed for implementing and testing 5G features in real time, is deployed in virtual platform which allows to add other technologies for IoT applications. To implement a network with an IoT enabler technology, LoRa Wide Area Network (LoRaWAN) technology can be integrated to test the feasibility and capability of IoT implications. LoRaWAN being an IoT enabler technology is chosen out of several possibilities to be integrated with the 5GTN. Using MultiConnect Conduit as a gateway, the integration is realized by establishing point to point protocol (PPP) connection with eNodeB. Once the connection is established, LoRa packets are forwarded to the ThingWorx IoT cloud and responses can be received by the end-devices from that IoT cloud by using Message Queuing Telemetry Transport (MQTT) protocol. Wireshark, an open source packet analyser, is then used to ensure successful transmission of packets to the ThingWorx using the 5GTN default packet routes.

Key words: LPWAN, LoRaWAN, 5GTN, NFV, SDN, OpenEPC, IoT, MultiConnect Conduit, Node-red, MQTT, ThingWorx.
TABLE OF CONTENTS

ABSTRACT
TABLE OF CONTENTS
FOREWORD
LIST OF ABBREVIATIONS AND SYMBOLS
1. INTRODUCTION .. 10
 1.1. Demand for LPWAN Integration with the 5GTN ... 11
 1.2. Thesis Objectives ... 12
 1.3. Research Approach ... 13
 1.4. Thesis Structure ... 13
2. LOW POWER WIDE AREA NETWORK ... 14
 2.1. LoRa Technology .. 15
 2.2. Physical Layer .. 16
 2.3. Media Access Control Layer ... 17
 2.4. Network Architecture .. 18
 2.5. Message Format ... 19
 2.5.1. MAC Frame Formats ... 20
 2.5.2. MAC Commands ... 21
 2.6. Device Attachment Procedures .. 21
 2.7. Network Security ... 22
3. 5G TEST NETWORK ... 23
 3.1. Architectural Overview of the 5G Test Network ... 23
 3.2. Network Function Virtualization ... 25
 3.3. Software Defined Network .. 26
 3.4. Evolved Packet Core ... 26
 3.5. OpenEPC ... 28
 3.5.1. OpenEPC as a Core Network .. 28
 3.5.2. OpenEPC Components ... 29
 3.5.3. LTE access network signalling in a nutshell ... 31
 3.5.4. Signalling route over Non-3GPP .. 33
4. LORAWAN INTEGRATION WITH THE 5GTN ... 35
 4.1. Integration at a Glance .. 35
 4.2. Levels of Integration .. 36
 4.2.1. LoRaWAN as an Access Network .. 37
 4.2.2. Connecting LoRaWAN to 5GvLAN ... 38
 4.2.3. LoRaWAN being a part of LTE-UE .. 38
 4.2.4. LoRaWAN being part of eNodeB ... 39
 4.2.5. LoRa Network Server on OpenStack ... 40
5. IMPLEMENTATION ... 41
 5.1. Integration Scenario .. 41
 5.2. MultiConnect Conduit .. 42
FOREWORD

The thesis work is completed at Centre for Wireless Communications research unit at University of Oulu as a partial fulfilment of master degree requirement in Wireless Communications Engineering. The accomplishment of the thesis work set pointers to future research around IoT applications. The work gave me an insight to the practical implications of the theoretical knowledge I have been familiar with. The practical guidance from experts having profound industrial experience has provided me with the knowledge I was lacking. The completion of my work is only possible due to the guidance of esteemed researchers working in this diverse research unit. My words of gratitude to the technical advisor on my thesis, M.Sc. Juha Petäjäjärvi. Your guidance at each stage made the timely accomplishment of the work possible. M.Sc. Konstantin Mikhaylov, thanks for being part of my journey, your suggestions gave me directions to get the work done. I am very much thankful to the 5GTN team especially Muhammad Arif, Jaakko Leinonen and Jari Marjakangas as there is no parallel to the cooperation and support provided by them. You guys made yourself available all the time and made the availability of the required resources possible. My supervisor on the thesis, Prof. Ari Pouttu, thanks for your support and guidance. Without your directions, the completion of the work was not possible.

Whoever reads my thesis work many years from now, I can understand the hardship and struggle you are going through. Please do not lose hope as there is always a bright light at the end of a tunnel. I also faced hard times, struggling to figure out possible solutions and I managed to solve my problems at the end. So, just stay focused and keep doing the good work, nothing is impossible. You will find solutions to your problems as I did.

Oulu, April 13, 2017

Rumana Yasmin
LIST OF ABBREVIATIONS AND SYMBOLS

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3GPP</td>
<td>3rd Generation Partnership Project</td>
</tr>
<tr>
<td>4G</td>
<td>4th Generation Mobile Networks</td>
</tr>
<tr>
<td>5G</td>
<td>5th Generation Mobile Networks</td>
</tr>
<tr>
<td>5GTN</td>
<td>5G Test Network</td>
</tr>
<tr>
<td>5GvLAN</td>
<td>5G virtual Local Area Network</td>
</tr>
<tr>
<td>AAA</td>
<td>Authentication, Authorization and Accounting</td>
</tr>
<tr>
<td>ABP</td>
<td>Activation by Personalization</td>
</tr>
<tr>
<td>ADR</td>
<td>Adaptive Data Rate</td>
</tr>
<tr>
<td>ANDSF</td>
<td>Access Network Discovery and Selection Function</td>
</tr>
<tr>
<td>API</td>
<td>Application Programmable Interface</td>
</tr>
<tr>
<td>APN</td>
<td>Access Point Name</td>
</tr>
<tr>
<td>AppEUI</td>
<td>Application Identifier</td>
</tr>
<tr>
<td>AppSKey</td>
<td>Application Session Key</td>
</tr>
<tr>
<td>BS</td>
<td>Base Station</td>
</tr>
<tr>
<td>CAPEX</td>
<td>Capital Expenditure</td>
</tr>
<tr>
<td>CND</td>
<td>Core Network Dynamic</td>
</tr>
<tr>
<td>CoAP</td>
<td>Constrained Application Protocol</td>
</tr>
<tr>
<td>CRC</td>
<td>Cyclic Redundancy Check</td>
</tr>
<tr>
<td>CSS</td>
<td>Chirp Spread Spectrum</td>
</tr>
<tr>
<td>DC</td>
<td>Data Centre</td>
</tr>
<tr>
<td>DevEUI</td>
<td>End-Device Identifier</td>
</tr>
<tr>
<td>DHCP</td>
<td>Dynamic Host Configuration Protocol</td>
</tr>
<tr>
<td>DL</td>
<td>Downlink</td>
</tr>
<tr>
<td>DNS</td>
<td>Domain Name System</td>
</tr>
<tr>
<td>EMS</td>
<td>Element Management System</td>
</tr>
<tr>
<td>eNodeB</td>
<td>Evolved Node B</td>
</tr>
<tr>
<td>EPC</td>
<td>Evolved Packet Core</td>
</tr>
<tr>
<td>ePDG</td>
<td>Evolved Packet Data Gateway</td>
</tr>
<tr>
<td>EPS</td>
<td>Evolved Packet System</td>
</tr>
<tr>
<td>ETSI</td>
<td>European Telecommunications Standards Institute</td>
</tr>
<tr>
<td>E-UTRAN</td>
<td>Evolved Universal Terrestrial Radio Access Network</td>
</tr>
<tr>
<td>FCC</td>
<td>Federal Communications Commission</td>
</tr>
<tr>
<td>FCnt</td>
<td>Frame Counter</td>
</tr>
<tr>
<td>FCntrl</td>
<td>Frame Controller</td>
</tr>
<tr>
<td>FDD</td>
<td>Frequency Division Duplex</td>
</tr>
<tr>
<td>FHDR</td>
<td>Frame Header</td>
</tr>
<tr>
<td>FOpts</td>
<td>Frame Options</td>
</tr>
<tr>
<td>FRMPayload</td>
<td>Frame Payload</td>
</tr>
<tr>
<td>GPRS</td>
<td>General Packet Radio Service</td>
</tr>
<tr>
<td>GPS</td>
<td>Global Positioning System</td>
</tr>
<tr>
<td>GTP</td>
<td>GPRS Tunnelling Protocol</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
</tr>
<tr>
<td>NTP</td>
<td>Network Timing Protocol</td>
</tr>
<tr>
<td>NwSKey</td>
<td>Network Session Key</td>
</tr>
<tr>
<td>OPEX</td>
<td>Operational Expenditure</td>
</tr>
<tr>
<td>OS</td>
<td>Operating System</td>
</tr>
<tr>
<td>OTAA</td>
<td>Over-the-Air Activation</td>
</tr>
<tr>
<td>P-CSCF</td>
<td>Proxy-Call Session Control Function</td>
</tr>
<tr>
<td>PCRF</td>
<td>Policy and Charging Rules Function</td>
</tr>
<tr>
<td>PDN GW</td>
<td>Packet Data Network Gateway</td>
</tr>
<tr>
<td>PHDR</td>
<td>Physical Header</td>
</tr>
<tr>
<td>PHYPayload</td>
<td>Physical Payload</td>
</tr>
<tr>
<td>PLMN</td>
<td>Public Land Mobile Network</td>
</tr>
<tr>
<td>PMIP</td>
<td>Proxy Mobile IP</td>
</tr>
<tr>
<td>PoC</td>
<td>Proof of Concept</td>
</tr>
<tr>
<td>PPP</td>
<td>Point-to-Point Protocol</td>
</tr>
<tr>
<td>RAM</td>
<td>Random-Access Memory</td>
</tr>
<tr>
<td>RAN</td>
<td>Radio Access Network</td>
</tr>
<tr>
<td>REST-API</td>
<td>Representational State Transfer-API</td>
</tr>
<tr>
<td>RFID</td>
<td>Radio Frequency Identification</td>
</tr>
<tr>
<td>RNC</td>
<td>Radio Network Controller</td>
</tr>
<tr>
<td>RPC</td>
<td>Remote Procedure Call</td>
</tr>
<tr>
<td>RPMA</td>
<td>Random Phase Multiple Access</td>
</tr>
<tr>
<td>RQ</td>
<td>Research Question</td>
</tr>
<tr>
<td>RRC</td>
<td>Radio Resource Control</td>
</tr>
<tr>
<td>SAE</td>
<td>System Architecture Evolution</td>
</tr>
<tr>
<td>S1AP</td>
<td>S1 Application Protocol</td>
</tr>
<tr>
<td>S-CSCF</td>
<td>Serving-Call Session Control Function</td>
</tr>
<tr>
<td>SDN</td>
<td>Software Defined Network</td>
</tr>
<tr>
<td>SDO</td>
<td>Standardization Developing Organization</td>
</tr>
<tr>
<td>SGW</td>
<td>Serving Gateway</td>
</tr>
<tr>
<td>SIM</td>
<td>Subscriber Identification Module</td>
</tr>
<tr>
<td>SRN</td>
<td>Shared Reference Network</td>
</tr>
<tr>
<td>TDD</td>
<td>Time Division Duplex</td>
</tr>
<tr>
<td>UE</td>
<td>User Equipment</td>
</tr>
<tr>
<td>UL</td>
<td>Uplink</td>
</tr>
<tr>
<td>UMTS</td>
<td>Universal Mobile Telecommunications System</td>
</tr>
<tr>
<td>UTRAN</td>
<td>Universal Terrestrial Radio Access Network</td>
</tr>
<tr>
<td>vEPC</td>
<td>Virtual Evolved Packet Core</td>
</tr>
<tr>
<td>VM</td>
<td>Virtual Machine</td>
</tr>
<tr>
<td>VPN</td>
<td>Virtual Private Network</td>
</tr>
<tr>
<td>WAN</td>
<td>Wide Area network</td>
</tr>
<tr>
<td>WBAN</td>
<td>Wireless Body Area Network</td>
</tr>
<tr>
<td>WLAN</td>
<td>Wireless Local Access Network</td>
</tr>
<tr>
<td>Symbol</td>
<td>Definition</td>
</tr>
<tr>
<td>--------</td>
<td>-----------------</td>
</tr>
<tr>
<td>BW</td>
<td>Bandwidth</td>
</tr>
<tr>
<td>R_p</td>
<td>Bit Rate</td>
</tr>
<tr>
<td>SF</td>
<td>Spreading Factor</td>
</tr>
</tbody>
</table>
1. INTRODUCTION

Having a cursory look over different statistics on the increase in number of end users and increasing demand of Internet of Things (IoT) use cases, it appears that the existing mobile networks will soon need a major evolution [1]. According to Next Generation Mobile Networks (NGMN) Alliance [2], there will be billion of wireless sensors connected simultaneously to the Internet in few years [1]. It is obvious that the current network infrastructure would no longer be capable of handling such a heavy load of traffic. 5th Generation mobile network (5G) is deemed to bring a silver lining. There are ongoing research projects on this emerging next wireless generation from hardware to networks and applications all around the world in both Industry and Academia [3]. Several terminologies like Massive Multiple Input Multiple Output (MIMO) [4], Mobile Edge Computing (MEC) [5], Network Function virtualization (NFV) [6], Software Defined Network (SDN) [7], beamforming [4], millimeter wave (mmW) [8] etc. comes in mind when it comes to 5G yet the most appealing terminology being circling around is IoT [3]. IoT is expected to bring a diversity of use cases, intelligent transport systems, smart home automation, remote maintenance and industrial automation etc. Statistics claim that by 2020 the number of IoT devices will rise approximately up to 26 billion which ultimately will result in performance degradation and Quality of Service (QoS) compromise in existing networks. To overcome such a situation a more efficient and scalable network infrastructure is requisite. [1, 3]

Different wireless technologies implement miscellaneous Machine-to-Machine (M2M) [9] communications for enabling IoT applications which requires long communication range and low bandwidth to support massive number of device connectivity. However, M2M communication can be developed for embedded IoT ecosystems to support short and long range communication network protocols that are expected to be integrated with future wireless cellular networks. According to Ericsson’s estimation [10], two billion out of fifty billion M2M communication devices is expected to be using cellular technology for communication by 2020. Also, it is expected that Low Power Wide Area Network (LPWAN) [10] will handle approximately 28% of Machine Type Communication (MTC) [11] devices and evolved 3rd Generation Partnership Project (3GPP) networks will enable approximately 72% of M2M connections in future, estimated by Cisco [12]. To enable M2M communication, there are lots of characteristics that are needed such as short range, long range, large bandwidth, low bandwidth, more frequent transmission, connecting large number of devices etc. depending on applications. As it is obvious that, LPWAN cannot be capable to support all IoT applications, different technologies can be utilized according their applications capability to support such M2M communication. Figure 1 [13] shows comparison between different wireless technologies in terms of communication range and bandwidth. Contrary to the conventional wireless technologies such as Wireless Local Access Network (WLAN) [14], 4th Generation mobile networks (4G) [15] which are either very costly or has limited coverage area, LPWAN is energy efficient and has low power consumption with large coverage [1]. Therefore, LPWAN with its variety of representations can be utilized to support IoT applications.
Some of the leading names in LPWANs technologies are SigFox [16], LoRaWAN [16], NB-IoT [17] and Weightless [18] that are expected to be used in order to meet specific requirements for different services (e.g., indoor, outdoor, continuous transmission or packet transmission per hour/day). LoRaWAN is considered as one potential connectivity enabler for IoT use cases from mobile network operators (MNOs) perspective [10], and the base station of LoRaWAN is capable to retrieve data from thousands of sensor nodes even if sensor nodes are deployed kilometers away from base station [10], it can be utilized to implement integration scenario with the 5G test network (5GTN) to form a IoT enabler network platform.

1.1. Demand for LPWAN Integration with the 5GTN

To test the features and applications of 5G, there are lots of 5G proof of concept (PoC) testbeds around the world such as 5G Berlin [19], ADRENALINE Testbed [20], 5G Innovation Center [21] and the 5GTN [22] etc. The 5GTN, a test network platform used for research purposes, will be used for integration of IoT applications by utilizing different technologies [3, 23]. This test network is installed at the premises of University of Oulu and VTT. This testbed at the University of Oulu is open and flexible which could be utilized for integrating, testing and developing innovative applications. Whereas, the VTT testbed being private and well controlled, is suitable for confidential research works. Though the existing infrastructure is a long term evolution (LTE) network which comprises of Nokia small cells and the 3GPP Evolved Packet Core (EPC) but the testbed is capable to be scaled to support devices and infrastructure beyond LTE. One of the core aim of 5GTN is to virtualize each component in the network to be running in a cloud environment as it makes mobile networks dynamic and scalable. 5G networks are expected to have virtualization which comes by merging telecommunication standards with information technology (IT) virtualization technique. This would make third parties and service developers to bring their ideas, as the network components will be running as virtual instances from a cloud. Centre
for Wireless Communications research unit at the University of Oulu is also building a network of sensor nodes which would collect data from different locations and send it to a cloud. The LPWAN technologies as an IoT use case enabler are expected to be part of this infrastructure. According with that, several IoT applications could be integrated within a single cloud with low cost, low energy consumption having large coverage. [3]

1.2. Thesis Objectives

The primary research objective of the thesis work is to integrate LPWAN with the 5GTN as an IoT enabler technology. Having successfully performed integration of LPWAN with the 5GTN, several research questions are expected to have logical conclusions. Based around the deployment scenarios, the research questions (RQs) which will be the primary focus of the entire thesis work are as follows:

RQ1: Is it possible to combine several services in a single cloud platform? Where does LPWAN stand in the cloud environment?

IoT cloud platforms which would be globally available will make the transmission of data possible from sensor nodes to servers in a single cloud [3]. In order to make it happen the IoT enabler technology should be integrated with a mobile network. One approach would be to use same cloud platform as the mobile network is using and having an Application Programming Interface (API) connection to virtual components within the mobile network cloud [3].

RQ2: What are the possibilities of LPWAN being part of 5GTN infrastructure?

LPWAN is expected to be integrated as an IoT use case enabler for the 5GTN. Several possibilities are being discussed to make the integration possible on different levels. After observing and analysing those possibilities, one scenario will be tested as a proof of concept for such an integration and to summarize the state of the art.

RQ3: Once the LPWAN is integrated with 5GTN, how does it effects the performance of the network it is using?

IoT use cases are expected to load the network interfaces a lot and to consume/require greater bandwidth so the network being used would possibly be effected. Most likely, owing to large data traffic, packets will be put in queue resulting in greater latencies. One of the primary research questions, after the successful integration would be to test the system’s performance to ensure if there are any possible bottlenecks after LPWAN integration.

RQ4: Does LoRaWAN serve the purpose of IoT use case enabler in 5GTN?

LoRaWAN being considered for the IoT use case enabler technology is chosen for integration with 5GTN. This research question on the basis of integration and performance evaluation will conclude the thesis work and built a general consensus on this integration in particular and similar research works in future in general.

The research question concerning the amalgamation of IoT cloud platform and the upcoming 5GTN open cloud platform is analyzed based on related research work around the globe [3]. Some example integration is reviewed and a logical inference is deducted from those practical cases. The 5GTN claims to provide API access to service developers and researchers so there will most likely be access to individual components within 5GTN via APIs [3]. It could also be analyzed from a different angle
which involves creating a virtual instance of the LPWAN’s server in 5GTN cloud. So, this server will be on the same cloud as rest of the functional components already running in the network. The research question indicates pointers to future of 5GTN in general and LPWAN as an IoT enabler in particular.

1.3. Research Approach

The 5GTN of University of Oulu is an open network that provides open interfaces for research. Several approaches were adopted to find answers to the research question concerning possibilities of integrating LPWAN with the 5GTN. The possibilities are logically analyzed on hardware to network and applications level. Having studied all the possibilities individually, one of the possibilities is practically tested. 5GTN currently have multiple core networks which are mostly end to end propriety hardware so we cannot have access to individual components within. Yet it also has a 3GPP prototype EPC implementation i.e. OpenEPC which can be used for our testing case.

All the integration scenarios and assumptions are analyzed in relevance to the integration exercise in the thesis work. An inference is deduced from the answers we got from the research questions to finally conclude that whether LPWAN, specifically LoRaWAN could be used as an IoT enabler. IoT signaling and data packets on the 5GTN’s control and data plane respectively is expected to load the resources quite a lot. The packet routes are studied after integrating LoRaWAN with the 5GTN successfully.

1.4. Thesis Structure

The thesis work provides a general overview on LPWAN and its applications in terms of IoT which is explained in Chapter 2. LPWANs deploys over several technologies to develop different IoT applications depending on cost, communication range, data rate, bandwidth, etc. LoRaWAN is the focus area in Chapter 2 in which LoRaWAN network architecture, network security, different classes of end-device etc. are described briefly. Physical and media access control (MAC) layer information regarding LoRa and LoRaWAN along with the physical payload and MAC payload are also described in Chapter 2. The 5GTN, a testbed for academia and industry, is discussed on architectural and network level in Chapter 3. Whereas, the later sections of Chapter 3 provide details on the 3GPP EPC and OpenEPC as a virtual core network. Chapter 4 presents the possibilities in terms of integration of LPWAN and more specifically LoRaWAN with the 5GTN testbed for developing IoT applications. The integration possibilities on different levels is thoroughly discussed with reference of related research works. Chapter 5 comprises of implementing one integration scenario which is developed by taking several ideas of possibilities from previous Chapter, but none of them is chosen directly. Among LPWAN technologies, LoRaWAN is chosen to be tested for actual deployment. The performance monitoring is carried out which is discussed also in Chapter 5. Based on all the previous chapters and in connection to related research work a detailed discussion is carried out in Chapter 6. It also provides motivation for further similar researches. Finally, the thesis is concluded with a summary in Chapter 7.
2. LOW POWER WIDE AREA NETWORK

LPWANs are emerging as enablers for IoT applications having massive connectivity. The network architecture for LPWAN follows star topology for long range communication and it allows base station within the network to connect huge number of end-devices simultaneously depending on the base station capability. This base station can receive different information from different end-devices as well as it might be capable of receiving same information from multiple end-devices by using its own radio technologies. Base station thereafter transfers the uplink traffic by using wireless backhaul to the server (any cloud) through transmission control protocol/internet protocol (TCP/IP) [24]. Accordingly, downlink transmission has been done from server to end-device through the same route [24]. This means that base station has the ability to support both IoT protocols such as Message Queuing Telemetry Transport (MQTT) protocol [25], Constrained Application Protocol (CoAP) [26] and the device supported protocols. Several end-devices can be deployed on a large scale to develop a smart city where, as an example, intelligent transportation system is implemented by measuring and observing fleet management, smart traffic information, environment monitoring information etc. On small scale deployment, LPWAN technologies can be applied for several applications to make smart home/building such as various metering applications, security purposes and health care. Moreover, LPWAN technologies enables vehicle-to-vehicle/infrastructure communication by transmitting data either frequently or less frequently. This transmission depends on different applications related to industry environment, home automation etc. Figure 2 shows different end-devices are connected to the base station for different applications. Application user can collect the information from the network server which receives different data from base station via Internet. [24]

![Figure 2. Network Architecture of LPWAN.](image)

At different phases, several well-known standard developing organizations (SDOs) and industrial alliances have been developing open standards for LPWAN technologies. European Telecommunications Standards Institute (ETSI) [27] provides their effort for a bidirectional low data rate LPWAN standard as to form a Low Throughput Network (LTN) [16, 24]. This LTN specifies a group of specifications for use cases, protocols, interfaces, functional architecture as well as it defines data
encryption and user authentication procedures [24]. Apart from that, different LPWAN providers such as SIGFOX [28], TELENSA [29], Semtech [30] are directly involved with different SDO to standardize their LPWAN technologies. On the other side, 3GPP is evolving its existing cellular standards to reduce the hardware complexity and cost and to improve range and battery life. Based on this, multiple licensed standards such as LTE enhancements for LTE-MTC [11], NB-IoT [17], NB-LTE-M [31] offers different tradeoffs between cost, coverage, data rate and power consumption for diverse IoT applications. [24]

MNOs shared their licensed cellular bands to deploy LPWAN technologies such as NB-IoT standardized by 3GPP. It is important to observe the NB-IoT to avoid performance degradation to legacy LTE due to increase in number of new connected devices within a shared spectrum. To allocate radio resources, NB-IoT and INGENU RPMA [32] are using Time Division Multiple Access (TDMA) based MAC protocols [33] while SIGFOX and LoRa are using ALOHA based MAC protocols [34] for random access. The physical layer of LPWAN technologies comprises of definition of data rates and different modulation techniques to enable data transmission in urban, rural and sub-urban areas. NB-IoT and Weightless-P are using narrowband to encode the data. Meanwhile, SIGFOX, Weightless-N [35] and TELENSA encodes their data using ultra-narrow band (UNB) [36] techniques. This means that each sub-carrier is assigned with a very low band which experiences minimum noise level as well as utilizes the overall spectrum very efficiently. On the other hand, Chirp Spread Spectrum (CSS) [37] and Direct Sequence Spread Spectrum (DSSS) [37] are used by LoRa and RPMA respectively. In these way, spectrum is being utilized in inefficient way. So, multiple orthogonal sequence is used in order to increase the overall network capacity within these technologies. LoRa Alliance co-operates to motivate the global success of LoRa protocol by sharing their knowledge as well as LoRaWAN has good coverage area having connection of diverse IoT devices. Therefore, LoRa technology can be a promising option for deploying integration scenario. [24, 38]

2.1. LoRa Technology

LoRa provides an infrastructure solution to implement IoT applications by utilizing different radio frequency depending on region. Two main challenges in the utilization of IoT is to minimize hardware complexity and devices’ deployment and maintenance cost. Specific wireless communication protocols are being designed for IoT applications which can reduce hardware complexity as well as device power consumption [24]. Furthermore, maintenance cost of IoT applications can be reduced by utilizing cloud platform while supporting massive amount of IoT devices [24]. Basically, LoRa technology needs to allow variety of protocols to enable secure bi-directional communication, mobility and localization services. In accordance, different SDOs standardized the overall LoRa technology to implement their functions and protocols in physical and data link layer as shown in Figure 3 [39]. LoRa modulation technique is utilized in physical layer, developed by Semtech under LoRa Alliance while different Industrial, Scientific, and Medical (ISM) bands are standardized and regulated by ETSI in Europe and by Federal Communications Commission (FCC) in USA [39]. LoRa specification defines LoRaWAN [39] which describes MAC protocol to access the medium for transmission. The MAC layer defines three classes of end-device with different schedule of downlink transmission slots. Moreover, LoRaWAN
allows bi-directional communication and ensures the security in the network by using AES-128 bits key [40]. In order to increase the overall network capacity, adaptive data rate (ADR) [41] scheme is utilized where end-device adjusts the data rate to ensure reliable packet transmission and optimal network performance [41].

Figure 3. LoRa technology from Physical to MAC layer.

2.2. Physical Layer

In Physical layer, proprietary LoRa/FSK modulation is utilized to modulate the information in Sub-GHz band. LoRa modulation is done by spreading a narrow band input signal over a wide band channel bandwidth by utilizing Chirp Spread Spectrum (CSS) [37]. The chirp signal having wideband linear frequency modulated pulses whose frequency pulses varied based on encoded information [37]. This improves the receiver sensitivity by making timing and frequency offset equivalent between the transmitter and the receiver [42] and it mitigates Doppler effects as well [37]. In LoRa, Forward Error-correction Code (FEC) is utilized, where extra redundancy bits are added at transmitter side to encode the information and decoding scheme is utilized to decode the information. This improves robustness in communication. Thereafter, the modulated signal is transmitted by utilizing multiple channels at different bandwidth. The use of broadband chirps significantly, which provides resistivity against multipath fading while the use of high bandwidth time product produces the radio signals against interferences in band and out of band [38]. In order to utilize different data rate, LoRa allows several spreading factors (SFs) for transmission. Different SF can be performed on same channel due to orthogonal spreading codes or it can be used on different channel [37]. SF is directly proportional to the bit rate and sensitivity as well at constant bandwidth as shown in Table 1 [37]. But, SF is defined depending on the requirement of specific bit rate and communication range. Because, SF gives the trade-offs between communication range and bit rate [37]. For detecting the received signal below the noise floor, matched filtering or correlation with the spreading code is
required at the receiver side. The relation between bit rate and SF is shown in equation (1). [37, 38]

For LoRaWAN, the bit rate is

\[R_b = SF \times \frac{\text{coding rate}}{2^{2SF}} \times \frac{1}{BW} \]

(1)

where, \(R_b \) represents the bit rate and \(BW \) represents the bandwidth.

Table 1. Bit rate with different Spreading Factors and bandwidths of LoRa Technology

<table>
<thead>
<tr>
<th>Spreading Factor (SF)</th>
<th>Bandwidth (kHz)</th>
<th>Bit rate (bps) [9]</th>
<th>Sensitivity (dBm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>125</td>
<td>5470</td>
<td>-123</td>
</tr>
<tr>
<td>8</td>
<td>125</td>
<td>3125</td>
<td>-126</td>
</tr>
<tr>
<td>9</td>
<td>125</td>
<td>1760</td>
<td>-129</td>
</tr>
<tr>
<td>10</td>
<td>125</td>
<td>980</td>
<td>-132</td>
</tr>
<tr>
<td>11</td>
<td>125</td>
<td>440</td>
<td>-134.5</td>
</tr>
<tr>
<td>12</td>
<td>125</td>
<td>250</td>
<td>-137</td>
</tr>
<tr>
<td>7</td>
<td>250</td>
<td>11000</td>
<td>-122</td>
</tr>
</tbody>
</table>

LoRa uses different ISM bands to access the radio channel based on deployment region, for example, Europe support 868 MHz end devices which is capable to be operated in the EU 863-870 MHz band [42]. Some duty-cycle restrictions exist such as the maximum time an end-device stays on or the maximum time it can transmit per hour [39]. This duty-cycle restriction decides available time for every channel during transmissions. The end-device changes also channel the channel in pseudo-random manner [39] which makes the system more robust against interference. [39]

2.3. Media Access Control Layer

LoRaWAN defines MAC layer communication protocols for high capacity long range communication network. These MAC layer protocols can be implemented for IoT applications to deploy end-devices having different capabilities required for different applications. LoRaWAN differentiates end-devices to three different classes depending on how downlink slots are used. The requirement is all end devices should have at least class A functionality while Class B and C implements optional functionalities. Different classes of end-device is discussed briefly in below. [39]

- Class A end-devices allows two downlink transmission slots which can only be activated after completing an uplink transmission. This type of end-device follows ALOHA-types protocol for uplink transmission to transmit packets without using any carrier sensing. [39]
- Class B allows more receive window slots at scheduled times in addition to class A receive window features. It receives time synchronization beacon (BCN) from BS in order to open extra receive window slot at particular
scheduled times. It receives ping slot (PNG) as well for initiating downlink transmission. [39]

- Class C end-device has continuously open receive windows which closes only while transmitting uplink packets. So, end-device having class C feature uses more power to operate compared to class A and B end-devices. Figure 4 [39] shows different classes of LoRa end-device. [39]

![Figure 4. Transmitting and receiving slot in different class of End-device.](image)

2.4. Network Architecture

LoRaWAN comprises of end-device, base station (BS), and network server (NS) as is depicted in Figure 5 [43, 45]. The BS operates as transparent bridge between end-devices and NS [39] where standard IP connection with technologies such as 2G/3G/LTE are being utilized as a backhaul for both uplink and downlink transmissions. After receiving duplicate packets which are transmitted from multiple LoRa BS, NS suppresses the duplicate packets and selects one LoRa BS to transmit downlink acknowledgement. It appears that LoRaWAN dominants the downlink than uplink transmissions. [39, 42]

In LoRaWAN technology, end-device stack includes physical layer (PHY), SPI interface, SX127x hardware abstraction layer (HAL), slave MAC, customer application etc. Depending upon the applications, end-device can be equipped with either LoRa modulation or FSK modulation while all the parameters and configuration registers of end-device can access via SPI interface which can configure accordingly. LoRaWAN Slave and customer application of the end-device can communicate with a Master MAC and customer server in the NS respectively. Similarly, LoRa BS has hardware interface SPI or USB along with IP stack which provides the backhaul. As well as, it has packet forwarder to transmit packet from end-device to NS. [43, 44, 45]
2.5. Message Format

Physical message is specified in the LoRaWAN specification [39] which can be categorized into uplink and downlink messages. The uplink message which is transmitted by end-devices to the NS via one or many BS, uses explicit mode [45] for formatting LoRa packet while using class A features. This mode includes LoRa physical header (PHDR) having its own header cyclic redundancy check (PHDR_CRC) to discard invalid headers by the receiver. The uplink message format begins with preamble and ends up with CRC bits, which protects PHYPayload as shown in Figure 6 [39]. Usually, PHDR, PHDR_CRC and payload CRC are inserted by radio transceiver. [39, 45]
packet explicit mode to format downlink messages but there is no CRC to protect PHYPayload. [39, 45]

2.5.1. MAC Frame Formats

In LoRaWAN, PHYPayload includes MACPayload along with single byte MAC header (MHDR) and 4 bytes Message Integrity Code (MIC). Before calculating MIC, MACPayload must be encrypted to carry MAC commands within FRMPayload portion. Table 2 [39], represents PHYPayload which consists of MHDR, MACPayload and MIC and shows the number of bits allocated for them. [39]

Table 2. PHYPayload format in LoRaWAN

<table>
<thead>
<tr>
<th>MType</th>
<th>RHU</th>
<th>Major</th>
<th>FHDR</th>
<th>FPort</th>
<th>FRMPayload</th>
<th>MIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bit# 7 to 5</td>
<td>Bit# 4 to 2</td>
<td>Bit# 1 to 0</td>
<td>7..23 bytes</td>
<td>0..1 bytes</td>
<td>0..N bytes</td>
<td>4 bytes</td>
</tr>
</tbody>
</table>

During transmission, MAC command is not transmitted frequently within FRMPayload, one block within MACPayload called FPort is being used to indicate this MAC command while another block called frame header (FHDR) contains short end-device address (DevAddr). Along with 4 bytes DevAddr, FHDR comprises of single byte frame controller (FCntrl), two bytes frame counter (FCnt) and 0..15 bytes frame options information (FOpts) which shows in Table 3. [39]

Table 3. Frame Header format in the MACPayload

<table>
<thead>
<tr>
<th>FHDR</th>
<th>DevAddr</th>
<th>FCntrl</th>
<th>FCnt</th>
<th>FOpts</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4 bytes</td>
<td>1 byte</td>
<td>2 bytes</td>
<td>0..15 bytes</td>
</tr>
</tbody>
</table>

In LoRaWAN, FOpts field is also used to transport MAC commands. MHDR is implemented based on message types (MType) which are defined by the last three bits of the MHDR along with RFU and Major (shown in Table 2). Major defines the message format during attachment procedure and some bits are reserved for future usage in the RFU field. Table 4 [39] shows different MType values in MAC messages.

Table 4. Message types in MAC Header field within LoRaWAN

<table>
<thead>
<tr>
<th>MType value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>Join Request</td>
</tr>
<tr>
<td>001</td>
<td>Join Accept</td>
</tr>
<tr>
<td>010</td>
<td>Unconfirmed Data Up</td>
</tr>
<tr>
<td>011</td>
<td>Unconfirmed Data Down</td>
</tr>
<tr>
<td>100</td>
<td>Confirmed Data Up</td>
</tr>
<tr>
<td>101</td>
<td>Confirmed Data Down</td>
</tr>
<tr>
<td>110</td>
<td>RFU</td>
</tr>
<tr>
<td>111</td>
<td>Proprietary</td>
</tr>
</tbody>
</table>
2.5.2. **MAC Commands**

Basically, MAC command is used at network administration, by which LoRa end-devices interacts with NS on MAC layer. It provides the facilities to check whether the end-device connectivity is validated for LoRaWAN. And several MAC commands are exchanged such as DutyCycleReq, DevStatusReq, RXTimingSetupReq etc. to check the device status, channel conditions, receiver window slot etc. Therefore, MAC commands being exchanged either in the frame option field or in the FRMPayload. The FRMPayload consists of FPort with the value of zero when the MAC commands are presented in it. But, it is always encrypted without MAC commands while frame option field is used to piggyback MAC commands without using encryption. [39]

2.6. **Device Attachment Procedures**

LoRaWAN technology provides a secured communication network. The end-device must be attached to LoRa network in order to start packets transmission. Before attachment procedure, end-device has to store following information in order to identify the end-device uniquely, to encrypt and verify network communication and application data: [39]

- A globally unique end-device identifier (DevEUI)
- Application identifier (AppEUI)
- AES-128 key (APPkey)

To start the attachment procedure, the end-device sends a join request message to the BS for attaching end-device with LoRaWAN network using Over-The-Air Activation (OTAA) process. This join message contains not only two identifiers for identifying uniquely but also an AppNonce [39] which is the unique ID provided by the NS and it is used by the end-device to generate two session keys i.e. NwSKey and AppSKey. Once the end-device joins the network, these keys are used to encrypt messages. After this procedure, BS responds with an acknowledgement of join accept message which includes end-device address, another nonce, network identifier and the channel information to be used by the end-device. It is important that these two join messages are exchanged for every new attachment session in order to get new session keys. However, another way that could be used to attach with the network is Activation by Personalization (ABP). In this process, these two session keys are stored directly into the end-device. [39]

After the successful completion of attachment procedure, end-device should have following information:

- End-device address (DevAddr) contains 32 bit end-device identifier of which seven bits defines network identifier and the rest of 25 bits is assigned for network address. [39]
- Network session key (NwSKey) is used to calculate and verify the MIC of all messages. [39]
- Application session key (AppSKey) which is used to encrypt and decrypt the payload of data frames. [39]
2.7. Network Security

As security is the fundamental requirement in all wireless communication, it has been designed into the LoRaWAN security domains by using cryptographic mechanisms. During end-device authentication within LoRaWAN network, each end-device is personalized with a unique 128 bit AES key i.e., AppKey and a global unique identifier i.e., EUI-64 based DevEUI. But LoRaWAN network is identified by using a 24-bit global unique identifier. However, multiple properties are supported to ensure the LoRaWAN security such as mutual authentication, integrity protection etc. Mutual authentication has been established in network security domain between end-device and LoRa NS. This authentication ensures that only authorized end-device can join with authentic network during the network join procedure. Hence, there are two session keys are derived, one (NwkSKey) is for integrity protection of the MAC commands and one (AppSKey) is for end-to-end encryption of application payload. The NwkSKey is exchanged in network domain between end-device and NS in order to verify the LoRa packet. While AppSKey is exchanged in application domain between end-device and application server to encrypt and decrypt the application payload. Figure 7 [40] shows the two keys that are utilized for encryption and authentication in network and application domains. [40]

Figure 7. Encryption and authentication in network and application domains.
3. 5G TEST NETWORK

With the increasing demand for new innovative applications and large number of devices having extended data rates connected within a network, the 3GPP introduces EPC, as an all-IP core network architecture [46]. The latest specification of the EPC architecture enables multiple unique parameters for different access network technologies like Universal Mobile Telecommunications System (UMTS) [46], WLAN, non-3GPP access network and more demanding LTE with the use of several application platforms such as IP multimedia subsystem (IMS) and Internet [47]. Through the adoption of Internet services over IP based communication mechanism, the LTE increases wireless network throughput with improved latency compared to the conventional approaches. Moreover, a new communication prototype is implemented in the wireless operator environments by introducing EPC [46]. Currently, the EPC implementation over virtual server, provides attractive low cost communication platform for deploying multiple applications in industry, academia, transportation and healthcare [48]. In order to implement such virtual platform, NFV and SDN is introduced with the existing EPC core network so as to fulfil the requirements for future 5G network application for better control and improved management of network resources [3].

The 5GTN is designed for deploying of the realistic 5G network environment of the University of Oulu and VTT [3]. Within this network, VTT can test the functionality of their technologies, tools and application in restricted network environment while University of Oulu has developed a public network in order to verify and authenticate user device. 5GTN will offer fully IP-based functionality to form a dynamic and heterogeneous network platform for R&D purpose as well as testing new applications and services in real-life scenarios [23]. The current setup of the 5GTN at the University of Oulu includes for Radio Access Network (RAN) provided by Nokia which is connected to the Nokia’s EPC at Tampere over the Virtual Private Network (VPN) connection [3, 23]. For research purposes another virtual based core network OpenEPC is implemented as second core network in 5GTN. This virtualized testbed platform is deployed to demonstrate real-life scenarios for future mobile network. Therefore, this chapter describes the required protocol stacks and functionalities of OpenEPC and attachment procedure for 3GPP and non 3GPP access network which leads to understanding of the network architecture and routing path of OpenEPC. The architectural overview is required to understand the modules and interfaces which are used in 5GTN, as the aim of the thesis is to integrate the LoRaWAN to the 5GTN.

3.1. Architectural Overview of the 5G Test Network

Instead of using conventional hardware based proprietary network functions, virtualization makes the transfer of hardware resources to software instances possible. Network Elements as Virtual Network Functions provides an open testbed for supporting various software based innovations [7]. The 5GTN will provide a virtualized platform using number of functions in the network that could be implemented on top of virtual environment on demand. The current 5GTN deploys a network infrastructure in such a way that the test network supported RAN can establish S1 connection by using S1 interface with the core network which is located in Tampere.
over the VPN switch. This Tampere core network provides Shared Reference Network (SRN) connection which is used through Internet as a service platform. But the demand for reducing capital expenditures and increasing the use of core network dynamically has pushed the network function towards virtualization platform merged with software application. To achieve these virtualized functions successfully with core network, NFV has to be deployed which is transferring network functions from hardware appliances to software based virtualization platform. With virtual environments, multiple virtual machines can be installed over a single physical machine on top of hypervisor. Hypervisor is a software platform used to monitor and manage physical resources for virtual machine as well as it provides virtual environment on which multiple virtual machines are executed. [3]

With the purpose of using virtualization platform and to overcome the limitation of using SRN connection through VPN, OpenEPC has been deployed into Oulu Data Centre (DC) [3, 23] on top of hypervisor within 5GTN as a virtual platform along with Nokia’s core network at Tampere. In 5GTN, OpenEPC components such as Mobility Management Entity (MME), Serving and PDN gateway (SPGW), and EPC-Enabler [48, 49] are deployed as virtual machines running on standard Ubuntu [50] which is the operating system of the virtual machines and a hypervisor is used i.e., vSphere ESXi [51] to provide abstraction from the underlying host server hardware in order to separate physical and virtual resources.

However, a Pico and a Macro cells in 5GTN, are configured keeping in view that these have to establish S1 connectivity with different core network from different IP Pools. So, the cells can be provisioned with one core at a time. For example, the cells are provisioned from OpenEPC IP Pool while S1 connection would be made with OpenEPC. Figure 8 illustrates a detailed architecture of the 5GTN where OpenEPC is integrated with 5GTN for research purposes. The test network is currently based on LTE technology but 5G services and features will be developed upon that basis. This OpenEPC includes all main EPC functionalities and multiple user equipment (UE) can be connected to the network over real radio interfaces. The Pico cell or Macro cell is connected with the 5GvLAN physically, which creates S1 connection to the MME within OpenEPC where all the OpenEPC components are installed as a virtual machine (VM) having real prototypes of EPC [52]. For additional information, OpenEPC core network can also be installed within one physical host machine on top of hypervisor, as hypervisor detaches the virtual core network from proprietary hardware.

Currently, 5GTN supports Macro and Pico cells where a Macro cell is operating with both Time Division Duplex (TDD) [53] and Frequency Division Duplex (FDD) [53] support at 3.5 GHz and 2.6 GHz whereas a Pico cells have FDD support with 2.6 GHz spectrum. The maximum channel bandwidth for a Macro cell can be as high as 40 MHz with a support of both 2x2 and even 4x4 MIMO. While a Pico cell is configured to have 5MHz channel bandwidth which can be further scaled to 20 MHz at most. A Macro cell is very sensitive to synchronization as it has only phase synchronization support [53]. While, a Pico cell has the support for both phase and frequency synchronization [53]. The synchronization can be done either using NTP [53] servers or GPS [53] antennas. Finally, yet importantly, a Macro cell is most suitable for large area coverage while a Pico cell could be used at indoor places i.e. inside a shopping mall, restaurant, offices etc. with large number of users.
The significant growth of the heterogeneous wireless environments is expected by the MNOs. The conventional trend of using proprietary hardware components IT techniques such as virtualization provides open platforms which could be structured according to requirements. Hence, a blend of telecommunication networks and IT virtualization will lead us to NFV/SDN enabled network infrastructure having management and orchestration capabilities. Therefore, NFV provides virtualized platform where network operator can deploy network elements virtually. The aim for deploying NFV is to take advantage of IT virtualization. It separates network function from underlying proprietary hardware appliances. Through execution of NFV, various network components are consolidated on high volume server, switches, storages and utilizing network function in different location such as data centres, network nodes, user-end premises etc. In NFV platform, virtualized network function (VNF) deployed as software entities that run over NFV infrastructure (NFVI) through the control of NFV Management and orchestration (MANO). [6, 7]

Figure 9 [6] illustrates NFV architectural framework which consists of basic components requisite in a virtualization platform. NFVI envisages all hardware and software components which build up the environment wherein virtualized network function (VNF) are deployed as virtual machines (VMs). Virtualization layer, i.e., hypervisor, separates physical hardware resources such as computer, storage, RAM etc. allocated within a physical server from virtual resources of VMs. It also ensures that VNFs are decoupled from hardware resources. Typically, it is realised as a virtual machine monitor software which runs on top of physical machine and manages physical resources according to the requirement of guest virtual machines. Each VNF instance has Element Management System (EMS) which reduces complexity and identifies VNF keeping in view the instructions issued by the NFV MANO. This NFV
MANO involves three function blocks, virtualized infrastructure manager (VIM), virtualized network function management (VNFM) and network function virtualization orchestrator (NFVO). NFVO is in charge of tracking complexity of VNF and is providing orchestration decisions to VNFM according to EMS. After that VIM allocates virtual resources within NFVI in order to maintain the required quality of service. Finally, VNFM manages the lifecycle of VNFs as well as it deploys and configures new one according to VIM allocation. This NFV architectural framework is defined by ETSI NFV group at functional level without any indications of a specific implementation. [6]

![NFV Architectural Framework](image)

Figure 9. NFV architectural framework.

3.3. Software Defined Network

From network point of view, Software Defined Network (SDN) [7] provides programmable network platform where the control and data planes are decoupled under the control of centralized software controller. The data plane nodes can establish a secure TCP connection to the controller. A synchronization protocol for example, OpenFlow is required for remote connection between control and data plane. SDN serves NFV by providing programmable connectivity between VNFs and SDN controls VNF MANO roles remotely in order to manage NFVI functionalities. Therefore, SDN provides software controllable network having control plane running on the cloud and data plane deployed as a node within network. As, both SDN and NFV are two separate technology but these can be merged to deploy a NFV based infrastructure upon which SDN can be run as a software. [7] Currently, OpenEPC in 5GTN does not have SDN feature. It can be further extended by using OpenFlow protocol, as OpenEPC supports OpenFlow controller switch. [49]

3.4. Evolved Packet Core

In the contrast to the conventional circuit-switched infrastructure of the mobile network, LTE has been implemented based on packet-switched schemes. Therefore, it is possible to provide seamless IP connectivity to the user during mobility. The
evolution of LTE is appeared through the Evolved Packet System (EPS) [54] under System Architecture Evolution (SAE) [54] which is the core network architecture of 3GPP’s LTE standard, includes EPC as a core network. EPS provides full IP based connections to access the EPC from UE. Hence, the LTE network comprises of EPC core network and Evolved Universal Terrestrial Radio Access Network (E-UTRAN) [54] which includes the Evolved Node B (eNodeB) [54] and UE. The eNodeB provides the terminations of E-UTRAN data plane and control plane towards the UE. Each eNodeB is able to connect with EPC through S1 interface and it can also connect with other eNodeB by using X2 interface. Using S1 interface based on S1 application protocol, the S1 connection has been established RAN and core network. For each user, the connection is established between eNodeB and Mobility Management Entity (MME) [54] through the S1-MME interface over control plane and the data plane connection is established between eNodeB and Serving gateway (SGW) [54] through S1-U. [54]

The EPC is responsible for the overall control of UE and it is also responsible for establishing bearer connection between E-UTRAN and core network [54]. The main modules of EPC and their functionalities are described in detail:

- **MME**: It is the signalling module that processes the information related to the control plane. The Non-Access Stratum (NAS) protocol at the MME, is running between UE and core network during initial attachment. The MME is responsible for user authentication and it is involved in the bearer activation or deactivation process between the UE and the core network. As well as MME has the ability to track the idle mode user and to send paging messages to the UE. [54]
- **SGW**: The SGW is responsible for transmitting all IP packets through data plane. It includes local mobile anchor (LMA) for data bearer during inter eNodeB handover. At idle state of user, SGW retains the information regarding bearers and buffers downlink data temporarily when MME initiates paging of the UE to re-establish the bearers. SGW also enables mobility anchor for interworking with other 3GPP technologies such as general packet radio service (GPRS) [54] and UMTS. [54]
- **HSS**: The Home Subscriber Server (HSS) [54] contains user information for authentication, QoS profile and identify the MME to which UE is currently registered and connected. It has also the information about Packet Data Networks (PDNs) to which the UE can be connected. [54]
- **PDN Gateway (PGW)**: The PGW is responsible for allocating IP address for the UE, and it enforces QoS and charging rules according to the rules of the Policy and Charging Rules Function (PCRF) [54]. It is performing to filter the downlink user IP packets into the different QoS based bearers. [54]

MNOs should consider load balancing and resource allocation to provide on demand services to the end users and to ensure better QoS. For instance, in natural hazards, the network of a single eNodeB gets so much traffic which ultimately results in crashing of the network. With the current end to end proprietary core network components, it is very difficult to create new network components and update resources within a limited span of time. In order to create virtual core network, Core Network Dynamic (CND) has designed a software implementation of EPC, i.e., OpenEPC which can install over virtual platform. OpenEPC is not in full compliance with 3GPP standards for LTE EPC.
3.5. OpenEPC

The existing LTE access network leads toward the network infrastructure into the software defined virtualized platform for more control on each individual core network components by using open interfaces. OpenEPC implements such a virtualized prototype along with core network functionalities and interfaces according to the 3GPP’s EPC standard. These functionalities enable the control over core network remotely with separating control and data plane. OpenEPC comprises functionalities such as authentication and authorization, mobility management, policy and charging rules according to the access network like LTE, 3GPP, trusted non 3GPP, and untrusted non 3GPP. The PCRF module is responsible to establish the rules and charges for each user and service in real time. According to deployment of OpenEPC in 5GTN, the SGW and PDN gateway (PGW) functions are collocated in serving and PDN gateway (SPGW). The virtual MME performs control plane function in the LTE access network and SPGW ensures PDN connectivity over data plane for routing and forwarding user data packet from and to the eNodeB. The HSS database stores user information for authentication and authorization. OpenEPC uses both GPRS Tunnelling protocol (GTP) and Proxy Mobile IP (PMIP) that enable mobility management solution for the core network. [52] All components and functions are elaborated in sections 3.5.1 and 3.5.2.

3.5.1. OpenEPC as a Core Network

As mentioned previously, OpenEPC supports LTE access network as well as non 3GPP access network. All communication functionalities, protocols, interfaces and components have been deployed to be part of OpenEPC in separate modules according to access network demands. In OpenEPC, each module has its own API for interacting with other EPC components as well as with external components at different communication levels. It also provides console for configuring interfaces and modules dynamically. [48] OpenEPC provides PCRF over management (mgmt.) interface along with QoS enhancement mechanism based on individual subscription profile. In OpenEPC, eNodeB establishes S1 connection with MME over net_d and SPGW also supports net_d interface to create GTP tunnel with MME during attachment procedure. But UE connects to the cells on an_lte interface which assigns IP to the user on net_c IP Pool. Figure 10 [48] illustrates the OpenEPC control and data plane over different interfaces. According to this, ‘net_a’ is the actual PDN interface for accessing the Internet. The ‘net_d’ is used as 3GPP radio access backhaul which connects eNodeB with EPC core network on control plane while ‘mgmt.’ is the management interface which enables signalling for individual access to different machines within OpenEPC. [48, 49]
OpenEPC Components

OpenEPC release 7 in compliance with 3GPP release 11 & 12, is installed in the 5GTN. It includes core network components as virtual machines as shown in Figure 11 [52]. Apart from the standard EPC components, OpenEPC has an emulation of a UE and eNodeB. In this thesis, only required components are discussed which helps to determine the possible solution for integrating LoRaWAN with the 5GTN.

MME being one of the VMs that contains individual modules and interfaces to enable different functionality for E-UTRAN radio access network. It ensures user authentication and authorization while UE triggers for initial attachment through LTE access network. Using S6ad stack module, MME updates location of the subscribers by using Diameter communication protocol. To update location and authenticate the user, MME connects to the HSS over S6a interface where all the user information is stored. In order to use MME to support control plane functionalities, the GTP-C module is used which contain logics to create, encode and decode GTP messages. After establishing the connection between eNodeB and MME, MME encapsulates UE’s packet into S1-mme interface by using NAS stack module and sends to the UE through eNodeB. In addition, addressing module is responsible for retrieving IP address in the bearer process and is also responsible to determine the serving gateway for user at the initial state and during intra LTE handover. [48, 52]
Another important virtual machine is SPGW which includes a serving gateway (S-GW) and a PDN gateway (P-GW) functionalities with required interfaces and protocol stacks. The control plane of SPGW can be realized by using Local Mobility Anchor (LMA) module, which allocates IP address for users while user initiates attachment request to connect with EPC. But it is important to note that, this IP address for each user must be provisioned from clients IP address pool before assigning. The IP allocation can be done using DHCP module within SPGW which then forwards address to the users. In OpenEPC, PDN connectivity can be established into SPGW gateway over both GTP and PMIP, as the functional module of SGW and PGW are placed in a single virtual machine. As SPGW includes data plane functionality, it supports routing modules and transmits data packets to the Internet gateway through SGi interface for uplink traffic. It also includes gw_binding module which has all the information related to gateway binding, access point name (APN), bearer information, policy and charging information, mobility access information etc. According to PCRF rules, Policy and Charging Enforcement Function (PCEF) module enforces QoS values within SPGW over Gx interface depending on subscribers and services specifically when new subscriber attached and requested for accessing different services. [52]

EPC-Enabler includes functionalities such as Domain Name System (DNS) [53], Network Address System (NAT) [53], PCRF, HSS, Access Network Discovery and Selection Function (ANSDSF) [52], SMS Router, Authentication, Authorization and Accounting (AAA) [53], Serving-Call Session Control Function (S-CSCF) [53], Proxy-CSCF (PCSCF) [53], Interrogating-CSCF (I-CSCF) [53]. The DNS in each virtual machine resolves the DNS queries within the OpenEPC network where the NAT translates IP address into another by modifying network address information in IP network. All VMs can be accessed through root connectivity within OpenEPC.
However, IMSI (International Mobile Subscriber Identity) should be registered into HSS database for provisioning subscribers. Without registration, UE cannot connect with core network. From user data repository (UDP) which is the central user information database, HSS issues a query for user information and stores these information temporarily in cache memory. After that HSS acts as a complete user database and performs authentication and authorization with MME entity [52]. The module ANDSF is located in EPC-Enabler, which transmits the indicators over S14 interface to the UE to switch among different access networks on priority basis. It is also responsible for default IP route before the Internet gateway during packet transmission. Another important module PCRF which is responsible for enforcing the charging and policy rules and for allocating resources for each established bearer based on subscriber’s profile. [52, 53]

3.5.3. LTE access network signalling in a nutshell

OpenEPC allows 3GPP and non 3GPP trusted and untrusted access network to be connected with LTE evolved packet core network [52]. It also enables operators to provide fast 4G data speeds as well as reducing cost with utilizing virtualized network platforms [52]. However, OpenEPC has the capability to support multiple protocols for communicating over different access network. Both GTP and PMIP are used for PDN connectivity over LTE access network, data is encapsulated through UDP for GTP tunnel while IP tunnel is created for PMIP. [48]

The interfaces of OpenEPC and their purposes are described in Table 5 [72].

<table>
<thead>
<tr>
<th>Interfaces</th>
<th>Purposes</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1-mme</td>
<td>Control plane interface between E-UTRAN and MME.</td>
</tr>
<tr>
<td>S1-U</td>
<td>Interface between E-UTRAN and SGW for creating bearer user tunnel.</td>
</tr>
<tr>
<td>S5</td>
<td>Interface between SGW and PDN GW for providing user plane tunnelling and tunnel management. Also, it is utilized for SGW relocation due to UE mobility.</td>
</tr>
<tr>
<td>S8</td>
<td>It is used as an inter-PLMN (Public Land Mobile Network) interface for providing user and control planes between the SGW and the PGW.</td>
</tr>
<tr>
<td>S6a</td>
<td>Interface between MME and HSS. It transfers subscription and authentication data for authenticating/authorizing user access to the EPC.</td>
</tr>
<tr>
<td>S11</td>
<td>Interface between MME and SGW</td>
</tr>
<tr>
<td>Gx</td>
<td>Interface between PGW and PCRF for providing QoS policy and charging rules from PCRF to the PCEF in the PGW.</td>
</tr>
<tr>
<td>SGi</td>
<td>Interface between PGW and packet data network for accessing public or private packet data network of an external operator or an intra operator.</td>
</tr>
<tr>
<td>S2b</td>
<td>Interface between ePDG and PGW for providing the user plane with related control and mobility support between ePDG and the Gateway</td>
</tr>
</tbody>
</table>

A typical attachment procedure is described in Figure 12 while LTE access network is used for establishing S1-mme connection between eNodeB and MME over S1-mme interface. According to MME configurations, eNodeB needs to be configured by using specified IP pool which is allocated for OpenEPC in 5GTN. The purpose of eNodeB configuration is to transfer the configuration information of RAN from eNodeB to MME. Attachment procedure comprises of two messages, attachment
request from eNodeB to MME and attachment request acknowledge from MME to eNodeB over S1-mme interface [55, 56].

Figure 12. Attachment Procedure between eNodeB and MME.

Figure 13 [55] shows the overall attachment procedure for LTE user. After establishing S1-mme connection successfully between eNodeB and MME, the UE initiates attachment procedure by sending RRC connection request to eNodeB over LTE access network. After receiving acknowledgement of the RRC request from eNodeB, UE sends attachment request and PDN connectivity request through NAS protocol to the MME via eNodeB. Then MME performs authentication and authorization by sending authentication request to HSS. According to current status of user, MME updates location of the subscriber to HSS by sending update location request that includes PLMN identifier i.e., mobile network code (mnc) and mobile country code (mcc). Afterward MME creates GTP-C session request with SPGW (in OpenEPC) and SPGW triggers charging control request to PCRF. Upon receiving GTP session response, MME responses accordingly with Attachment Accept towards the UE. Thus, attachment has been done with sending Accept complete message and bearer context accept message. [55, 56]
3.5.4. Signalling route over Non-3GPP

OpenEPC is designed to support variety of access network technologies, ePDG has to be deployed for deploying non 3GPP access network on increasing non-3GPP connectivity demand as shown in Figure 14 [57]. Currently, OpenEPC in 5GTN, does not have ePDG virtual instance. As MME establishes link over LTE access network, ePDG treats non-3GPP access network as untrusted and it creates IPsec tunnel for secure data transmission. The reason of using IPsec tunnel is to encrypt and secure IP communication by transmitting IP packet within communication session. In OpenEPC release 7, ePDG includes Mobility Access Gateway (MAG) function having PMIPv4 or PMIPv6. Attachment of non-3GPP user to core network is done through the request of IP address over DHCP module which is integrated within ePDG. At the same time ePDG establishes IPsec tunnel according to IP address assigned for particular subscriber by the standard network IP Pool for secure data communication between user and ePDG. After that data packets are forwarded to PDN-G which is connected with ePDG over S2b interface. In addition, Bearer Binding and Event Reporting Function (BBERF) module is also included in ePDG for policy control as to provide requested QoS and priority parameters associated to subscribers. This module enforces its QoS rule according to PCRF module over Gxb interface. As to completely differentiate between 3GPP and non-3GPP users, different interfaces are utilized, e.g., a non 3GPP user will use the ‘an_wifi’ interface which would then connect it to ePDG directly. [57]
Figure 14. OpenEPC Components and Interfaces.
4. LORAWAN INTEGRATION WITH THE 5GTN

As the number of end users with heavy bulks of data is increasing day by day, the existing LTE infrastructure will no longer be capable to process such a huge data traffic outburst. At the same time, NGMN [2] is expected to bring diverse IoT applications by integrating massive number of M2M communication devices with the existing infrastructure over the Internet. It is expected that LPWAN will bring a major evolution to existing infrastructure to process such an IoT embedded ecosystem by handling huge data traffic with low latency. [10]

The existing LTE networks do not have the LPWAN integration support. As part of the future roadmap, SDN and NFV are expected to bring a major network evolution in existing LTE EPC from the core network perspective. The virtualization of LTE core network components running as virtual instances in a cloud, changes the conventional trend of using proprietary hardware components. Also, variety of IoT applications could be merged with this virtual core instance to make a possibility to get it integrated to be part of the same cloud.

Currently, 5GTN is compatible to support LTE core network, which is being deployed for research purposes as mentioned previously. This test network also provides virtual core network based on 3GPP LTE infrastructure. The UE can connect with this core network by using LTE interface. This virtual platform is also open to integrate IoT applications. Therefore, this could be utilized for developing IoT enabler network by integrating LPWAN. LPWAN could be scaled to make a possibility to get it integrated to be part of the 5GTN.

Among LPWAN technologies, the LoRaWAN is becoming more interesting for research and industrial communities [1] because of the long-range communication, ADR and due to the simple network architecture. Therefore, LoRaWAN is chosen to implement the integration scenario practically in this thesis work. Several integration possibilities will be discussed in this Chapter, in which one real implementation scenario will be discussed in Chapter 5.

4.1. Integration at a Glance

The question of adding IoT features to a 5GTN network by using LoRaWAN is still ambiguous. However, different levels of integration are already being discussed by several research projects in telecommunications community around the globe. LoRaWAN can be integrated with cellular network by transmitting LoRa packet using eNodeB, according to [58]. As proposed in [58], LTE modem having the capability of receiving LoRa packets from end-devices. The modem also supports Subscriber Identification Module (SIM) card [58]. Therefore, it can collect data from the LoRa end-device, further forward to the core network through eNodeB. There is an adaptation layer within the LTE modem between LoRa and LTE UE [58]. LoRa packets transmitted by an end device might be received by multiple BS. The NS receives multiple duplicate copies of same packets coming from multiple BS. LoRaWAN uses an unlicensed spectrum [58] for transmission, while LTE uses licensed spectrum. Such integration degrades performance by consuming more spectrum which would then result in more network latencies. The problem is tackled
by creating an interface and some algorithm schemes that are discussed in detail in reference [58].

LoRa NS can be performed as a virtual instance on the cloud platform by implementing network server functionalities, the detailed explanation is found in [43]. According to [43], LoRa NS is implemented on the Openstack cloud where all management operations have been done by using Openstack [77] APIs. OpenStack must be installed on an ubuntu operating system which provides with an IP address for horizon [77] and keystone [77] respectively. Using the web client, we can reach the OpenStack dashboard [77]. Using the dashboard two networks could be created, one is for external networking and the other one is for internal networking. The internal network enables primarily the inter VM communication and the external network is used for communication with the LoRa BS. In the dashboard, using the Nova [77] as an availability zone we can create as much VMs as required. [43]

The 5GTN is a test network for industry and academia, which can support all access networks. Therefore, it could be an option that LoRaWAN could be established a connection with 5GTN’s core by using access network. As discussed in Chapter 2, LoRaWAN has its own network to collect data from end-devices and it can use, e.g., WLAN or 3G as the backhaul to transfer data to its own server. Similarly, LoRaWAN could utilize its own network as the front haul and access network as the backhaul. This access network could be either 3GPP or non-3GPP to establish a connection between LoRaWAN and 5GTN’s core. To implement such a platform, either 1) LoRaWAN needs to support same protocols and interfaces the testbed network has or 2) test network needs to enable such connection support.

As, 5GTN has virtual core network with virtualized functions, LoRaWAN could be deployed as a virtual instance which can be capable to connect with virtual components in 5GTN. If this virtual LoRaWAN supports MANO, multiple data planes can be created virtually on demand to control IoT data traffic. This virtual instance could be running on and processing LoRa packet either in the same server where the 5GTN virtual core does or in different server. However, the LoRaWAN could be installed as a virtual instance in the same cloud, then it could be utilizing same data route to transmit LoRa packet. Otherwise, it needs to establish a connection between virtual LoRaWAN and core network to be part of the 5GTN. However, any entity of the LoRaWAN could be used to implement virtual LoRaWAN infrastructure. From RAN to core network level, several potential key ingredients are identified and required to implement such kind of network platforms. Still it is an open of question whether connection between them could be made virtually, physically or via API platforms.

4.2. Levels of Integration

It is expected that the upcoming 5G technology will enable support for numerous use cases based on innovative applications by using multi-purpose virtual core network. 5GTN has a vEPC where all network components are deployed virtually based on ETSI’s NFV. To build a testbed which could support IoT use cases in future, LoRaWAN could be connected physically to a network so that it could establish connection over a particular vLAN to a virtual LTE core network component. However, physical connection could be made with RAN as well. RAN forms the major part in mobile networks which consists of radios involved in data transmission and
reception. Future mobile networks are expected to bring major changes in the existing radios in order to add IoT functionalities. Therefore, RAN could be another option to integrate LoRaWAN with the 5GTN, but the connection could be established via ethernet, seamless or APIs. In this Chapter, number of possibilities are discussed which could make LoRaWAN part of a 5GTN. All the integration scenarios will be discussed theoretically on state-of-the-art basis, yet a single integration scenario will be chosen and discussed later in details along with its practical implications.

4.2.1. LoRaWAN as an Access Network

The virtual core network based on 3GPP prototype implementation has multiple access network support, be it Wi-Fi and WiMAX for untrusted/trusted non-3GPP or 2G/3G networks. When it comes to LoRaWAN integration with the core network level, it seems that using 3GPP LTE access network is undefined due to the absence of S1 protocol stack in LoRaWAN at this stage. Yet, other non-3GPP trusted or untrusted access network could be used to connect LoRaWAN with core network.

For example, LoRa BS could access OpenEPC core network (5GTN’s core) and get authenticated as untrusted non-3GPP networks. The authentication for establishing such a connection is done in the AAA server by making use of the standard diameter protocol. SAE provides with the ePDG for such connections to have an IP security (IPSec) tunnel between the UE and ePDG. Likewise, OpenEPC has an ePDG VM which could be configured to use IPSec for untrusted access network to connect LoRaWAN as a UE in this case. In order to have such an IPSec support, ePDG make use of open source strongswan [20]. But, LoRa BS does not have the required IPSec support so any physical device which can provide such a tunnel could be utilized here e.g. a VPN switch. Moreover, the ePDG machine should have GTP/PMIP support for IPv4 addressing which the OpenEPC’s ePDG does have. The LoRa BS should act as an IPSec client sending initiation request using the Internet Security Association and Key Management Protocol (ISAKMP) [73] to the IPSec server at the ePDG machine. The ePDG then sends authentication request to the AAA server via diameter protocol. Thus, at core network level, LoRaWAN (using LoRa BS) could be integrated as an access network with ePDG virtual instance running as a vEPC core network component as shown in Figure 15.

![Figure 15. LoRa BS integrated with 5G testbed Core network.](image-url)
4.2.2. Connecting LoRaWAN to 5GvLAN

To develop integration scenario in such a way that the connection could be made directly with 5GvLAN while OpenEPC is installed over 5GvLAN. If connection is possible to the same 5GvLAN which can be provided an IP address within OpenEPC’s IP pool. If the IP pool is defined from another subnet for LoRaWAN, it gets IP address from that IP pool and forwards the packets without any interruption of OpenEPC core. OpenEPC also includes programming model implemented by Representational State Transfer-API (REST-API) [49] as well as Java Script Object Notation-Remote Procedure Call (JSON-RPC) [49] protocol for OpenFlow controller extensions, enabling network-aware services and Core Network enhancements for networks. Hence, API could be an option to implement integration scenario without any physical connection. The connection of LoRaWAN with 5GvLAN by using switch as shown in Figure 16.

![Figure 16. Integrating LoRa BS with 5GTN via 5GvLAN.](image)

4.2.3. LoRaWAN being a part of LTE-UE

LoRaWAN could be made a part of an LTE UE to send packets all the way to its network server on the Internet using LTE data plane path. This could be achieved by introducing an LTE module which would have both LTE and LoRaWAN protocols and interfaces support. This module acts like LTE UE which could establish an S1 connection with the eNodeB as part of the LTE signalling as well as it will request for GTP tunnel creation. Once the connection is established, the module will start sending packets to the Serving and PDN Gateways as part of the LTE data plane.

Figure 17 shows the possibility of connecting LoRaWAN with 5GTN. However, this integration could be made by integrating a module which would have LoRaWAN support and S1 protocol support. Therefore, this module can receive packet from LoRa end-device as well as transmit to the LoRa NS by using LTE access network in 5GTN. The integration could be possible in another way if this module would have non-3GPP
access network support i.e. Wi-Fi/Wi-MAX. This non-3GPP access network could be utilized to establish the connection between LoRaWAN and 5GTN.

Figure 17. LoRa BS being a part of LTE-UE.

4.2.4. **LoRaWAN being part of eNodeB**

IoT being an emerging application in Future Mobile Networks, it is expected to bring major changes in existing LTE Radio. LoRaWAN supportable gateway could be integrated within the eNodeB. Therefore, eNodeB would be capable to receive and transmit LoRa packets along with LTE’s user traffic. The Figure 18 shows the integration view of LoRa BS being part of eNodeB. For such integration, LoRa BS is incorporated within 5GTN eNodeB which requires a modification to hardware of eNodeB. In this set-up, LoRa end-device communicates with the 5GTN’s eNodeB having a hardware which has the capability to receive those packets and process it further to the NS using the data plane path via core network.
Currently, mobile network infrastructure is arranged to be compatible within cloud platform by making the network components virtual so that the network becomes global. If the IoT related application is served by MNOs, this could be easy in the application perspective. For this purpose, virtual instance of the LoRaWAN can be implemented in the MNO’s cloud. As proposed in [8], this can be an option to integrate LoRaWAN with the 5GTN.

In order to integrate LoRaWAN with 5GTN, Openstack cloud platform could be utilized similarly to [43]. As, OpenEPC has already been installed on the virtual server, LoRaWAN NS could be implemented on the Openstack platform which is already running over that virtual server. In this virtual environment, NS functionalities could be classified and defined within a single VM or multiple VMs. The advantage of using such Openstack platform is to deploy multiple VMs as required. Figure 19 shows the general ideal to implement LoRaWAN as a virtual instance on Openstack platform by using dashboard.

Figure 18. LoRa BS being a part of eNodeB.

Figure 19. LoRa NS virtualization on OpenStack.
5. IMPLEMENTATION

The IoT applications with their diverse implications is an emerging evolution and is changing the conventional approaches of, e.g., implementing automation and smart use cases. Imagine thousands of sensor nodes transmitting sensor data to a gateway which itself is integrated with a mobile network infrastructure using the eNodeB. The eNodeB then uses the same control and data plane to get authorization and process data traffic respectively. Assuming that the EPC is capable enough to handle bulks of traffic from those sensor nodes and transfers data to the corresponding servers operating in an IoT Cloud. The data then can be used to trigger any actions depending on the use cases. So to speak, out of several integration possibilities, LoRaWAN can be integrated with the 5GTN as a LTE UE by utilizing ‘combined attach procedure’ [59]. This integration scenario is implemented to merge the ideas from several possibilities by using different LoRa BS. Like any normal UE, LoRaWAN can connect with MME via eNodeB on the control plane and transmit traffic (encapsulated into NAS) to PDN gateway on the data plane as explained in Figure 13. This chapter will go through the detailed description of LoRaWAN integration with the 5GTN practically. For further performance evaluation of real time packet transmission to IoT cloud, it can be utilized for diverse IoT applications purposes.

5.1. Integration Scenario

The 5GTN provides a PoC testbed solution to enable IoT application integration with it by utilizing different radio technologies. In addition, the 5GTN testbed integrates multi diverse IoT gateway with its infrastructure, which enables to test and unify heterogeneous IoT devices as proposed in [3]. This IoT gateway supports various data transfer protocols like HTTP, CoAP and it has support for several interfaces for collecting data and distributing it further to other entities and cloud platform. [3] The 5GTN comprises of a service core network having variety of applications as well as it deploys an open network at University of Oulu [3], it can be utilized to develop and evaluate the LoRaWAN integration scenario for real time IoT applications in future mobile network.

Based on a cloud concept, LoRaWAN is processing data and transferring it then to the IoT cloud platform using the 5GTN. This network provides data plane route as a wireless backhaul to the cloud. Hence, LoRaWAN uses its own radio technology to receive data from end-devices and transmits data to the cloud based on MQTT protocol by utilizing cellular network. This M2M connectivity environment, for enabling IoT applications, is provided by the MultiConnect Conduit [60] gateway. Having LoRa BS and NS functionalities, MultiConnect Conduit allows wireless interfaces support and provides application tools so that it can be configured according to IoT use cases.

To support a new innovative solution such as integrating LoRaWAN with the 5GTN, MultiConnect Conduit provides suitable programmable and configurable gateway platform that can be utilized for implementing integration scenario and developing IoT applications. This gateway is specifically designed for enabling M2M communications within wireless sensor environments. So, it supports different protocols to enable LoRaWAN functionalities and cellular network connectivity. MultiConnect Conduit with its accessory provides a solution based platform to develop
applications that utilize LoRaWAN. The Conduit comprises of LoRa BS and NS functionalities where it supports LoRa mCard to operate either on 868 MHz or on 915 MHz bandwidth [60]. Apart from that, it can be deployed as part of any existing cellular network to connect eNodeB by installing SIM card or using Ethernet backhaul. [60] The network architecture is illustrated in Figure 19 after integrating Conduit with 5GTN and transmitting packets successfully to the ThingWorx via 5GTN cellular network. Thus, Conduit publishes the data which is received from end-device and the mosquitto MQTT broker receives that data and publishes to the specified mosquitto client i.e., ThingWorx according to ‘topic’. ThingWorx can also subscribe the data to the Conduit via MQTT broker. The overall procedures for integrating Conduit with 5GTN is explained in section 5.2.

![Figure 19. Network architecture of integrating LoRaWAN with the 5GTN.](image)

5.2. MultiConnect Conduit

MultiConnect Conduit introduces a new embedded solution to plug in multiple applications for IoT use cases. It is developed by Multitech and it provides several accessory card (mCard) such as MTAC-GPIO, MTAC-MFSER, MTAC-LoRa, MTAC-ETH [60] for different purposes as well as it has the ability to install the mini SIM card, micro SD card etc. [60] As for integration purpose LoRaWAN mCard has been installed which allows connecting thousands of sensor nodes or appliances. It allows two antennas in order to support 4G LTE backhaul [60].

Moreover, LoRa radio technology is supported within MultiConnect Conduit by installing MTAC-LoRa mCard. This mCard provides long range RF support according to Semtech’s LoRa radio technology and it can also be enabled to establish a connection between end-device and cloud. The Conduit has MTAC LoRa antenna which is polarized vertically and this LoRa antenna has 3 dBi gain with Omni
directional radiation feature. When installing this mCard within the Conduit, the power supply needs to be disconnected to avoid undesired situation. There are two mCard slots AP1 and AP2 where either of them can be chosen for installing this card. [60]

Within the Conduit, LoRa network server can be configured to support 868 MHz and 915 MHz ISM bands having maximum seven frequency sub-bands. For security purpose, this network server can be encrypted by using username and password. It is important to configure Network ID (NetID) and corresponding Network Key while enabling network server functionality. The NetID should be placed on `eui` as a form of 8 hexadecimal digit and Network key should be a 16-hexadecimal digit. Before configuring the network server, we need to create LoRa directory and copy the LoRa network server configuration file from the repository by using following commands:

- `mkdir /var/config/lora`
- `cp /opt/lora/lora-network-server.conf.sample /var/config/lora/lora-network-server.conf`

After modifying the setting as required, the system needs to be restart. After configuring LoRa NS, LoRa end-device can be found by using following script, `lora-query` [-n] [60]. LoRa NS configuration and number of joining node are viewed in Figure 20.

```
# After modifying the setting as required, the system needs to be restart.
# After configuring LoRa NS, LoRa end-device can be found by using following script, `lora-query` [-n] [60]. LoRa NS configuration and number of joining node are viewed in Figure 20.
```

![Figure 20. LoRa NS configuration and node query.](image)

5.2.1. Provisioning to Access Terminal Interface via Ethernet

MultiConnect Conduit provides both options i.e. either using Conduit AEP or mLinux interface to configure LoRaWAN technology, setting up cellular network and provisioning the root access. Conduit has Secure Shell (SSH) [61] access on mLinux interface by which we can create an SSH tunnel from any console. Conduit then can be accessed by using both AEP or mLinux interfaces. [60, 61]

Once MultiConnect Conduit is connected in a setup to access terminal interface via Ethernet, network interface of the PC needs to be configured to set static IP address within 192.168.2.2 to 192.168.2.254 where Conduit is connected. After assigning static IP to the interface, network interface gets IP within same IP pool that enables to access the Conduit terminal. The default IP address of the terminal is 192.168.2.1 with default username and password as admin [60]. On the other hand, Conduit terminal
can be accessed by using AEP interface with same default IP address and credentials after creating SSH tunnel [60].

5.2.2. Receiving packets on the Node-red

MultiConnect Conduit displays packets being transmitted by LoRa end-device by using `mosquitto_sub -t lora/++/up` or `mosquitto_sub -t lora/++/ -v` [60]. Conduit provides an application such as Node-red [62] that can also be used to see the packet payload including channel information, SNR, device eui etc. Node-red is a programming tool for modelling a platform by using browser-based flow editor. It can be deployed on a variety of environments to transmit packets directly to a particular cloud. For enabling the Node-red, it should be launched at https://192.168.2.1:1880/. [60] ‘LoRa’ from the input block and ‘debug’ from the output editor should be connected together on the node-red platform as shown in Figure 21. The information is retrieved by clicking the debug option in the Node-red. LoRa packet is then observed on the Node-red platform. [62] It is possible to transmit multiple packets from different sensor node simultaneously which is differentiated by device ‘eui’.

![Figure 21. Node-red configuration and packet received.](image)

5.2.3. Point-to-Point Protocol

In general, Point-to Point Protocol (PPP) [63] is an encapsulation protocol to establish a point to point connection directly between two nodes over Internet. After establishing PPP connect between two nodes, IP traffic is transmitted across this connection. MultiConnect Conduit has already PPP configuration file to establish PPP connection. By using default setting, ppp daemon (pppd) [64] is used along with kernel PPP route table to establish and maintain PPP connection with other system (called peer connection) and it also negotiates IP address with each end of the connection link. [64]

The ttyname, a serial port being used in order to communicate with the peer, is set to `dev/modem_at0` as default in the device. Having specified the `nodefaultroute` in ppp/options, the default route is established which would use peer as the gateway once the IPCP negotiation is performed. The pppd asks peer to send packets keeping in view the maximum receive unit (mru) and maximum transmission unit (mtu) values. The
value should be between 128 and 16284 with a 1500 default for mru and mtu respectively. The call name, used to trigger an attachment, reads options from /etc/ppp/peers/call name. The Conduit has ‘lvw2_chat’ as a file for configuring APN for particular operator, which is realized by the pppd call lvw2 command to establish ppp connection. The ppp0 gets an inet address along with a p-t-p address after successful attachment where the inet address creates a tunnel for traffic to/from the Internet to/from the Conduit. But the p-t-p is for Conduit 10.64.64.64 which is the address of a remote machine used as a default gateway for IP packets routing. [63]

5.2.4. WAN Connection Establishment

MultiConnect Conduit uses ‘PPP’ protocol as a part of WAN connectivity to build up a cellular connection over ppp0 interface. In order to achieve it, the ppp link must be configured and initiated. Once ‘PPPD call’ is executed then like a standard LTE terminal, MultiConnect Conduit establishes an RRC connection to the LTE radio. [60] The 5GTN has 2.6GHz Pico cell which is connected to a Nokia based EPC over 5GvLAN (in Tampere). This Pico cell stays connected to this core having established an S1 already with the MME. Initially 5GTN’s SIM card is inserted in the device. The Conduit is then configured to the respective PLMN values (which in case of 5GTN is MNC244 and MCC027) and APN settings (which in case of 5GTN is dmz-ferrari) using the ‘lvw2_chat’ and ‘ppp_chat’ configuration files. Afterwards, using the terminal’s console which in practice is an ‘openwrt system’ (a Linux OS for embedded systems), ‘pppd call lvw2’ is executed. The device hence triggers an S1 connection to the closest eNodeB which then creates the required bearers as part of the LTE signalling and data plane creation. The complete S1 connectivity is explained in detail in Figure 13. Once the attach request is completed, the device gets an IP address from the PDN gateway and also the respective DNS IP addresses (shown in Figure 22). As a result, the device is now connected to the ‘Internet’ using one of 5GTN’s core where the NAT is performed within the core for address resolution outside the network.
Similarly, the connection is also established using OpenEPC (5GTN’s virtual EPC) which is connected to the RAN over 5GvLAN. Basically, one of the Pico cell stays connected to 5GvLAN thus establishing an S1 connection with the OpenEPC’s MME. Now using OpenEPC SIM card, the APN and PLMN values are changed accordingly. In this case, MNC001 and MCC001 are the PLMN values whereas ‘default’ is the APN name. Having configured the device, we triggered an attachment request to OpenEPC which upon success provides the device with an IP address from ‘net_c’ IP Pool (the topology is explained in detail in OpenEPC sections of Chapter 3). Contrary to the 5GTN, the device always gets the same IP address while using a particular IMSI which leads us to a conclusion that in case of OpenEPC, every IMSI has a particular IP address already provisioned in the EPC. Figure 23 shows the PPP connection with OpenEPC.
With the increase in IoT applications, the ways of implementing the use cases including massive number of devices is also increasing exponentially. LPWAN such as LoRaWAN enables such IoT use cases by providing its own sensor nodes which are usually being programmed to sense the phenomena and to send the corresponding data to the cloud over the Internet. MQTT [65] is a protocol for enabling such IoT connectivity, which is designed as an extremely lightweight messaging transport protocol. Primarily, it is suitable for connecting sensor nodes with remote locations to a broker (server) via low bandwidth and unreliable network. It is targeted to ensuring reliability and assurance to some extent for transmission over unreliable network. These principles make this protocol ideal for M2M communications. [65] To establish a MQTT connection, a client either publishes or subscribes a message to the broker including a ‘topic’ into the message as shown in Figure 24 [66]. The client which receives the message is called a subscriber whereas a client which transmits the message is called a publisher, including the same topic which is defined for subscribing that particular messages. So, the topic is the routing information for the broker to handle thousands of concurrently connected MQTT clients. Quality of service (QoS) is essential for publishing message through MQTT protocol. The QoS value ‘0’ indicates that messages are delivered once with no confirmation whereas QoS 1 indicates that the messages are delivered at least once with confirmation. Finally, the QoS 2 indicates that messages are delivered exactly once by using four step handshakes. [66]
Moreover, MQTT protocol is established on top of TCP/IP due to which TCP/IP stack is needed in both client and broker. Initially, a client sends a connect message to the broker, the broker then responds with connect acknowledgement and a status code. MQTT client is using NAT in order to translate IP address from private network IP to public one. The connection drops when either client sends a disconnect command or it loses the link. Once, the connection has been established, it allows transmitting and receiving messages. Another important thing to establish MQTT connection is network port for listening.

MultiConnect Conduit uses mosquitto as a broker [29] which is an open source message broker implemented based on MQTT protocol versions 3.1 and 3.1.1 [67]. Currently, Conduit uses MQTT v3.1.1 along with mosquitto.conf is the configuration file for mosquitto. This mosquitto broker can be listened on the port 1883 [68]. There are several MQTT broker such as ‘mosquito.org’, test-mosquito.org etc. for testing the MQTT connection. For ‘test.mosquitto.org’ broker, the following ports are defined for specific connections [69]:

- port 1883 is defined for MQTT default routing port which is unencrypted
- port 8883 is registered for MQTT also over SSL, encrypted,
- port 8884 is encrypted but client certificate is required,
- port 8080 is for Web Sockets but is unencrypted and
- port 8081 is for Web Sockets but is encrypted

Additionally, mosquitto can be configured based on the required applications including client ID, password, optional client information etc. [68] (for further configuration).

5.2.6. Forwarding Packets to the ThingWorx Cloud

An IoT platform exists between hardware and application layers enabling deployment of applications which could monitor, control and optimize all the connected devices. It also enables remote data collection and integration with related IoT systems. To be specific, the IoT platform being utilized during the thesis work, ThingWorx provides cloud platform for IoT applications which provides us the possibility of designing our own IoT infrastructure with complete applications. It could be utilized as a management platform for the connected devices. [70]
In order to send LoRa packets from the MultiConnect Conduit to the ThingWorx cloud using the 5GTN, different configurations are being followed which we will discuss here in details. The Node-red needs to be configured beforehand which involves connection of the ‘LoRa’ (from the input) and MQTT blocks as shown in Figure 25. The MQTT needs to be configured by specifying the server name, port number, topic, QoS and name of the Property. This will send the payload of the LoRa packet by default but if additional information (device EUI, channel information, signal strength, etc.) is required then relevant function blocks needs to be added.

![Figure 25. Node-red configuration for forwarding packets to the ThingWorx.](image)

Initially, having imported the MQTT extension to the ThingWorx platform, a ‘Thing’ is created by using the MQTT template. Then, a ‘Property’ is created keeping in view the property assigned in the Node-red configuration. The next step being followed was the addition of ‘topic’ and ‘Property’ in the Configuration menu in relevance to the Node-red’s MQTT configuration. It is critical to note that the property and topic should be same as we created earlier in the Node-red. To ensure the connectivity after saving all the changes, in the property menu, the connection if established would give a ‘true’ value for ‘is connected’. Figure 26 shows the configuration in the ThingWorx for receiving LoRa packet.
Once the connection is active, an end-device starts to transmit the packets to the gateway for which we use `mosquitto_sub -t lora/+/-v` script. The gateway having an LTE connection forwards the data using Node-red app in the Conduit to the ThingWorx. The data is then received on the ThingWorx with the same format as is received on the Conduit. If multiple end-devices are used then the data is distinguished by their respective ‘device EUI’ on the ThingWorx and the MultiConnect Conduit itself. Figure 27 shows the connection between MQTT client and ‘mosquitto.org’ broker in the ThingWorx and display the received LoRa packet from Conduit to ThingWorx.
Similarly, the downlink communication from ThingWorx to MultiConnect Conduit is possible to establish by using the same mosquitto broker as used for uplink. To implement such configuration, another ‘property’ named ‘downlink’ is created on different ‘topic’ and this property is then added in the configuration under same ‘Thing’. It is important to note that, when ‘Property’ is added in the ThingWorx, the property needs to subscribe to display the message on ThingWorx. Similarly, the property for downlink needs to publish while transmitting message from ThingWorx to Conduit. The configuration is shown in Figure 28.

Figure 27. Connection established using the MQTT protocol and an example received packet.

Figure 28. ‘downlink’ Property creation for downlink communication.
Accordingly, the downlink MQTT client needs to define on the Node-red for the same ‘topic’ which is configured in the ‘Thing’ for downlink communication. In order to receive downlink data by the end-device, the ‘lora’ block is connected with this downlink MQTT for a specific end-device. The configuration is illustrated in Figure 29.

![Figure 29. ‘downlink’ MQTT and ‘lora’ configuration in the Node-red.](image)

Now, final connection on Node-red platform is shown in Figure 30, in which ‘downlink’ is connected with ‘lora’. The ‘msg.payload’ is connected with ‘downlink’ for adding extra information such as gateway information, channel information of LoRa radio link which is used for receiving LoRa packet by the Conduit.

![Figure 30. The connection for downlink communication on Node-red.](image)

After successfully connecting ‘downlink’ with ‘lora’, the random data can be set in the ‘downlink’ property at ThingWorx for testing downlink communication. This data is received by the MultiConnect Conduit and displayed on ‘debug’, which is shown in Figure 31.

![Figure 31. Data is received by the Conduit which is set on ThingWorx.](image)
5.3. Monitoring LoRa Packet

Having integrated MultiConnect Conduit to be permanently part of the 5GTN as an IoT infrastructure with thousands of end-devices, the ThingWorx provides constant monitoring of the data from those end-devices. Though LoRaWAN is proved to be an efficient IoT enabler out of the LPWAN space yet the performance monitoring is requisite to ensure the capability of such an integration. After connecting Conduit with the core of the 5GTN, the LoRa packets can be monitored within the network by using Wireshark [71]. Therefore, LoRa packets from the end-devices all the way to the ThingWorx can be analysed in both directions i.e. uplink and downlink.

5.3.1. Wireshark Traces for MQTT packets

By using 5GTN core for cellular connectivity, LoRa packets can be transmitted successfully from Conduit to ThingWorx cloud. The Conduit transmits all packets being received from end-devices to the ThingWorx platform which is then stored in a property, i.e., ‘LoRaWAN’ under the Thing named as ‘MQTT_test’. The ‘EUI’ of end-device is ‘00-04-a3-0b-00.1c-1c-18’. Figure 32 shows the successful connection between Conduit and ThingWorx and uplink and downlink messages in the ThingWorx. In order to monitor network performance while carrying LoRa packets, a Wireshark trace is taken at the Pico cell (or eNodeB). We are using 5GTN’s network to transmit the LoRa packets from the end-devices to the ThingWorx. Wireshark trace is captured merely while actual LoRa packets is transmitted by using 5GTN network.

![Wireshark traces](image)

Figure 32. Integrating MultiConnect Conduit with ThingWorx successfully.

From Wireshark trace at Pico cell, it is observed that packet has been published from source IP (10.92.148.108) to destination IP (85.119.83.194) as shown in Figure
33. The source IP which is the local IP of Conduit will be received from the user IP pool of 5GTN and destination IP is the server IP (server based on MQTT) which is used to transmit LoRa packet to ThingWorx. After that, this packet is published on ‘property’ under ‘Thing’. We can create our own server by using ‘mosquitto.conf’ file with own IP/name.

Figure 33. Wireshark log file at Pico cell for uplink.

It is possible to trace the downlink data from ThingWorx to MultiConnect Conduit at the Pico cell as the downlink communication has been done through the same route. In the downlink, the message is published from mosquitto broker (85.119.83.194) to the Conduit (10.92.148.108) as a ‘Publish Message’.
6. DISCUSSION

The rapid technological evolution providing endless number of gadgets to the end users, is changing conventions. IoT brings forward the possibility of great number of use cases which could be embedded into terminals in the form of applications. Moreover, according to statistics, the number of connected devices growing exponentially will soon turn into rapid outburst of heavy data traffic. Therefore, researchers around the globe both in academia and industry are striving to come up with an efficient, stable and scalable IoT platform. The aim of this thesis work was to enable IoT applications by using LoRaWAN technology and data can be transmitted from end-devices to a cloud by using 5GTN network. The possibilities of integrating a LoRaWAN to a cellular network are discussed on different levels in this thesis. To implement the integration scenario, MultiConnect Conduit gateway is used which provides LoRa BS and NS functionalities as well as cellular interface support. This Conduit gateway provides all the protocols and interfaces support that are needed for implementing IoT enabler technology and for integrating with the cellular technology. Therefore, MultiConnect Conduit is used as a gateway to process packets which are received from multiple end-devices, and to transmit that packets to a cloud platform by using cellular network (5GTN). Similar to a UE, the Conduit gets attachment, authentication and authorization using the S1AP protocol where the LoRa packets are being encapsulated into NAS at the eNodeB. The radio spectrum for the Pico cell to which the MultiConnect Conduit sends an RRC attachment request is 2.6GHz TDD. The primary purpose of the work was to come up with a design using an efficient IoT enabler with a 5G proof of concept testbed. After the successful integration and packet transmission, a performance evaluation was carried out to test the capability of the system. This IoT platform could be utilized for different use cases where a network of sensor nodes will transmit data to the platform with real time monitoring possibility.

Imagine a use case, a smart home being remotely controlled from a cloud, where we have access to the real-time data from a sensor node as part of the uplink traffic and we can send instructions to the sensor node in the downlink traffic. In response to the uplink traffic from a sensor node planted as part of a security setup, the downlink traffic can be programmed to ring all alarm bells. ThingWorx, the cloud data base, being used to retrieve data from sensor nodes can be used for different use cases simultaneously with a mere creation of a separate 'Thing'. Having successfully performed the integration which was the core of this thesis work, it appears that LPWAN has huge potential when it comes to IoT applications. The work if extended to a connection of hundreds of sensor nodes will test the capability of 5GTN as a NGMN testbed and will provide a ground for improvements keeping in view the expectations.

MQTT serves as a bridge between the Conduit and ThingWorx which is realized by the Node-Red application. The implemented setup made use of a global MQTT broker i.e. mosquitto.org which is not secure for communication. And public servers usually go down without any pre-notice, thus an own broker is requisite for a readily available platform. The use of global broker does not affect much for a testbed implementation but when it comes to commercial IoT applications, the network break/delay, and network security are not affordable. Hence, the thesis work could further be extended to connection of a network of sensor nodes by having own broker which would provide the network security of real time data from sensor nodes.
5GTN as a testbed is open to researchers to come up with innovative use cases. The idea of integrating LoRaWAN as an IoT enabler with a cellular network was unclear initially. Keeping in view previous LoRa BS, it was assumed that the connection would more likely be a non-3GPP connection directly to the ePDG of the EPC. The MultiConnect Conduit using PPP to establish an S1 connectivity like an LTE UE, clarifies the possibility of such a connection. Having connected to 5GTN, the Conduit is capable to handle a network of end-devices constantly forwarding real time data packets to a centralized cloud data base. It is a practical demonstration for an IoT gateway integrated within cellular networks which could make lots of use cases, practical. ThingWorx being used as Platform as a Service (PaaS) which does not ensure the availability (when needed) of all the data from sensor nodes, as the data gets overwritten every time when a new data is being received. When a large number of sensor nodes will be connected in future, the real-time data needs a data storage backend. The thesis work can be extended to creation of an own ThingWorx data base in University IT servers instead of using it as PaaS. In order to realize it in practice, Postgresql [74] and apache Tomcat [75] should be installed which would serve the purpose of a data base [76]. The data traffic from sensor nodes can then be routed to the data base using 5GTN data path routes, which could then be retrieved when required.
7. SUMMARY

LPWAN is a promising technology for future IoT applications as it is an IoT enabler technology. LoRaWAN due to its low bandwidth has proven to be an efficient IoT enabler in NGMN. The current mobile network is at the verge of a major evolution to be capable of 5G expectations/requirements in which IoT platform would be a primary part, enabling various use cases. In order to build up an IoT infrastructure, MultiConnect Conduit as a LoRa gateway, is integrated with a 5G proof of concept testbed i.e., 5GTN to test the feasibility of IoT applications. The thesis work comprised of evaluating several possibilities by studying different techniques individually. Though the integration formed out to be not possible the way those techniques were studied yet the evaluation lead us to a different way of integration. The point-to-point protocol is used for a WAN connection in which the connection is made between Conduit and Pico cell over ppp0 interface which provides Internet from the 5GTN. After receiving data transmitted from end-device on the MultiConnect Conduit, it is forwarded to the ThingWorx platform using Node-red application. Similarly, the downlink packet is received by the end-device from the ThingWorx through the Conduit. Having connected with 5GTN, the MultiConnect Conduit is capable to transmit and received data to and from the ThingWorx by using MQTT protocol. Therefore, it could be possible to enable IoT applications by using such integrated IoT enabler network platform by collecting real data from sensor node.

MultiConnect Conduit provides a user-friendly Node-red application platform where connection is made easily based on applications without programmable coding (like C, C++, java etc.). Instead, Conduit allows to install LoRa mCard to support LoRaWAN and support SIM card to enable cellular connection. It also supports MQTT protocol on top of TCP/IP to enable communication between MQTT client and broker. A client is capable to communicate with other client using same ‘topic’ through the MQTT broker. Having successfully integrated MultiConnect Conduit with the 5GTN, the deployment of IoT applications is much easier practically due to having support of multiple protocols in a single Conduit platform.
8. REFERENCES

Aspects; System improvements for Machine-Type Communications (MTC). URL: http://www.qtc.jp/3GPP/Specs/23888-b00.pdf.

[14] ETSI. (Read 04.05.2017) ETSI TR 122 934 V6.2.0, Universal Mobile Telecommunications System (UMTS); Feasibility study on 3GPP system to Wireless Local Area Network (WLAN) interworking. URL: http://www.etsi.org/deliver/etsi_tr/122900_122999/122934/06.02.00_60/tr_122934v060200p.pdf.

[21] University of Surrey. (Read 06.05.2017) 5G Innovation Centre. URL: https://www.surrey.ac.uk/5gic.

[26] ETSI. (Read 04.05.2017) ETSI TS 118 108 V1.0.0, CoAP Protocol Binding. URL: http://www.etsi.org/deliver/etsi_ts/118100_118199/118108/01.00.00_60/ts_118108v010000p.pdf.

[28] Sigfox. (Read 20.03.2017) Sigfox, the world’s leading Internet of things (IoT) connectivity service. URL: https://www.sigfox.com/en.

[36] Real Wireless. (Read 06.05.2017) A Comparison of UNB and Spread Spectrum Wireless technologies as used in LPWA M2M Applications. URL: https://www.thethingsnetwork.org/forum/uploads/default/original/1X/3b1c1ae4a925e9aa897110ccde10ec61f3106b87.pdf.

[47] ETSI. (Read 07.05.2017) ETSI TS 123 228 V11.10.0, Digital cellular telecommunications system (Phase 2+); Universal Mobile Telecommunications System (UMTS); LTE; IP Multimedia Subsystem (IMS); Stage 2 (3GPP TS 23.228 version 11.10.0 Release 11). URL: http://www.etsi.org/deliver/etsi_ts/123200_123299/123228/11.10.00_60/ts_123228v111000p.pdf.

[51] VMware (Read 05.05.2017) vSphere ESXi Hypervisor Features. URL: http://www.vmware.com/products/esxi-and-esx.html.

[53] ETSI. (Read 05.05.2017) ETSI TS 136 104 V9.4.0, LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); Base Station (BS) radio transmission and reception (3GPP TS 36.104 version 9.4.0 Release 9). URL: http://www.etsi.org/deliver/etsi_ts/136100_136199/136104/09.04.00_60/ts_136104v090400p.pdf.

[54] ETSI. (Read 07.05.2017) Digital cellular telecommunications system (Phase 2+); Universal Mobile Telecommunications System (UMTS); LTE; Network architecture (3GPP TS 23.002 version 12.5.0 Release 12). URL: http://www.etsi.org/deliver/etsi_ts/123000_123099/123002/12.05.00_60/ts_123002v120500p.pdf.

[57] Core Network Dynamic. (Read 27.01.2017) OpenEPC++. URL: https://sites.google.com/a/corenetdynamics.com/home/open-epc.

[65] MQTT. (Read 17.03.2017) MQTT.org. URL: http://mqtt.org/.

[74] Postgresql. (Read 11.05.2015) Postgresql. URL: https://www.postgresql.org.

