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ABSTRACT 

JuliaFEM Implementation of Model Reduction Algorithms for Static and Dynamic 

Simulations 

Marja Rapo 

University of Oulu, Degree Programme of Mechanical Engineering 

Bachelor’s thesis 2018, 30 p. + 3 Appendices 

Supervisor(s) at the university: Hannu Koivurova 

 

The goal of this work was to implement the static and dynamic condensation algorithms 

to JuliaFEM which is an open source finite element method solver written in the Julia 

language. The implemented algorithms are Guyan reduction and the Craig-Bampton 

method which reduce the stiffness and mass matrices of models for static and dynamic 

analyses and therefore also reduce the required computation time in the analyses. This 

work includes theory behind these algorithms and testing them on an example model.  

The condensed stiffness and mass matrices give the same results as the original matrices 

which proves that the implemented algorithms work correctly. The purpose is that in the 

future the implementations could be applied to large models in static and dynamic 

simulations.  

Keywords: Guyan reduction, Craig-Bampton method, JuliaFEM 



   

TIIVISTELMÄ 

JuliaFEM Implementation of Model Reduction Algorithms for Static and Dynamic 

Simulations 

Marja Rapo 

Oulun yliopisto, Konetekniikan tutkinto-ohjelma 

Kandidaatintyö 2018, 30 s. + 3 liitettä 

Työn ohjaaja(t) yliopistolla: Hannu Koivurova 

 

Tämän työn tavoitteena oli koodata staattinen sekä dynaaminen kondensointialgoritmi 

JuliaFEM:iin, joka on Julia-kielellä koodattu avoimen lähdekoodin 

elementtimenetelmäratkaisija. Koodatut algoritmit ovat Guyanin reduktio sekä Craig-

Bampton-menetelmä, joiden tarkoitus on tiivistää kappaleen jäykkyys- ja massamatriisit 

staattisia ja dynaamisia analyyseja varten ja siten nopeuttaa analyysien laskenta-aikaa. 

Työssä on käyty läpi staattisen ja dynaamisen kondensoinnin teoriaa sekä suoritettu 

kondensointi esimerkkimallille.  

Tiivistetyillä jäykkyys- ja massamatriiseilla saadaan samat tulokset kuin alkuperäisillä, 

mikä todistaa koodien toimivan oikein. Tarkoitus on, että koodien avulla voidaan 

jatkossa tiivistää suuriakin malleja. 

Asiasanat: Guyan reduction, Craig-Bampton method, JuliaFEM 
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NOMENCLATURE 

CMS Component Mode Synthesis 

DOF Degree of Freedom 

FEM Finite Element Method 

 

F force 

K stiffness matrix 

M mass matrix 

I identity matrix 

X matrix of eigenvectors 

Ʌ diagonal matrix of eigenvalues 

 

f nodal force vector 

u displacement vector 

�̈�  acceleration vector 

x vector of eigenmodes 

 

L length 

f frequency 

ω eigen angular frequency 

t time 
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1 INTRODUCTION 

The aim of this work was to implement two common model reduction methods: the 

Guyan reduction and the Craig-Bampton method into JuliaFEM – an open source finite 

element method solver written in the Julia language.  

This thesis introduces these two reduction methods briefly with the help of an example 

model. The code itself is also included as appendices and tested on the example model. 

Instructions for using the implemented algorithms are also included.  

This thesis does not concentrate on large models. The focus is on theory and proving 

that the implementations work correctly. Also damping is excluded in this 

implementation. One goal was also to explain the two reduction methods in a clear and 

understandable way. 
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2 JULIAFEM 

Julia is a somewhat new programming language specifically intended for scientific and 

numerical computing. Its performance can be compared to traditional statically-typed 

languages. Julia is not based on the typical separate compilation, but it is still fast. It is 

an easy and expressive language for high-level numerical computing, in the same way 

as languages such as R, MATLAB, and Python, but it is also effective in general 

programming, web use or as a specification language. (Julia documentation 2017) 

JuliaFEM is an open-source finite element solver written in the Julia programming 

language. JuliaFEM enables flexible simulation models and it takes advantage of the 

scripting language interface which makes it easy to learn. JuliaFEM is a real 

programming environment where simulation can be combined with other analyses and 

work-flows. These features introduce a place for testing new ideas and simulation 

models to the academic world. (Frondelius & Aho 2017; Rapo et al 2017) 

The vision of JuliaFEM is that it can scale up from single servers to thousands of 

machines. “The basic design principle is: Everything is nonlinear. All physics models 

are nonlinear from which linearizations are made as special cases”. (Frondelius & Aho 

2017) 

The JuliaFEM concept will include several other packages and JuliaFEM itself is also 

an installable package which can be downloaded from GitHub (GitHub 2017a).  

2.1 ModelReduction.jl 

ModelReduction.jl is one of the sub-packages that will be included in the JuliaFEM 

concept. The static and dynamic reduction algorithms introduced in this work are 

implemented to the package. The repository for the ModelReduction.jl package can be 

found at GitHub (GitHub 2017b). 

 



  9 

3 THEORY OF MODEL REDUCTION 

Especially dynamic simulations with flexible bodies require significant computational 

resources. The system of equations is likely to contain a very large number, typically of 

the order of millions of degrees of freedom, and require extensive computational 

resources to solve. To reduce the computational cost model reduction techniques are 

used commonly. (Jakobsson et al 2007, p.89; Rixen 2004)  

Basically, the model reduction methods are divided into static and dynamic 

condensation and dynamic condensation can be seen as a generalization of the static 

condensation (Klinge 2000). The following chapters present two of the most used FE 

model reduction techniques for both static and dynamic analyses – the Guyan reduction 

and the Craig-Bampton method. (Rapo et al 2018) 

3.1 Substructures and superelements 

When looking at the model presented in chapter 4 it is obvious that the model does not 

need to be divided into as many elements. Since the model is a rod, only one element 

would be enough to give the correct displacement at node 5. 

Substructuring is the process of decomposing a large FE model into smaller, 

component-based models. (Minnicino & Hopkin 2004, p.11-12) Basically this means 

removing elements that are unnecessary for the analysis and building larger elements – 

so called superelements – out of them. These component models are called the 

substructures of the full system. For example, a subset of adjacent finite elements could 

be viewed as one superelement or substructure (Fippen 1994).  

Substructuring is used in component mode synthesis (CMS), where individual 

substructure problems are first solved and then the coupling of interfaces is built (Seshu 

1997). CMS has many advantages in dynamic analyses especially when the assemblies 

are large and complex. Substructuring and CMS are also known in literature as coupling 

problem or subsystem addition (D’Ambrogio & Fregolent 2011). 
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One of the primary reasons for substructuring in dynamics problems is to reduce the 

number of degrees of freedom of the structure (Craig & Chang 1977). Less DOFs 

require less computational resources. 

The main steps of the substructuring process are to divide the whole structure into a 

number of substructures, to obtain reduced-order models of the components, and then to 

assembly a reduced-order model of the entire structure (Craig 2000). Substructuring 

allows evaluating the dynamic behavior of large and complex structures. Also, local 

dynamic behavior can be recognized easier by analyzing the reduced subsystems than 

when the entire system is analyzed. (De Klerk et al 2008) 

Substructures are also referred to as superelements in the finite element literature. In 

Abaqus 2016 Online Documentation (Dassault Systèmes 2015) it is explained that 

earlier there was a distinction made between these two terms and that the term 

“substructure” was used when it was needed to make clear that results were recovered 

within the substructure. Otherwise both terms were used as each other’s synonyms. 

Therefore, to avoid confusion, the term “superelement” will no longer be used.  

3.2 Guyan reduction 

Static reduction, also known as static condensation, Guyan condensation or Guyan 

reduction is the most popular model reduction method presented by R.J. Guyan (1965). 

It is a method where inertia effects of certain degrees of freedom can be ignored while 

obtaining component modes (Banerjee 2016, p.136). Guyan reduction is the basis for 

several finite element substructuring techniques (Friswell & Mottershead 1995, p.65). 

The Guyan reduction method applied in FE techniques reduces the FE model by 

condensing internal degrees of freedom. Specifically, the technique removes the DOFs 

that are not located at the substructure's boundary.  The remaining DOFs that are located 

at the boundary retain the stiffness of the local structure, but leave out the inertial terms 

to create a more compact and thus more efficient representation. The cost of the process 

is that the accuracy for non-static loading conditions decreases. The method is only 

accurate for stiffness reduction, since inertial forces are not retained in the Guyan 

reduction. (Minnicino & Hopkin 2004, p.11-12) 
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The static equilibrium equation can be expressed as: 

 

𝐊𝐮 = 𝐟 ,     (1) 

 

where K is the global stiffness matrix, u presents the nodal degrees of freedom and f is 

the nodal force vector of the static equilibrium problem. 

By dividing the static equilibrium equation (1) with regards to loaded (master) and 

unloaded (slave) degrees of freedom so that the forces on the unloaded DOFs are zero, 

the static equilibrium equation may be expressed as: 

[
𝐊𝐌𝐌 𝐊𝐌𝐒
𝐊𝐒𝐌 𝐊𝐒𝐒

] {
𝐮𝐌
𝐮𝐒
} =  {

𝐟𝐌
𝐟𝐒
},  (2) 

where 𝐊𝐌𝐌, 𝐊𝐌𝐒, 𝐊𝐒𝐌, and 𝐊𝐒𝐒 are submatrices of K, and 𝐊𝐌𝐌 is the part of K that 

will be left after the reduction. The division by slave and master degrees of freedom is 

presented in figure 3. If 𝐟𝐒 contains only zeros, and only uM is desired, K can be reduced 

as following: 

𝐊𝐑𝐄𝐃𝐔𝐂𝐄𝐃{𝐮𝐦} = {𝐟𝐦},   (3) 

where 𝐊𝐑𝐄𝐃𝐔𝐂𝐄𝐃 is the final reduced stiffness matrix. 𝐊𝐑𝐄𝐃𝐔𝐂𝐄𝐃 is obtained by writing 

out the set of equations as follows remembering that fS = 0: 

𝐊𝐦𝐦𝐮𝐦  +  𝐊𝐦𝐬𝐮𝐬 = 𝐟𝐦,   (4) 

𝐊𝐬𝐦𝐮𝐦  + 𝐊𝐬𝐬𝐮𝐬 =  𝟎.   (5) 

Equation (5) can be solved for uS assuming that KSS is invertible: 

−𝐊𝐒𝐒
−𝟏𝐊𝐒𝐌𝐮𝐌 = 𝐮𝐒,   (6) 

and substituting into (4) gives 

𝐊𝐌𝐌𝐮𝐌 − 𝐊𝐌𝐒𝐊𝐒𝐒
−𝟏𝐊𝐒𝐌𝐮𝐌 = 𝐟𝐌.  (7) 
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Now 𝐊𝐑𝐄𝐃𝐔𝐂𝐄𝐃 can be solved as following: 

𝐊𝐑𝐄𝐃𝐔𝐂𝐄𝐃 = 𝐊𝐌𝐌 − 𝐊𝐌𝐒𝐊𝐒𝐒
−𝟏𝐊𝐒𝐌,  (8) 

where 𝐊𝐑𝐄𝐃𝐔𝐂𝐄𝐃 is the reduced stiffness matrix. In the same way, any row of f with a 

zero value may be eliminated if the corresponding value of u is not desired. The above 

system of linear equations is equivalent to the original equation (1), but it is expressed 

solely by the master degrees of freedom. Thus, Guyan reduction leads to a reduced 

system by condensing away the slave degrees of freedom.  

A reduced K may be reduced again. Most large matrices are pre-processed to reduce 

calculation time since sparse matrix inversions require lots of computational resources. 

3.3 The Craig-Bampton method 

The Craig-Bampton method is a dynamic reduction technique introduced by Roy R. 

Craig Jr and Mervyn C. C. Bampton (1968) that is widely used to assemble large scale 

models (millions of degrees of freedom) that are far too computationally expensive to 

be modeled entirely. (Kuether & Allen 2014) 

In the Craig-Bampton method the degrees of freedom in the original FE model are first 

separated into retained (master) and truncated (slave) DOFs. There are algorithms to 

help selecting the master and slave DOFs (Shah & Raymund 1982). Then, by 

condensing the stiffness and inertial effects for the truncated DOFs into retained DOFs, 

the reduced model is constructed. (Boo & Lee 2017) 

The Craig-Bampton method reduces the mass and stiffness matrices of the model by 

expressing the boundary modes in physical coordinates and the elastic modes in modal 

coordinates. The method reduces the mass and stiffness matrices which will contain 

mode shape information of the low-frequency response modes of the model. The Craig-

Bampton method is especially useful in dynamic analyses that include large FE models.  

(Haile 2000, p. 5 – 17; Qu 2004, p. 322-329). 

In this implementation damping is not included. The equation of motion is: 

𝐌�̈� + 𝐊𝐮 = 𝟎.   (9) 
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In the Craig-Bampton method the matrices are first partitioned into boundary nodes R 

and independent elastic nodes L: 

𝐮 = [
𝐮𝐑
𝐮𝐋
].    (10) 

Equation (9) becomes: 

[
𝐌𝐑𝐑 𝐌𝐑𝐋

𝐌𝐋𝐑 𝐌𝐋𝐋
] [
�̈�𝐑
�̈�𝐋
] + [

𝐊𝐑𝐑 𝐊𝐑𝐋
𝐊𝐋𝐑 𝐊𝐋𝐋

] [
𝐮𝐑
𝐮𝐋
] = [

𝐟𝐑
𝐟𝐋
]. (11) 

The division of M and K into submatrices is performed in a similar way as for K in the 

Guyan reduction. The division is presented in Figure 3. 

The degrees of freedom are transformed into hybrid coordinates: 

[
𝐮𝐑
𝐮𝐋
] = [

𝐈 𝟎
𝐗𝐑 𝐗𝐋

] [
𝐮𝐑
𝐪𝐦
],   (12) 

where 𝐈 is an identity matrix, 𝐗𝐑 is a transformation matrix which relates rigid body 

physical displacements at the interface 𝐮𝐑 to physical displacements of the elastic 

degrees of freedom 𝐮𝐑 and 𝐗𝐋 is a matrix of eigenvectors called normal mode shapes. 

Basically, it is a matrix of eigenvectors calculated from 𝐊𝐋𝐋. 𝐪𝐦 is a column vector of 

modal displacements. It is dimensionless which means that all its units are contained in 

𝐗𝐋. 

Now equation (9) can be rewritten as 

[
𝐌𝐑𝐑 𝐌𝐑𝐋

𝐌𝐋𝐑 𝐌𝐋𝐋
] [
𝐈 𝟎
𝐗𝐑 𝐗𝐋

] [
�̈�𝐑
�̈�𝐦
] + [

𝐊𝐑𝐑 𝐊𝐑𝐋
𝐊𝐋𝐑 𝐊𝐋𝐋

] [
𝐈 𝟎
𝐗𝐑 𝐗𝐋

] [
𝐮𝐑
𝐪𝐦
] = [

𝐟𝐑
𝐟𝐋
]. (13) 

 

To determine 𝐗𝐑 all boundary degrees of freedom are fixed limiting consideration to a 

static problem (�̈�𝐑 = �̈�𝐋 = 𝟎). Equation (11) reduces to: 

𝐊𝐋𝐑𝐮𝐑 + 𝐊𝐋𝐋𝐮𝐋 = 𝟎.   (14) 

 

The internal degrees of freedom can be expressed as:  
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𝐮𝐋 = −𝐊𝐋𝐋
−𝟏𝐊𝐋𝐑𝐮𝐑 = 𝐗𝐑𝐮𝐑,  (15) 

 

where 

𝐗𝐑 = −𝐊𝐋𝐋
−𝟏𝐊𝐋𝐑.   (16) 

To determine 𝐗𝐋 the retained degrees of freedom are fixed. The equation of motion (9) 

reduces to: 

𝐌𝐋𝐋�̈�𝐋 + 𝐊𝐋𝐋𝐮𝐋 = 𝟎.   (17) 

By assuming harmonic response (𝐮𝐋 = 𝐗𝐋𝐪𝐦𝑒
𝑖𝜔𝑡) unforced harmonic motion of the 

grounded structure can be expressed as: 

(𝐊𝐋𝐋−𝛚
𝟐𝐌𝐋𝐋)𝐗𝐋 = 𝟎,   (18) 

where 𝛚𝟐 contains the eigenvalues of the system. The eigenvectors in 𝐗𝐋 can be 

normalized: 

𝐗𝐋
𝐓𝐌𝐋𝐋𝐗𝐋 = 𝐈,   (19) 

𝐗𝐋
𝐓𝐊𝐋𝐋𝐗𝐋 = 𝚲,   (20) 

where 𝚲 = 𝛚𝟐 is a diagonal matrix containing the eigenvalues of (17). 

Since 𝐗𝐑 in (16) contains 𝐊𝐋𝐋
−𝟏, an inverse of 𝐊𝐋𝐋, determining it for sparse matrices will 

require lots of computing resources and it will eventually become a problem with large 

models. This can be avoided by determining 𝐊𝐋𝐋
−𝟏 as follows: 

𝐊𝐋𝐋
−𝟏 = 𝐗𝐋𝚲

−𝟏𝐗𝐋
𝐓.   (21) 

This is proven in appendix 1. Now (16) can be calculated as: 

𝐗𝐑 = −𝐗𝐋𝚲
−𝟏𝐗𝐋

𝐓𝐊𝐋𝐑.   (22) 
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As it can be noticed also this expression includes an inverse, but it is an inverse of 𝚲 

which is a diagonal matrix so it only has nonzero elements on its diagonal and therefore 

needs much less computing power than the computing of 𝐊𝐋𝐋
−𝟏. 

To get the equations of motion of the system, equation (13) is multiplied with the 

coordination transformation matrix in (12) as follows: 

[
𝐈 𝐗𝐑

𝐓

𝟎 𝐗𝐋
𝐓] [

𝐌𝐑𝐑 𝐌𝐑𝐋

𝐌𝐋𝐑 𝐌𝐋𝐋
] [
𝐈 𝟎
𝐗𝐑 𝐗𝐋

] [
�̈�𝐑
�̈�𝐦
] +   

[
𝐈 𝐗𝐑

𝐓

𝟎 𝐗𝐋
𝐓] [

𝐊𝐑𝐑 𝐊𝐑𝐋
𝐊𝐋𝐑 𝐊𝐋𝐋

] [
𝐈 𝟎
𝐗𝐑 𝐗𝐋

] [
𝐮𝐑
𝐪𝐦
] = [

𝐈 𝐗𝐑
𝐓

𝟎 𝐗𝐋
𝐓] [

𝐟𝐑
𝟎
]. (23) 

By simplifying, the equation of motion (9) becomes 

[
𝐌𝐑𝐑 + 𝐗𝐑

𝐓𝐌𝐋𝐑 + 𝐗𝐑
𝐓𝐌𝐋𝐋𝐗𝐑 𝐌𝐑𝐋𝐗𝐋 + 𝐗𝐑

𝐓𝐌𝐋𝐋𝐗𝐋
𝐗𝐋
𝐓𝐌𝐋𝐑 + 𝐗𝐋

𝐓𝐌𝐋𝐋𝐗𝐑 𝐈
] [
�̈�𝐑
�̈�𝐦
] +  

  

[
𝐊𝐑𝐑 + 𝐊𝐑𝐋𝐗𝐑 𝟎

𝟎 𝚲
] [
𝐮𝐑
𝐪𝐦
] = [

𝐟𝐑
𝟎
].   (24) 

This is the final form of the dynamic equation of motion for the Craig-Bampton method, 

when generalized mass matrix is normalized, damping is ignored and only boundary 

forces are considered, which is done for most practical problems (Haile 2000, p. 5 – 17). 

For the JuliaFEM implementation equation (24) is expressed as: 

[
𝐌𝐁𝐁 𝐌𝐁𝐌

𝐌𝐌𝐁 𝐌𝐌𝐌
] [
�̈�𝐑
�̈�𝐦
] + [

𝐊𝐁𝐁 𝐊𝐁𝐌
𝐊𝐌𝐁 𝐊𝐌𝐌

] [
𝐮𝐑
𝐪𝐦
] = [

𝐟𝐑
𝟎
],  (25) 

where  

𝐌𝐁𝐁 = 𝐌𝐑𝐑 + 𝐗𝐑
𝐓𝐌𝐋𝐑 + 𝐗𝐑

𝐓𝐌𝐋𝐋𝐗𝐑,  

𝐌𝐁𝐌 = 𝐌𝐑𝐋𝐗𝐋 + 𝐗𝐑
𝐓𝐌𝐋𝐋𝐗𝐋,  

𝐌𝐌𝐁 = 𝐗𝐋
𝐓𝐌𝐋𝐑 + 𝐗𝐋

𝐓𝐌𝐋𝐋𝐗𝐑,  

𝐌𝐌𝐌 = 𝐈,  

𝐊𝐁𝐁 = 𝐊𝐑𝐑 + 𝐊𝐑𝐋𝐗𝐑,  

𝐊𝐁𝐌 = 𝟎,  
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𝐊𝐌𝐁 = 𝟎,  

𝐊𝐌𝐌 =  𝚲.  
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4 TEST MODEL 

The usage of the algorithms is demonstrated with example calculations that are 

performed to a simple model, although the presented algorithms are more commonly 

used to simplify large and complex model analyses. A simple example makes it easier 

to keep up with the demonstration. 

The example model is a 1-dimensional rod that is divided into four elements and five 

nodes. The rod is fixed at node 1 and it also has four roller supports at nodes 2 – 5. 

Although the rollers are not necessary at the static reduction since the model is a rod, 

they are included in the model since in some commercial FEM programs the rod 

dividing nodes are interpreted as joints so that horizontal support is needed when 

performing the dynamic analysis. Because of these supports, node 1 has 0 degrees of 

freedom and nodes 2 – 5 have 1 DOF. There is a horizontal driving force at node 5. The 

model is presented in Figure 1 where the length of one element is L = 0.25 and the 

driving force at node 5 is F = 1 N. 

 

 

Figure 1. The model. 

 

The stiffness and mass matrices of the model are the following: 

𝐊 =

[
 
 
 
 
1 −1 0 0 0

−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1
0 0 0 −1 1]

 
 
 
 

,  (26) 
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𝐌 =

[
 
 
 
 
1 0 0 0 0
0 2 0 0 0
0 0 2 0 0
0 0 0 2 0
0 0 0 0 1]

 
 
 
 

.   (27) 

Before model reduction, the static and modal analyses are performed normally for the 

model. Then the model reduction methods are performed with the implemented 

functions and the analyses are performed with the reduced matrices. The results of both 

analyses are compared. 

4.1 Static analysis 

For the example model the equation (1) is the following without considering boundary 

conditions: 

[
 
 
 
 
1 −1 0 0 0

−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1
0 0 0 −1 1]

 
 
 
 

{
 
 

 
 
0
1
2
3
4}
 
 

 
 

= 

{
 
 

 
 
−1
   0
   0
   0
   1}
 
 

 
 

, (28)

  

where the 𝐮 -vector is the solution of the equation (1). Only the displacements 𝐮𝟏 and 

𝐮𝟓 are globally meaningful. The static condensation will remove the undesired DOFs 

and give the same result with much smaller matrices. 

4.2 Modal analysis 

The global stiffness and mass matrices for the example model, when the boundary 

conditions are taken to account, are the following: 

𝐊 = [

2 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 1

],  (29) 
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 𝐌 = [

2 0 0 0
0 2 0 0
0 0 2 0
0 0 0 1

].   (30) 

 
 
Assuming the vibration is harmonic: 

𝐮 =  𝐱𝑠𝑖𝑛(ω𝑡),    (31)
  

 

the equation of motion (9) will give 

𝐊𝐱 =  ω2𝐌𝐱 ,   (32) 

which is now in the form of an eigenvalue problem which solutions are 𝐱 as the 

eigenmodes of the model and ω as the eigen angular frequencies which are the square 

roots of the model’s eigenvalues. For the example model the eigenvalues calculated 

from (32) are the following:  

{
 
 

 
 𝜔1

2 = 0.0761

𝜔2
2 = 0.6173

𝜔3
2 = 1.3827

𝜔4
2 = 1.9239

 .   (33) 

The natural frequencies can now be calculated as following: 

 

𝑓n =
√ωn

2

2π
 ,    (34) 

where 𝑓n are natural frequencies. Equation (34) gives the following frequencies for the 

example model: 

 

{

𝑓1 = 0.110
𝑓2 = 0.313
𝑓3 = 0.469
𝑓4 = 0.553

   [𝐻𝑧].   (35) 
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The dynamic reduction will condensate the stiffness and mass matrices of the model and 

give fewer eigenmodes, but the new modes are among the original low-frequency 

response modes. The dynamic reduction for the model is presented in chapter 5.2. 
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5 REDUCTION METHODS APPLIED TO THE EXAMPLE 

MODEL 

Now the Guyan reduction and the Craig-Bampton method introduced in chapter 3 will 

be applied to the example model. 

The the substructuring will remove the nodes 2 – 4 and there will be only one element 

left – the superelement. The new structure is presented in Figure 2. The new variables of 

the model are the same except the length L of the element, since it now refers to the 

length of the whole rod. The new length L = 1.0. Detailed steps of the process leading to 

this superelement are presented in the following chapters 5.1 and 5.2. 

 

 

Figure 2. The reduced model. 

 

5.1 Guyan reduction applied to the example model 

The function of ModelReduction.jl to perform the Guyan reduction is presented in 

appendix 2. The following example of using the function is Julia syntax. 

To use the function, first the ModelReduction.jl package must be installed. Also the 

following variables need to be defined. the Guyan reduction is applied by simply calling 

the guyan_reduction() function. 

julia> Pkg.add(“ModelReduction”) 
 
julia> using ModelReduction 
 
julia> K = [ 1 -1  0  0  0; 
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            -1  2 -1  0  0; 
             0 -1  2 -1  0; 
             0  0 -1  2 -1; 
            0  0  0 -1  1] 

  

julia> m = [1, 5] 
 

julia> s = [2, 3, 4] 
 
julia> Kred = ModelReduction.guyan_reduction(K, m, s) 
2x2 ArrayFloat64,2: 
  0.25 -0.25 
 -0,25  0.25 , 

 
The function gives one reduced matrix as output. Kred is the reduced stiffness matrix 

of the model.  

5.1.1 Guyan reduction by hand 

For the example model presented in chapter 4 the submatrices in (2) will be the 

following since only u1 and u5 are desired DOFs. Figure 3 shows how the model’s 

stiffness matrix (26) is divided into submatrices by the desired degrees of freedom. 

𝐊𝐌𝐌 = [
1 0
0 1

],   (36) 

𝐊𝐌𝐒 = [
−1 0 0
0 0 −1

],   (37) 

𝐊𝐒𝐌 = [
−1 0
0 0
0 −1

],   (38) 

𝐊𝐒𝐒 = [
2 −1 0

−1 2 −1
0 −1 2

]. . (39)

  



  23 

 

Figure 3. Dividing K into submatrices. 

 

Now equation (8) becomes the following: 

𝐊𝐑𝐄𝐃𝐔𝐂𝐄𝐃 = [
1 0
0 1

]  − [
−1 0 0
0 0 −1

] ∙ [
2 −1 0

−1 2 −1
0 −1 2

]

−1

∙ [
−1 0
0 0
0 −1

], (40) 

which gives 

𝐊𝐑𝐄𝐃𝐔𝐂𝐄𝐃 = [

1

4
−
1

4

−
1

4

1

4

].   (41) 

 

The equation (1) is the following for 𝐊𝐑𝐄𝐃𝐔𝐂𝐄𝐃 and it should give the same answer for 

the desired DOF displacements as the original K did in (2): 

𝐊𝐑𝐄𝐃𝐔𝐂𝐄𝐃 {
𝐮𝟏
𝐮𝟓
} = {

𝐟𝟏
𝐟𝟓
}.   (42) 

Implementing 𝐊𝐑𝐄𝐃𝐔𝐂𝐄𝐃, u and f to the equation (42) gives 

[

1

4
−
1

4

−
1

4

1

4

] {
0
4
} = {

−1
   1
}.   (43) 

   

The equation is true and as it can be noticed the result is equal to the result in (28) 

except that the unnecessary zeros in u and f are gone. The results are also the same as 

the results the implemented Guyan reduction function gave in 5.1. Displacements in 
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node 1 and 5 are equal in all calculations and they are covering all the necessary 

displacement information needed in the model. 

5.2 The Craig-Bampton method applied to the example model 

The function of ModelReduction.jl to perform the Craig-Bampton method is presented 

in appendix 3. Next it is demonstrated how to use the function. The reduction is 

performed to the example model presented in chapter 4. The following example of using 

the function is Julia syntax. 

First the ModelReduction.jl package must be installed (if it is not yet installed) and 

following variables need to be defined. The Craig-Bamptn method is applied by simply 

calling te craig_bampton( ) function. 

julia> Pkg.add(“ModelReduction”) 
 
julia> using ModelReduction 
 
julia> K = [2 -1  0  0; 
           -1  2 -1  0; 
            0 -1  2 -1; 

0 0 -1  1] 
 

julia> M = [2 0 0 0; 
            0 2 0 0; 
            0 0 2 0; 
            0 0 0 1] 
 
julia> r = [4] 

julia> l = [1, 2, 3] 

julia> n = 1 

julia> Mred, Kred = ModelReduction.craig_bampton(K, M, r, l, n) 
([2.75 -1.20711; -1.20711 1.0], [0.25 0.0; 0.0 0.292893]), 

where K = original stiffness matrix, M = original mass matrix, r = retained degrees of 

freedom, l = internal degrees of freedom, n = the number of the internal modes to keep. 

Users may choose r, and l the way they wish and n so that n ≤ length of l, 

remembering that the size of these variables will affect the size of the result matrices. 
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The function gives two matrices as a result. Mred is the reduced mass matrix and Kred 

is the reduced stiffness matrix of the model. The sizes of the reduced matrices are 

(r+n)x(r+n). The number of modes that is to be computed from the reduced matrices 

is r+n. 

Table 1 shows the example model’s natural frequencies computed with the reduced 

matrices with different values of n compared to the frequencies computed with the 

original stiffness and mass matrices. 

Table 1. The natural frequencies computed with the original K and M compared to the 

frequencies computed with Kred and Mred with different sizes of n. 

Mode Original, f [HZ] Reduced, n = 3 Reduced, n = 2 Reduced, n = 1 

1 0.110  0.110 0.110 0.110 

2 0.313 0.313 0.314 0.343 

3 0.469 0.469 0.486 - 

4 0.553 0.553 - - 

 

Even though the example model is quite small, Table 1 shows that the error between the 

frequencies calculated with the reduced matrices and the original matrices increases 

when n decreases. Eigenvalues of the reduced system are always higher than those of 

the original system. The quality of the eigenvalue approximation depends highly on the 

location of points preserved in the reduced model and therefore the quality of the 

eigenvalue approximation will decrease as the mode number increases (Avitabile 2017, 

p. 19). 

Also, it can be noticed that the error seems to be growing with the mode number.  Since 

only the first few modes are usually the most crucial, it would be reasonable to simply 

drop the last modes to get the most reliable results. 
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6 CONCLUSIONS 

The condensed stiffness and mass matrices give the same results as the original matrices 

which proves that the implemented algorithms work correctly at least on small models. 

The inaccuracy of the dynamic condensation increases when the number of internal 

modes to keep decreases. The lowest frequencies calculated with the condensed 

matrices are the most accurate. 

The next step would be to test the algorithms on larger models. Also damping could be 

included in the dynamic condensation. 
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7 SUMMARY 

The goal of this work was to implement the static and dynamic condensation algorithms 

to JuliaFEM which is an open source finite element method solver written in the Julia 

language. The implemented algorithms were Guyan reduction and the Craig-Bampton 

method.  

The JuliaFEM concept was introduced briefly. Theory of model reduction was 

presented and the implemented functions were tested on a small model. Instructions for 

using the implemented algorithms were also included. The code itself is included as 

Appendices. 

The original stiffness and mass matrices give the same results in both static and 

dynamic analysis as the reduced matrices which proves that the code works correctly.  

The code should be tested further on larger models. Also damping could be included in 

the dynamic condensation now that it is proven to work. 
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APPENDICES 

Appendix 1: Proof of (21) 

Appendix 2: JuliaFEM implementation of Guyan reduction 

Appendix 3: JuliaFEM implementation of the Craig-Bampton method 

  



  Appendix 1 

Proof of (21) 

Equation (21) claims that 

𝐊𝐋𝐋
−𝟏 = 𝐗𝐋𝚲

−𝟏𝐗𝐋
𝐓    

Proof: 

             (20) ⇒ 𝚲 = 𝐗𝐋
𝐓𝐊𝐋𝐋𝐗𝐋  

⇒ 𝐊𝐋𝐋 = 𝐗𝐋𝚲𝐗𝐋
𝐓  ‖( )−𝟏  

⇒ 𝐊𝐋𝐋
−𝟏 = (𝐗𝐋𝚲𝐗𝐋

𝐓)−𝟏  

⇒ 𝐊𝐋𝐋
−𝟏 = (𝐗𝐋

𝐓)−𝟏𝚲−𝟏𝐗𝐋
−𝟏  

  ⇒ 𝐊𝐋𝐋
−𝟏 = 𝐗𝐋𝚲

−𝟏𝐗𝐋
𝐓   ∎ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  Appendix 1 

JuliaFEM implementation of Guyan reduction 

 
1 # This file is a part of JuliaFEM. 

2 # The license is MIT: see  

3 # https://github.com/JuliaFEM/ModelReduction.jl/blob/master/LICENSE 

4 """ 

5 guyan_reduction(K, m, s) 

6 Reduce the stiffness matrix by Guyan Reduction. K = original 

stiffness matrix, m = master nodes, s= slave nodes. 

7 """ 

8 function guyan_reduction(K, m, s) 

9     Kred = K[m,m] - K[m,s]*inv(K[s,s])*K[s,m] 

10     return Kred 

11 end 

  



  Appendix 3 

JuliaFEM implementation of the Craig-Bampton method 

  
1 # This file is a part of JuliaFEM. 

2 # License is MIT: see  

3 #https://github.com/JuliaFEM/ModelReduction.jl/blob/master/LICENSE 

4 """ 

5 craig_bampton(K, M, r, l, n) 

6 Reduce the stiffness and mass matrices with the Craig-Bampton  

7 method. K = original stiffness matrix, M = original mass matrix, 

8 r = retained DOF:s, l = internal DOF:s, n = the number of modes  

9 to keep. 

10 """ 

11 function craig_bampton(K, M, r, l, n) 

12     Krr = K[r,r]; Krl = K[r,l]; Klr = K[l,r]; Kll = K[l,l] 

13     Mrr = M[r,r]; Mrl = M[r,l]; Mlr = M[l,r]; Mll = M[l,l] 

14     w2 = eigvals(Kll,Mll); X1 = eigvecs(Kll,Mll) 

15     X = X1[:,1:n]; V = X1'*Kll*X1; Z = 10e-6 

16     Kmm = X'*Kll*X; b = -X*inv(Kmm)*X'*Klr 

17     B = -X1*inv(V)*X1'*Klr; Kbb = Krr + Krl*B 

18     Kbm = (Krl + b'*Kll)*X; Kmb = X'*(Klr + Kll*b) 

19     Mbb = Mrr + Mrl*B + B'*Mlr + B'*Mll*B; Mmm = X'*Mll*X 

20     Mbm = (Mrl + b'*Mll)*X; Mmb = X'*(Mlr + Mll*b) 

21     Kbm[abs.(Kbm) .< Z] = 0.0; Kmb[abs.(Kmb) .< Z] = 0.0 

22     Mred = [Mbb Mbm; Mmb Mmm]; Kred = [Kbb Kbm; Kmb Kmm] 

23     return Mred, Kred 

24 end 
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