
FACULTY OF INFORMATION TECHNOLOGY AND ELECTRICAL ENGINEERING

Lauri Suutari
Joona Holappa

FUTURE PROOFING LOVELACE SYSTEM
DEVELOPMENT ENVIRONMENT

Bachelor’s Thesis
Degree Programme in Computer Science and Engineering

June 2022

Suutari L., Holappa J. (2022) Future Proofing Lovelace System Development
Environment. University of Oulu, Degree Programme in Computer Science and
Engineering, 44 p.

ABSTRACT

Software development methods and tools improve continuously to improve the
development process. Modern software architecture has paved the way for
microservice based architecture. The main point of microservice architecture is to
split a system to small independent parts that can be deployed separately without
affecting the other parts of the system. With microservices and tools, a system can
achieve fault tolerance, scalability and faster release cycle with automation. The
use of container technologies has increased and popularized with microservices,
because containers simplify the deployment process.

In this project, a modern development environment was introduced to help
future development of a Virtual Learning Environment. The development
environment included a public repository, containers, a container registry,
container orchestration, server configuration and automated deployment. After
successful implementation the simple mock up system was tested by smoke, load
and spike testing methods. Overall the implementation and configuration was
successful, however for implementing it for the Lovelace system in University of
Oulu’s environment, some configuration and tool choices may need to be changed.

Keywords: Containers, container registry, container orchestration, Docker,
Kubernetes, Ansible, CI/CD, automation

Suutari L., Holappa J. (2022) Lovelace järjestelmän modernisointi tulevaisuuden
kehitykseen. Oulun yliopisto, Tietotekniikan tutkinto-ohjelma, 44 s.

TIIVISTELMÄ

Ohjelmistokehityksen tavat ja työkalut kehittyvät jatkuvasti helpottamaan, sekä
parantamaan ohjelmiston kehitysprosesseja. Moderni ohjelmistoarkkitehtuuri
on luonut tietä mikropalveluarkkitehtuurille, jonka päätarkoituksena on pilkkoa
järjestelmä pieniin lähes itsenäisiin osiin, joita voidaan erikseen kehittää
vaikuttamatta järjestelmän muihin osiin. Mikropalveluiden ja muiden työkalujen
avulla järjestelmä saavuttaa vikasietoisuutta, skaalautuvuutta sekä nopeamman
julkaisusyklin automaation ansiosta. Konttiteknologioiden käyttö on myös
yleistynyt mikropalveluiden myötä, jotka helpottaa ohjelmiston toimittamista
servereille. Tämän projektin aikana implementoitiin moderni kehitysympäristö
helpottamaan jatkokehitystä Lovelace systeemille.

Kehitysympäristö sisälsi julkisen säilön, kontin, kontti rekisterin, konttien
orkesterointi työkalun, serveri configuroinnin ja automaattisen sijoituksen.
Onnistuneen implementaation jälkeen, yksinkertainen järjestelmä testattiin
savu, kuorma ja piikki testi metodeilla. Kokonaisuudessaan implementaatio
ja configurointi onnistuivat, mutta Lovelace implementaatio Oulun Yliopiston
ympäristöön vaatii configurointi muutoksia ja mahdollisesti muutamien
työkalujen vaihtamista.

Avainsanat: Kontti, kontti arkisto, kontti orkestrointi, mikropalvelu, Docker,
Kubernetes, Ansible, CI/CD, automatisointi

TABLE OF CONTENTS

ABSTRACT
TIIVISTELMÄ
TABLE OF CONTENTS
FOREWORD
LIST OF ABBREVIATIONS AND SYMBOLS
1. INTRODUCTION... 8
2. LOVELACE ... 9

2.1. Current Technologies Used in Lovelace.. 9
2.1.1. Django.. 9
2.1.2. RabbitMQ... 9
2.1.3. Redis .. 10
2.1.4. Celery... 10
2.1.5. PostgreSQL .. 10
2.1.6. NFS.. 11
2.1.7. Apache ... 11
2.1.8. Red Hat Enterprise Linux .. 11

2.2. Issues with the Current Lovelace Environment...................................... 11
2.2.1. Development Challenges ... 11
2.2.2. Checker .. 12

3. RELATED WORK.. 13
3.1. Virtual Learning Environments .. 13
3.2. Microservice Architecture ... 14
3.3. Automation .. 15
3.4. Continuous Integration and Continuous Deployment............................. 16

4. TECHNOLOGIES .. 17
4.1. Configuration Tools .. 17

4.1.1. Jenkins ... 17
4.1.2. Ansible ... 18
4.1.3. Chef ... 18
4.1.4. Puppet .. 19

4.2. Containers .. 20
4.2.1. Docker.. 20
4.2.2. Containerd .. 20
4.2.3. CRI-O .. 20

4.3. Container Registries.. 21
4.3.1. Docker Hub .. 21
4.3.2. Github Packages.. 21
4.3.3. Private Registries... 21

4.4. Container Orchestration .. 21
4.4.1. Kubernetes.. 22
4.4.2. K3s and K3d ... 22
4.4.3. Docker Swarm .. 22

4.5. Use Cases... 23

4.5.1. Netflix .. 23
4.5.2. Apex Legends ... 23

4.6. Requirements ... 23
4.7. Chosen Tools and Technologies ... 24
4.8. Risk Assessment ... 25

5. IMPLEMENTATION .. 26
5.1. Code .. 26
5.2. Docker ... 27
5.3. Github and Pipelines ... 27
5.4. Docker Hub.. 28
5.5. Ansible .. 28
5.6. Kubernetes ... 28
5.7. Networking .. 28
5.8. Risk Assessment ... 29

6. EVALUATION ... 30
6.1. Evaluation Plan... 30
6.2. Testing the Cluster for Scalability and Fault Tolerance 30

6.2.1. Input... 30
6.2.2. Smoke Testing .. 30
6.2.3. Load Testing ... 31
6.2.4. Stress and Spike Testing .. 31
6.2.5. Desired Output.. 32
6.2.6. Results.. 33

6.3. Data Analysis ... 34
6.3.1. Expected Outcome Vs Reality.. 34
6.3.2. Major Problems, Shortcomings and Flaws 34

7. DISCUSSION .. 35
7.1. The Change .. 35
7.2. Difficulties ... 35
7.3. Future Work ... 36
7.4. State of the Art ... 36

8. CONCLUSION .. 37
9. REFERENCES ... 38
10. APPENDICES.. 41

10.1. Commands ... 41
10.2. Contributions.. 42
10.3. Flaskapi ... 44

FOREWORD

This Bachelor’s thesis was created for University of Oulu’s course Applied Computing
Project 1, 521041A. We want to thank Mika Oja and Timo Ojala for supervising and
inspecting this work. We would also like to thank Miiro Kuosmanen who acted as the
project manager and was heavily involved in the development of this project.

Oulu, June 7th, 2022

Lauri Suutari
Joona Holappa

LIST OF ABBREVIATIONS AND SYMBOLS

CSE Computer Science and Engineering
VLE Virtual Learning Environment
CI Continuous Integration
CDE Continuous Delivery
CD Continuous Deployment
DevOps Development and Operations
IaaS Infrastructure as a Service
STEM Science, technology, engineering and mathematics
OS Operating System
VUs Virtual Users

8

1. INTRODUCTION

New software development technologies and tools are popping up constantly and
when choosing the best tools for your development, thorough research must be
conducted. High availability, performance and fault-tolerance are some key factors
most companies strive to have in their software. Some tools and technologies are solely
created to make sure that if one instance of the service fails, the whole service does not
crash. Others were created to make the utilization of some components easier for the
software developer. Many companies aim to automate procedures to maximize output
since most services can be automated for better results [1]. These definitions fall under
microservice orientated architecture solutions. Microservices aim to allow developers
to deploy code changes independently with shorter intervals, more reliability, fault-
tolerance and efficiency. [2]

In its current state, updating Lovelace is difficult due to the current monolithic
architecture. This causes current updates to practically revolve around simple bug
fixing and the bigger updates have to be done when the course is on hiatus. The
benefits of using microservice architecture will help Lovelace overcome some of the
current issues.

This thesis focuses on showcasing how different technologies could be used to
automate the process of application development. The thesis will provide an alternative
way to deploy the applications which are in line with the modern ’agile’ mentality. The
motivation behind the project was to introduce different state of the art technologies
that could be used in the modernization of Lovelace, which is a virtual learning
environment.

9

2. LOVELACE

Lovelace is a web-based Virtual Learning Environment used for programming courses
such as Elementary Programming, Programmable Web and Computer Systems. It is
mainly used by the Faculty of Information Technology and Electrical Engineering in
University of Oulu. It is based on Django, which is a web framework that uses Python
programming language. In addition to Django, Lovelace also uses technologies such
as Apache, Nginx, Redis, Postgres, RabbitMQ, NFS and python modules like Celery.
Figure 6 shows the high level architectural design of Lovelace system with mentioned
technologies.

Figure 1. Lovelace system architecture

2.1. Current Technologies Used in Lovelace

2.1.1. Django

Django is one of the most popular high-level web frameworks and it focuses on
rapid development with clean and reusable templates due to its model-template-
view architectural pattern. Lovelace uses Django framework for developing the user
interface and backend logic. [3]

2.1.2. RabbitMQ

Modern commonly used open source messaging broker based originally on Advanced
Message Queuing Protocol(AMQP). RabbitMQ supports multiple other messaging
protocols like Streaming Text Oriented Messaging Protocol(STOMP) and MQ
Telemetry Transport(MQTT). Lovelace uses RabbitMQ to queue messages for the
Checker. [4]

10

2.1.3. Redis

Remote Dictionary Server or Redis for short is a fast, open source in-memory data
structure store most commonly used as a database, message broker and cache. Low
latency and high throughput data access is achieved because all the data handled by
Redis is stored in memory. Redis also allows the usage of flexible data structures such
as strings, lists and sets, to name a few. Because developers can use a simple command
structure, Redis enables developers to write fewer lines of code.

It decreases latency, increases throughput and eases the load on the main
PostgreSQL database. This is achieved because Redis stores frequently used objects in
memory for fast access. If the accessed object is not found in cache it is queried from
the Database. [5]

In Lovelace Redis is used to transmit results of student code checking from Checker
to main server and it works as the cache of the system.

2.1.4. Celery

Celery is a open source Python-based application that handles task queues with focus
on real-time processing. Task queues are mechanisms that distributes work across
threads or machines. This enables multiprocessing of tasks asynchronously (in the
background) or synchronously.

Celery uses workers, which are task-based servers on the background to complete
long-running tasks so that the main server can operate at optimal speed. Celery
workers pick tasks from the queue to process. This is useful because the modern
web users have high expectations regarding the loading times of web pages. At worst
case scenario long-running tasks could slow down the loading time of the website by
minutes. Essentially Celery helps in the horizontal-scaling of the system.

Instagram uses Redis as a cache for user feed, RabbitMQ as the message broker
and Celery as a task manager that delivers the posts to the user’s view. Django-celery
brings the possibility for Celery integration to Django framework. [6]

2.1.5. PostgreSQL

PostgreSQL is a powerful open source database which contains many features. It is a
Relational Database Management System (RDMBS), which means it stores the data
as tables. PostgreSQL is currently one of the most popular RDMBS’s because it is
compatible with many of the most popular programming languages, works on popular
operating systems and it has good scalability. Lovelace uses PostgreSQL to store data.
For example, Apple, IMSB and Instagram use PostgreSQL as the company’s databases.
[7]

11

2.1.6. NFS

Network File System (NFS) is used in Lovelace to allow the checker to access to the
code files that are to be executed for checking purposes. [8]

2.1.7. Apache

Apache is the dominating web-server for developers, hosting providers and website
owners. Web server is responsible for accepting HTTP requests and responding to
them with HTTP responses, they have a pivotal role in all the user interactions on web-
based applications. Web servers offer access to documents stored at them to the web
clients with the help of a web browser. Apache uses TCP/IP protocol to communicate
from clients to servers over the network. It handles the process requests and delivers
web assets and content via the HTTP protocol. Apache uses PHP as the programming
language that creates dynamic web content, but other modules (mod wsgi) allow it
to be used it different languages such as Python. Apache is still the most used web-
server, but others have started gaining popularity among developers. One of those
being Nginx, which was designed to handle high traffic websites. Apache is still the
most compatible web-server across all the web software. [9]

2.1.8. Red Hat Enterprise Linux

Red Hat Enterprise Linux (RHEL) is a very popular open source enterprise Linux
operating system. One feature of RHEL is to reduce issues in the deployment. RHEL
is very reliable and secure. Lovelace uses RHEL the operating system. Yellowdog
Updater Modified(YUM) is the most relevant package management tool used in
RHEL. YUM allows easy management of packages in Linux via the command line.
YUM is dependent on Redhat Pacakage Manager (RPM) which is another popular
package management tool used in RHEL. The biggest difference between YUM and
RPM is the possibility to control dependency resolution that only YUM can do. Both
of them are good tools for RHEL operating systems to install, remove and update
packages. Dandified YUM (DNF) is currently the gaining reputation as it resolves the
slowness that is caused by the iterative dependency resolution by using a dependency
resolver libsolv. [10]

2.2. Issues with the Current Lovelace Environment

2.2.1. Development Challenges

The original system named Raippa was created in 2008 and by 2011 it was updated
to Raippa 2.0 as a master’s thesis project. In 2015 the system’s layout was changed,
new features were added and it was renamed to Lovelace. The current system uses
mostly the same code, software architecture and technologies as back then. The current
system is very monolithic, which means it has a large mainframe with no modularity.

12

Sometimes monolithic applications are better for the system, but the biggest difficulty
in the current system comes from the fact that larger updates cannot be done during
the active period of courses, and the fixes during those times revolve around small bug
fixes and User Interface changes.

In the 14 years after the creation of Lovelace lots of new technologies have emerged
that could be used to make the development environment more modular and code
changes to the main system easier. The rise of CI/CD mentality in software production
has also increased the number of options that could make the overall development
environment more modern. This is also why there isn’t a proper deployment process
or testing pipelines for the current system. The current deployment process is very
tedious, since the documentation is outdated, with many of the dependencies not
developed since the original launch of Lovelace. Testing the environment is hard,
because there are a lot of different scenarios that could happen in a VLE system like
Lovelace. Technologies that help address these problems will be introduced in this
project to give examples of how certain tasks in the Lovelace environment could be
handled differently.

2.2.2. Checker

The current student code checking system, has too many privileges in the overall
system. This is due to the Checkers needing to know the architecture of the main
server’s database to find a list of required files and executable commands. In addition
to this it needs these privileges to write the results to the database. This means that
the directory that the Checker is in has to be restricted so that the whole environment
doesn’t get injected in case of an outer threat. The checker processes privileges are
lowered in two steps. In the first step the checkers only have the privileges to create
temporary checking folders, find the required files and commands for the checking.
After the second step the checker can only read the temporary folders and Python
libraries and it only has the privileges to write and execute within those folders.

Because Checker has many dependencies, code changes made elsewhere can
indirectly affect the Checker as well. Currently there are two checker processes
running on the same server. This means that if the server crashes, both of the checkers
will crash as well. Furthermore, in the current system there isn’t any process to check
if the checkers are running, so in case a crash happens the VLE will in effect be unable
to work until somebody notices this and informs the system administrator and they
have to manually restart the checker server.

13

3. RELATED WORK

This section elaborates some key words and technologies that are related to this
thesis. The sections aim at giving a basic understanding of what Lovelace is and what
technologies are currently in use. It will start by introducing what a virtual learning
environment is and then go into more specifics regarding the architecture of Lovelace.

3.1. Virtual Learning Environments

Ever since the start of the Digital Revolution the demand for competent programmers
and developers has been on the rise. One of the most challenging part about
programming is how to teach and learn it. One of the modern ways of teaching
programming is via virtual learning environments.

The amount of data to be processed in these virtual learning environments is
increasing constantly. It is vital that the deployment and configuration of the web
servers gets automated to minimize the effort needed to get the web servers installed
and configured again due to any reason.

A virtual learning environment (VLE) is a collection of integrated tools used to
aid in online learning on a web-based platform. With VLE teachers can interactively
teach courses via a distance learning format. The need of proper virtual learning
environments has risen greatly during the COVID-19 pandemic due to the need of
social distancing [11]. That is not to say that there has not already been a virtual
learning environment in use, but rather that the need of keeping the virtual learning
environment up to date has risen immensely. For example, the commitment from
professors on updating the information, and monitoring the students’ learning in the
platform is required. This added with the fact that one of the most important aspects
in regards to developing a teaching tool is to have a clear image of the end users are
using the platform for. Different types of online learning environments need a different
approach to the architecture. When the VLE is aimed at teaching programming, the
developer(s) can expect the end user to be considerably fluent in the technological tools
affiliated with the VLE.[12] VLEs also offer the courses to have a larger capacity. The
capacity of students allowed on the course is theoretically only limited by the VLE’s
server capacity. [13]

To ensure that the learning does not suffer when being done in a VLE compared to a
physical environment, proper designing of the VLE is crucial. This designing process
includes that the facet in charge of the VLE has the proper knowledge on how to build
and maintain the VLE. The possibilities that come through the virtualization of courses
can play a role in the students’ performance [14] and therefore it is of importance
for the developers of the VLE to choose the correct tools for it. For example, the
deployment of the web server can be done via microservices. Microservices are
services that can be deployed solely without needing to deploy the whole web server
again. When changing from a monolith architecture to microservice architecture the
singular parts need to be decoupled so that the updating, configuring and re-deploying
can happen without major issues. [15]

14

Figure 2. The differences between Monolithic- and Microservice Architectures

3.2. Microservice Architecture

Monolithic architecture in software development means that the application runs on a
single code base. This means that it is composed of one piece and all the components
of the program are interdependent and interconnected to each other. To update an
application created in this manner, you may have to rewrite code unrelated to the
update or even the whole application. Applications designed with this approach have to
be fully deployed every time there is a change to the code. On the other hand we have
Microservice Architecture, which focuses on dividing the application into multiple
services - microservices. Microservice architecture has many upsides to it such as
reduced risk of negative changes within other microservices when deploying new code.
These microservices can be tested, developed, scaled and deployed independently,
which increases the efficiency and speed of production. As long as there is a common
interface for communication between the microservices, the programming language
between them can also be different.

Microservices can be used in Virtual Learning Environments to separate different
functions of the service into smaller sections. In the STIMEY platform, which was
created as an e-learning platform for STEM students, they divided the web-service
into microservices such as user profile, activities dashboard, messaging service and
community section. The communication between these microservices was handled
by calling their respective REST-API(s). The microservices were deployed in Docker
containers, which increase failure safety, since the containers were independent to each
other. Maintaining an own solution to microservice architecture and container handling
is very strenuous. At the time this report was written many open-source alternatives
already exist. One such alternative is Kubernetes, which is a platform for managing
containerized workloads and services. [16]

Containerization is another modern solution in software development. It allows
developers to test and deploy software across environments with ease. This is achieved
because containers hold the application and all its the dependencies and configurations

15

Figure 3. Example of a Container applications and their general structure

in the same image. Containers abstract away differences between different platforms
and allow developers to run the software regardless of the differences in operating
systems. This means that a containerized application does not require other users to
download the required dependencies to execute it. Applications like Docker are used
as container hosts. Containers are similar to virtual machines, but instead of holding
a complete operating system, they use the host system’s features and resources. This
allows them to be faster and more lightweight than their virtual machine counterparts.
Netflix is one of the biggest companies that has been able to successfully migrate from
monolithic based architecture to microservices architecture. The reason Netflix opted
for the change was that the amount of data and user information was starting to outgrow
the capability of their data centers [1].

3.3. Automation

Automation can be defined as the use of technologies to reduce human involvement
which can improve the processes and their outcomes. Currently it is viewed as a
contributor for improved productivity and economic growth, however majority of the
public view automation in an anxious manner due to the fact that it has reduced the
amount of jobs in the market. In 2015 Committee for Economic Development of
Australia (CEDA) reported that automation could replace nearly 40 percent of the
Australia’s workforce in the next decade. Automation can be divided into four different
aspects of research that are redesigning of processes, deployment and maintenance of
automated systems, as a stimulant for innovation and to redefine human skills with
automation technologies. It can also be divided into three different classifications
that are fixed automation, programmed automation and flexible automation. Fixed
automation is focused on technology and machines that replace a task that consists of
a fixed sequence of actions such as painting. In contrast programmed automation is
designed to accommodate a different sequence of activities such as batch production.
Flexible automation learns and adapts to events relevant to it, for example a call center.
[17]

Automation can be used to ease the efforts needed by humans. An example of a
simple but useful automated process is the customized seat control in vehicles with
powered seat controls. When a user opens the car doors with a specific remote key,
the computer remembers the last used / preferred setup of the driver with the key and
automatically changes the seat positioning accordingly. [18]

16

3.4. Continuous Integration and Continuous Deployment

Continuous software engineering is a combination of Continuous Integration (CI),
Continuous Delivery (CDE), and Continuous Deployment (CD). And its purpose is
to develop, deploy and acquire feedback in a quick succession from the software and
the customer. Continuous integration refers to the practice where a development team
routinely merges development work. Continuous Integration in software development
practice includes automated software building and testing. Using CI aids software
companies by allowing shorter and more frequent release cycles. These factors
improve software quality and productivity. Continuous Delivery and Continuous
Deployment are very similar in nature, both make sure the application is always
passing automated tests to be in a production-ready state. This enables rapid feedback
from customers and the users. Continuous Deployment however goes even further
and continuously deploys every single change made in the code to the production
environment. This increases production speed and efficiency, since code that passes the
quality assurance tests is considered approved to production. CD also is a completely
automated practice where as CDE requires developers to manually submit and accept
the final deployment.[19]

Before Continuous Deployment (CD), it was common that software was
traditionally released every couple of months. Now in these rapidly changing markets,
it is important for the companies to frequently update their software to satisfy the needs
of the customer market. Through CD it is less likely that major bugs get published as
less changes to the source code are made at once. It is also easier to recall to the last
version that worked and then start debugging. Traditionally if there was a bug that
got past the Quality Assurance, the software had to be rolled-back and it would have
taken significantly more time to find and correct the issue as more changes had been
deployed.[20]

17

4. TECHNOLOGIES

The purpose of this project is to propose and showcase the usage of new technologies
in the next version of Lovelace. The main focus of the new technologies introduced
will be to improve the development cycle of an application by introducing containers,
automatic deployment and configuration of the application. As mentioned before
containers were brought to the project to bring portability, lower system requirements
and to bring forth a more consistent DevOps environment. A containerization platform
simplifies the managing of containers at a larger scale. These container orchestration
tools automate the deployment, scaling and networking of containers. A virtual
repository needs to be created to store the containers, this is called a container registry.
Pipelines are introduced to aid in building and deploying automation as well as bring
a CI/CD mentality in to the project. [21]

This chapter goes through the options that were considered regarding each aspect of
the project and at the end there is a conclusion on why certain tools were chosen.

Figure 4. Design plan

4.1. Configuration Tools

4.1.1. Jenkins

Jenkins is an open source automation server, which has been used for Continuous
Integration. It was created to be an integration environment for software developers to
run their applications on. Developers use Jenkins to build and test applications. Jenkins
can also be used to deploy code onto shared developer servers for easier collaboration.
The main reason for using a Jenkins server for CI/CD is that it provides concurrency
and parallelism, which are essential for CI/CD. Concurrency reduces time needed to
complete tasks such as pull requests. Jenkins supports extensible plugins and can be
integrated with nearly every tool in the CI/CD toolchain. [22]

18

For DevOps and organisations Jenkins provides the tools to build CI/CD pipelines
that enable software developer teams to quality control their code and deliver fixes and
updates to their end user through automation. Simplistically, Jenkins realises when
the source code has been edited and automatically builds it and runs tests against it.
However, running a Jenkins server can be complex and has been categorized as having
a steep learning curve.

4.1.2. Ansible

Ansible is free and open source configuration management tool developed and
maintained by Red Hat and written with Python. With Ansible the user can deploy,
configure, install software and tools among other things. Ansible uses YAML
as its language and depends on python on the deployment computer, but target
computers don’t require either of them installed, since Ansible manages nodes through
SSH. Ansible brings multiple benefits for system management by being declarative,
idempotent and agentless. Best practices for Ansible include using inventory, vaults
and playbooks when managing systems. [23]

4.1.3. Chef

Chef is commercial configuration management tool developed and maintained by
Progress and written with Ruby and Erlang. As Ruby has a steep learning curve, to use
Chef must the developer have a thorough understanding of programming as where as
in Ansible is relatively easy to learn due to YAML being human-readable. Chef uses
domain specific language for writing "recipes" for system configuration. Chef’s servers
will run on the client’s side and configuring the servers requires more knowledge. Chef
is used to automate the supplying of infrastructure. Regarding DevOps, Chef can be
used to deploy and run the servers, thus allowing continuous delivery. [24]

The architecture of Chef architecture is built from three building blocks; Chef
workstations, Chef servers and Chef nodes. The workstations are the physical locations
where the configurations are created. These need to be set up and configured locally in
order to start using Chef. The Chef server is the server which has the configuration
data, cookbooks and other relevant data stored. The server works as the middle-
man between the workstations and nodes. The workstation uses Knife, which is
a command-line tool used communicate with the server. It is the responsibility of
the server to authenticate communication between the workstations and nodes using
public-key cryptography. The Chef nodes are the client servers where the changes are
pushed to. Nodes can be for example; virtual servers or containers.

19

Figure 5. Overview of Chef

4.1.4. Puppet

Puppet is a system management tool designed to be used with Linux and Windows
operating systems. It uses a Domain Specific Language and it was created with Ruby.
It is mainly used for server management, configuration and deployment of software
in conjunction with the organization’s infrastructure. Puppet tests the deployed
environment to make sure that it is deployed correctly. There are two versions of
Puppet, Open Source Puppet and Puppet Enterprise. The first one is the basic version
that is freely available from the company’s website. The other one is a commercial
version that has additional features for more efficient management of nodes. Puppet
uses a declarative programming logic which revolves around what to do instead of how
to do it. [25]

20

Figure 6. Overview of Puppet

4.2. Containers

4.2.1. Docker

Docker is platform as a service product (PaaS) that is used as a containerization
platform. It was developed in Go programming language and it uses a client-server
architecture where the Docker client communicates with the Docker daemon, called
dockerd which listens to the clients API requests. On Windows and Mac OS Docker
Desktop is a viable graphical Docker user interface that is beginner friendly and easy
to install. On Linux operating system Docker takes advantage of the Linux Kernel’s
built in isolation features to run containers in singular instances. [26]

4.2.2. Containerd

Containerd is a popular container runtime. Container runtimes are the software
which are responsible for running the containers. They create, start, pause and
destroy containers. Containerd can also be used pull images from container registries.
Containerd was originally developed by Docker but it was later donated to the Cloud
Native Computing Foundation (CNCF). Compared to Docker, containerd only has
some features of Docker and it is not as easy to learn. Docker also still uses containerd
itself to manage and run containers so if Docker is installed, containerd is also installed
with it. [27]

4.2.3. CRI-O

CRI-O is also a very popular container runtime. It has the same features as containerd.
The key difference is that CRI-O was developed to be a container runtime for
Kubernetes. [28]

21

4.3. Container Registries

Container registries are used as part of the DevOps process. They are basically
repositories that can be used to store, manage and perform vulnerability analysis for
all your containers and container images. They can be used to automatically build and
deploy containers. [29]

4.3.1. Docker Hub

Docker Hub is Docker’s own container registry and it is the most popular container
registry in the world. Docker Hub is a cloud-based registry that also features access
to a large catalogue of open source container image repositories. One of the reasons
to use Docker Hub is because the open source repositories are reviewed by trusted
sources. The reviews include testing out the image repositories to meet quality and
security standards. Container registries work as one part in enabling CI/CD. [26]

4.3.2. Github Packages

GitHub is very popular amongst students and because of this, GitHub packages has
also become popular as an option for a container registry. The registry does provide
public repositories, but anyone who does want to pull one, will need to authenticate
with their GitHub’s Personal Access Token. [30]

4.3.3. Private Registries

For more private situations, private container registries are a possibly solution. These
bring increased security for managing and sharing the containers. Each of the
cloud providers have their own products which can be used: Microsoft Azure has
Azure Container Registry, Google has Google Cloud container registry, Amazon Web
Services has Amazon Elastic Container Registry and Docker Hub also has private
registry option. [31, 32, 33]

4.4. Container Orchestration

Using containers in production environment can easily become too complicated due
to configuration, containers crashing, shutting down etc. Container orchestration tools
try to simplify this by introducing configuration files for whole system, auto-scaling,
fault-tolerance and automating deployment. The container orchestration tools also help
with deploying the application into new environments.

22

Figure 7. Container Orchestration tool

4.4.1. Kubernetes

Kubernetes is an open source container orchestration tool. Kubernetes can be used to
manage, schedule and scale deployments of containers. Kubernetes is fault-tolerant as
it has been battle-tested by massive organisations such as Google. It was originally
developed by Google. But it is now being maintained and developed by the Cloud
Native Computing Foundation. Kubernetes is also one of the most popular container
orchestration tools and has a large active community. Kubernetes can be used to create
replicas of the application for higher availability and scaling. This information will be
typed into the YAML file. Kubernetes has an inbuilt load balancer which distributes
traffic and it also has self-healing features meaning that it will restart or create a new
container if one of them crashes. [34]

4.4.2. K3s and K3d

K3s is a lightweight distribution of Kubernetes. It was created by Rancher by
combining all of Kubernetes features into single binary file. Because it doesn’t require
much from the host system, it can even be ran in a Raspberry Pi. K3d is same as K3s,
but it is ran in a docker container. [35, 36]

4.4.3. Docker Swarm

Docker Swarm is easier to learn than K3s or Kubernetes. It does have the basic
container orchestration tool functionalities, but lacks in additional features like auto-
scaling. It is more practical for companies that are new to the container world. [26]

23

4.5. Use Cases

4.5.1. Netflix

Some major companies have started to use containerization. For instance,
Netflix, a very popular streaming service, changed from a monolith architecture to
microservices. This change in architecture allowed Netflix to update or add their
platform easier with a lesser risk of the update not working. Netflix decided to break
their application into microservices because of their rapidly growing user base, the
ease that comes with the possibility of easy rollbacks and the possibility to add new
features to the existing application faster. Netflix started moving from the monolith
architecture to a cloud-based microservice oriented in 2009. While moving all of their
elements to the cloud, Netflix also split the monolithic application into hundreds of
smaller services [1] [37]. Netflix wanted to embrace failures so they developed a tool
called Chaos Monkey to randomly turn off servers during working hours to learn more
on how to maintain the availability, recoverability and fault tolerance of the system.
[38]

4.5.2. Apex Legends

Another great example is how Respawn Entertainment and Electronic Arts handled
the launch of the free-to-play title Apex Legends. Within the first 72 hours of the
game’s launch the game had gathered a player base of 10 million people. In video
game business the initial days after launch are the most important in keeping players
engaged and playing. Ubisoft worked closely with Google Cloud as an component for
Multiplay, the game server of Apex Legends. As per Paul Manuel, the Managing
Director for Multiplay "After working with Google Cloud on Respawn’s Titanfall
2, Google cloud was the logical option for Apex Legends. With its reliable cloud
infrastructure and impressive performance during our testing phase, it was clear we
made the right choice".[39] With Multiplay and Google Cloud Respawn Entertainment
managed to scale their server capability in response to the huge amount of concurrent
players ensuring a smooth launch experience. This kind of scaling is not possible
without automation. Google cloud can be used to deploy microservices via Kubernetes
and its container services.

4.6. Requirements

The original requirements in this project were to showcase a way to use Ansible,
Kubernetes and containers to modernize Lovelace. This included demonstrating how
to use the forementioned technologies to deploy, configure, scale and containerize an
application. The requirements were deemed to be the following; be able to deploy
a simple application and all it’s dependencies with Docker Image and Ansible’s
playbook features in conjunction with configuring Kubernetes to automatically deploy
additional clones of the nodes when needed to. Kubernetes currently only supports
Docker, CRI-O and containerd as a container orchestration tool.

24

4.7. Chosen Tools and Technologies

In this project the decision of tools came from the prior experiences of the project
members, project requirements and how the tools could be integrated together to solve
the task at hand. Another factor that played a role in the decision making of the proper
tools was the availability of online documentation, tutorials and research papers. [21]

Docker was chosen as the container platform in this project since it is widely
documented and offers more features than containerd. It also has an more user-friendly
to new users as the learning curve is not as steep compared to the other tools.

Since Kubernetes fundamentally works together well with Docker containers in the
real world scenarios, the only choice to be made was which distribution of it was to be
used in the project. Like Docker, Kubernetes also is well documented.

The most difficult decision regarding the Kubernetes distribution was between K3s
and K3d. Both of them are good options for working with containers. K3d is
better suited for working with smaller environments such as Raspberry Pi, whereas
K3s is more production deployment oriented. We opted to use the K3s Kubernetes
distribution since it is highly available and light weight on the hardware which suits our
testing purposes. K3s is also one of the more easily usable distributions which already
had a lot of documentation and research online. Furthermore it supports the usage
of a SQLite database, which is the most familiar database engine within our team.
Additionally the K3s supports multiple other database engines as well, contradicting
the K8s which only supports the etcd. The requirements and support of different
databases/OS in Kubernetes distributions can be seen in figure 8. K3s can easily be
installed via a WSL Linux distribution on Windows or directly from the terminal on a
Linux operating system. As a note from now on in this project K3s will be referred to
as Kubernetes for simplicity.

Figure 8. Overview of the system requirements of different Kubernetes distributions

25

4.8. Risk Assessment

Risk Likelihood Impact
The scale of the project
becoming too large for
the given time frame

Common Major

Kubernetes configuration
complexity

Unlikely Major

Selecting the right tools
for the job

Rare Minor

As the likelihood of the scope of the project becoming too large was the most common
risk, the environment and testing were simplified at first. It is much easier to then
move into a more complex environment if the initial goals for the project are met.
Furthermore, it makes learning of the tools simpler and makes it easier to focus on
tackling the issues that could come as the project moves forward. The goal of the thesis
can be met with multiple different tools so there necessarily are no correct tools to be
selected, thus keeping the impact of the risk low. As containerization and DevOps
are principles that are gaining recognition, the risk of not finding enough scientific
research is unlikely.

26

5. IMPLEMENTATION

This chapter of the thesis goes through the implementation process on the tools that
were chosen for this project and how they were used together. Implementation plan
seen in figure 9 shows the higher level architecture design.

Figure 9. Implementation plan

5.1. Code

The implementation of this project started with creating a simple python application
that could easily be tested in our testing environment. The application responds to
HTTP post and get requests. The code can be found in the appendices of this paper.

After validating the technologies, the team started creating a flask application to
resemble the Lovelace system. This meant configuring the application to work with
Celery, Redis and RabbitMQ. The point in this was to test and validate that the chosen
technologies for containerization and deployment management would work with the
other technologies that Lovelace uses. The application used Celery workers to handle
user requests, RabbitMQ as the message broker and Redis as the database. The K3d
architecture can be seen in fig 10.

27

Figure 10. K3d architecture

5.2. Docker

A Docker image was created to automatically install all the requirements that the
application had.

FROM python : 3 . 6 − s l i m

RUN apt − g e t c l e a n \
&& apt − g e t −y u p d a t e

RUN apt − g e t −y i n s t a l l \
ng inx \
python3 −dev \
b u i l d − e s s e n t i a l

WORKDIR / app

COPY r e q u i r e m e n t s . t x t / app / r e q u i r e m e n t s . t x t
RUN p i p i n s t a l l − r r e q u i r e m e n t s . t x t −− s r c / u s r / l o c a l / s r c

COPY . .

EXPOSE 5000
CMD [" py thon " , " f l a s k a p i . py "]

5.3. Github and Pipelines

The code of the original Lovelace system is hosted in Github, therefore it was decided
to use the same environment. The repository contains the simple python code, the

28

Dockerfile for the container and Github actions which are used to build and deploy
the container to Docker Hub when a push happens to the main branch. The Github
actions contain checks that test if the new branch is in conflict with the older one. The
continuous integration that Github actions supports is an important part of the project.

5.4. Docker Hub

A private container registry was created into Docker Hub from which the created
docker images could be pulled from. The images that were located in the registry were
then automatically pulled by Kubernetes when the chosen image was edited. [26]

5.5. Ansible

To create the environment an Ansible playbook was created. The playbook was used
to install docker, Kubernetes and other requirements onto the host machine. The
playbook was created to ease the effort of the first installation process and apply
required configuration for the Kubernetes cluster. The playbook was a yaml file. After
running the playbook, the states of the packages that were to be installed were checked
to ensure that the execution was successful.

5.6. Kubernetes

To begin the testing of Kubernetes the team had setup a Docker Hub repository at
maso77/lovelaceregister that contained the Docker image, Ansible playbook and all
the other required files. The testing was done by first pulling the Docker Image from
the repository, then verifying its version with docker tag and push. After confirming
the version it was deployed and scaled manually via Kubernetes commands.

When the scaling was verified the next part was to configure Kubernetes with
the Ansible playbook to automatically deploy and scale a defined amounts of nodes
from the application. Kubernetes successfully scaled the application to three different
worker nodes as seen below. The worker nodes could then each start working on
reacting to different tasks/requests in the queue in a First in, First out methodology.

$ kubectl get deployments
NAME READY UP-TO-DATE Available AGE
simplepython-dep 3/3 3 3 68s

5.7. Networking

Firstly, a service yaml was created containing information to listen to TCP port 5000.
The service forwards traffic to the pods which then forwards it to the nodes. Above the
service there is an Ingress resource, which routes all incoming traffic to the service.

29

Ingress works as the load balancer in this thesis work. The benefits from using Ingress
for networking comes when there are more than one service in the Kubernetes cluster.
All the traffic can be routed with one Ingress resource to all the services without
needing to use multiple load balancers.

5.8. Risk Assessment

Risk Likelihood Impact
The scale of the project
becoming too large for
the given time frame

Unlikely Major

Kubernetes configuration
complexity

Unlikely Major

Selecting the right tools
for the job

Rare Minor

As the project progressed the risk of the scale of the project becoming too large became
less likely to happen, since the initial focus was on keeping it simple and adding to it
if there was time. The choice of tools was focused around experience and the available
scientific research and online documentation so the other risks were kept identical to
the proposal made in the previous part of the project.

30

6. EVALUATION

This chapter of the thesis includes how the project was evaluated. It is divided into
sections on which each element of the project is evaluated. The main goal of the
evaluation is to examine the results of some of the most likely reasons for failure.

6.1. Evaluation Plan

To test the implementation introduced in this thesis, it was decided to be evaluated
with K6. K6 is an open source testing tool that allows the user to test their system with
different testing methodologies which will be introduced in this section. The plan is to
get data on how the Kubernetes clusters react to different kinds of traffic and if it can
recover from failures/crashes.

6.2. Testing the Cluster for Scalability and Fault Tolerance

6.2.1. Input

The load testing of the Kubernetes cluster is to be done using the K6 testing tool which
is specifically designed to create a user-friendly load testing experience. There are two
versions of K6, cloud and the open source version. For our project the open source
version was chosen, because it is free to use and has plenty of documentation, while
the cloud version is still quite new. K6 testing tool enables us to test the environment
in different ways such as Smoke Test, Load Test, Soak Test and Stress Test (or Spike
Test). With these different testing methodologies the project can be tested in different
aspects. [40] These aspects include testing the environment in minimal loads, testing
the environments performance in terms of requests per second (RPS), seeing how
the environment reacts to extreme conditions and finally seeing the reliability of the
system’s performance in an extended time period. In this project the application will
be evaluated with Smoke-, Load-, Spike- and Stress Tests. All the tests come with
thresholds to automatically notify the tester if the HTTP request failure rate is over 1
percent or the HTTP request duration takes over 200 ms over 95 percent of the time.
The next subsections will quickly introduce these testing methodologies.

6.2.2. Smoke Testing

Smoke testing is beneficial to verify that the scripts are running correctly without errors
and that the system doesn’t malfunction under minimal loads. In the case of smoke test
failing, it can be concluded that either the system or the script needs to be fixed before
continuing on to the other tests. Smoke tests only test the system with 1 to 2 Virtual
Users (VUs). [41]

31

Figure 11. Example of a Smoke Test

6.2.3. Load Testing

Load testing is a controlled testing methodology that assesses how much traffic the
tested system can withstand under normal and high traffic conditions. For example, if
a website normally has 100 concurrent users using it and in at peak hours 1000 users,
then load testing can be used to determine how the system behaves under this load. In
this case it will steadily increase VU’s until the set peak and then stay at that level of
traffic for a while before scaling back down. The standard metric that load tests use is
Requests Per Second or the number of concurrent users. [42]

Figure 12. Example of a Load Test

6.2.4. Stress and Spike Testing

Contrary to the nature of load testing, stress and spike tests will measure the stability
level of the system when it is under heavy traffic in an unpredictable, chaotic way. It’s
main purpose is to determine the failure points of the system and how the system
recovers from failures. Stress testing can be used for example to test how a web
application behaves under extremely high number of concurrent users and HTTP

32

connections. These results can be observed to assess does the system save its state, can
it recover the last stable state and is a failure in the system a basis for compromised
security. Stress testing and spike testing will be concluded in the following way: ramp
up the number of VUs to 10, then suddenly spike it up to specified amount and then
level it back down to 10 before going back to 0 VUs. After each ramp up or level down
the number of VUs stays the same for a couple of minutes. [43]

Figure 13. Example of a Stress Test

Figure 14. Example of a Spike Test

6.2.5. Desired Output

The expected result of the different tests will be that under low and medium traffic
Kubernetes wont react and scale the system. The expectation is that Kubernetes will
start scaling the system when experience high-to-extreme size of traffic. Smoke testing
will be concluded in the same way as shown in figure 11. It is expected that smoke and
load tests will conclude smoothly without any issues since the number of concurrent
users is low and the system should in theory easily withstand this. The expectation
regarding stress and spike tests is that under a 1000 concurrent users there will be a
noticeable spike in the system’s resource usage and that when nearing the expected

33

limits it will start to work noticeably slower. In higher traffic situations Kubernetes
is expected to automatically scale the system. In extreme conditions the system is
expected to crash and this is done purposefully to test the current limits of the server.
During fault tolerance testing the expectation is that Kubernetes correctly recovers
from pod failure in short time and starts re-creating the crashed pods.

VUS HTTP Request Fail % HTTP Request Duration Test Duration No of Pods Crashed [Y/N]
Smoke test 1 <1% <100 ms 1min 1 N

Load test 10 <1% <100 ms 10min 1 N
Load test 100 <1% <200ms 10min 2 N

Stress test 10 <1% <200ms 10min 1 N
Stress test 100 <1% <200ms 10min 2 N
Stress test 200 <1% <200ms 10min 2 N
Stress test 400 <1% <200ms 10min 3 N
Stress test 600 <1% <200ms 10min 3 N
Stress test 800 <1% <200ms 10min 4 N

Spike test 100 <1% <200ms 1min 2 N
Spike test 200 <1% <200ms 1min 3 N
Spike test 1000 <2% <200ms 1min 4 Y

6.2.6. Results

The results of the testing process was monitored via the terminal window and a
platform called Lens. Lens is a Kubernetes platform that allows easy monitoring of the
Kubernetes clusters to show the user what is going on behind the scenes in a graphical
interface. The results were saved in a text file after each execution. Fig 15 shows what
kind of data comes out of testing.

VUS HTTP Request Fail % HTTP Request Duration Test Duration No of Pods Crashed [Y/N]
Smoke test 1 0.00% 39.42ms 1min 1 N

Load test 10 0.09% 40.24ms 10min 4 N
Load test 100 0.04% 40.63ms 10min 4 N

Stress test 10 0.07% 39.17ms 10min 4 N
Stress test 100 0.05% 40.87ms 10min 4 N
Stress test 200 0.02% 44.19ms 10min 4 N
Stress test 400 0.01% 43.85ms 10min 4 N
Stress test 600 0.01% 171.32ms 10min 4 N
Stress test 800 0.80% 328.99ms 10min 4 N

Spike test 100 0.92% 45.75ms 1min 4 N
Spike test 200 0.92% 184.33ms 1min 4 N
Spike test 400 0.00% 1.98s 1min 4 N

The fault tolerance of the system was observed during and after the tests. As the team
had to wait for the number of pods to downscale back to one. When manually deleting
the pods, Kubernetes would automatically create new ones to combat the deletion.

34

Figure 15. Data from testing

6.3. Data Analysis

6.3.1. Expected Outcome Vs Reality

The expected outcomes of the executed tests were that the pods would scale without
errors as the number of virtual users increases. It was expected that during load testing,
stress testing and spike testing; the amount of pods would scale up to a maximum
of four, the HTTP request failure percentage would stay below 1 percent, and that
the HTTP request duration would stay under 200ms. After concluding the tests,
the outcomes matched our expectations. The HTTP request failure percentage and
duration were below expected, and the number of pods scaled up to the expected
levels. The unexpected result from testing was that the number of pods always scaled
to four when there was over 1 VU accessing the server. The overall results from the
tests were better than what was expected, for example the HTTP request duration and
failure rate stayed under their respective thresholds. The system didn’t crash even at
800 concurrent VU’s. When manually deleting pods to simulate crashing the HTTP
request failed percentage rose to 3.3% with 20 VU’s.

6.3.2. Major Problems, Shortcomings and Flaws

During the testing phase of this project it was observed that the largest shortcoming of
this environment was the actual hardware of the server. The system had 1 Gigabyte
of RAM memory which quickly was used up during the tests. This caused the
aforementioned problem regarding the pods. In some tests the maximum HTTP request
duration did break the threshold, but the average durations were well below 200ms for
the load and stress tests. Spike testing the system managed to increase the avg HTTP
request duration up to almost 2 seconds as can be observed from the results table.

35

7. DISCUSSION

7.1. The Change

The original plan was to introduce microservice architecture, containers and Ansible
into the current Lovelace system. As time progressed the goal of the project changed.
The team noticed that it wasn’t viable time-wise to introduce these new technologies
directly into the current system as it would have to be revamped completely and so
the goal changed to showcasing how these technologies can be used to automatise the
deployment and configuration of an application. This project works as an option for
the future proofing of Lovelace in its next version.

7.2. Difficulties

The first problem in the project came forward very early on as the installation
documentation for the Lovelace system was severely outdated. Some python libraries
could not be installed anymore as the versions were so old. The team spent a lot of time
trying to install correct versions of the python libraries, before concluding the change
of the goal discussed before. After the change the project halted for a duration of time
while the team was figuring out the new direction of the project.

While creating the networking aspect for this thesis work, the team came across
some problems regarding traffic routing for Kubernetes cluster, correct service and
pods.

During the evaluation of the system, the team encountered a problem regarding the
server’s hardware. The amount of VUs required to actually put pressure on the system
had to be extremely large (over 1000), before the CPU usage rose noticeably. This
wasn’t a very realistic amount of concurrent users when looking at it from a system
like Lovelace’s perspective as it will not have this many users accessing it at the same
time in the near future. When the system was stress tested the bottleneck of it was
found to be the original memory allocation, the rest of the system’s usage stayed low.
For instance, when the Kubernetes was scaling the system, the pods would take up all
the RAM of the system in a way the team was cyber-attacking their own system.. This
caused the whole server to crash and it would have to be restarted. The server was
updated to have a larger amount of memory and the configuration regarding scaling of
pods was changed. Even after the hardware update the system would scale its number
of pods even when it was handling traffic from 10 VU’s.

After the technologies had been validated, the next problem was installing and
configuring a flask application with Celery, RabbitMQ and Redis. Installing Redis
proved to be a problem, since it didn’t get installed and thus the Celery workers
couldn’t use it as a database in the application. The answer for this problem was that
the deployment and configuration of Redis had failed and it was quickly fixed after the
discovery.

36

7.3. Future Work

Before actually implementing this project into any system, the system should be
configured to support these technologies and this project needs to be further tested.
The next step would be to apply these technologies, methods and tools on to the actual
Lovelace environment. This project merely works as a proof of concept to give an
idea on how the technologies could be integrated into Lovelace. This would start by
choosing the tools that can differ from the ones in this project depending on factors
such as Lovelace’s administrators strong suites. After the choice, Lovelace can be split
into microservices and then added into the chosen cloud environment. The scaling of
Kubernetes needs to be configured correctly for the demands of the actual environment,
in this project this was deemed to be 10% of the system’s hardware.

There are three options for the implementation of this project into Lovelace. The
options are listed in the order of how much effort/changes the implementation would
take from lowest to highest effort. First is Lift&Shift which like the name implies
is simply copy pasting Lovelace system into containers with minimal changes. The
second one is Refactoring, this approach is very similar to the first one except
the source code would be further optimized for containerization. The third one,
Rearchitechturing is the most time and effort consuming, in this approach the whole
system would be overhauled to better fit the DevOps mentality and containers.

7.4. State of the Art

Similar technologies and methodology have been used in the modern development
environments. One example was a creation of a Framework that also deployed
containers using Kubernetes. The framework used Kube-API as the frontend server. In
contrast to this project the Kubernetes clusters were managed with Rancher and Jenkins
was used as the automation server for CI/CD and pipelines. Docker images were the
main part of the framework that were used to deploy instructions and configurations
to execute the application. The evaluation of the project was done by testing multiple
scenarios with the main focus being around the number of pods and containers and
analyzing the benchmark results during the deployment process. [44]

Another example was an application that was tested in two different virtualization
environments, Docker and VM. The purpose of the testing process was to determine
which of these environments had the better performance. The research that was done
while creating the project was in line with this project. The project proposed that VMs
were the worse environment, since they had to contain the whole OS, its dependencies
and a hypervisor. The project also used Kubernetes and Docker to create a multi-
containerized application. The testing was done by running a Fibonacci sequence
in both environments and seeing how they performed against each other. Docker
managed to reach an average computation time of 52 seconds and the VM had an
average of 96 seconds. In this example the containerized application outperformed its
VM equivalent by almost 46%. [45]

37

8. CONCLUSION

The conclusion made from all the observations regarding the system was that
technologies such as Ansible and Docker were seen as positive options for the next
version of Lovelace. With Ansible and Docker the next version’s deployment and
configuration could be automated and the code changes could be implemented without
worrying about the whole system having to be taken down. Kubernetes could be
used to automatically create new code checker pods to combat the amount of students
posting their assignments on deadline days. However, Kubernetes is possibly overly
complicated solution considering the level of traffic that a system like Lovelace has.
Kubernetes would be ideal in a system that needs to scale to cater to a larger number
of simultaneous users. One estimation of when a Kubernetes would be beneficial for a
system was that the system was expected to handle over a thousand concurrent users.

With this project the team managed to implement the forementioned technologies in
a way that a Flask based application could handle thousands of concurrent users with
autoscaling. Even if one of the instances of the application crashed another one would
instantly be created to handle the traffic. The project can be used as a basis for the
next version of Lovelace development environment with minimal changes as well as
for implementing Kubernetes into a development environment.

38

9. REFERENCES

[1] Izrailevsky Y., Vlaovic S. & Meshenberg R. (2016), Completing the netflix
cloud migration. URL: https://about.netflix.com/en/news/
completing-the-netflix-cloud-migration.

[2] Jamshidi P., Pahl C., Mendonça N., Lewis J. & Tilkov S. (2018) Microservices:
The journey so far and challenges ahead. IEEE Software 35, pp. 24–30.

[3] Django. URL: https://www.djangoproject.com/.

[4] Rabbitmq. URL: https://www.rabbitmq.com/.

[5] Redis. URL: https://redis.io/.

[6] Celery. URL: https://docs.celeryq.dev/en/stable/getting-
started/introduction.html.

[7] Postgres. URL: https://www.postgresql.org/docs/.

[8] Nfs. URL: http://nfs.sourceforge.net/.

[9] Apache. URL: https://www.apache.org/.

[10] Rhel. URL: https://access.redhat.com/documentation/.

[11] Torres Martín C., Acal C., El Homrani M. & Mingorance Estrada C. (2021)
Impact on the virtual learning environment due to covid-19. Sustainability 13.
URL: https://www.mdpi.com/2071-1050/13/2/582.

[12] Guerrero C. & Angarita A. (2014) Virtual learning enviroment to support object
oriented programming learning. Revista Colombiana de Computación , pp. 6–8.

[13] David C. (2007) Web.based learning; pros, cons and controversies. Clinical
Medicine 7, pp. 37–42.

[14] Alves P., Miranda L. & Morais C. (2017) The influence of virtual learning
environments in students’ performance. Universal Journal of Educational
Research , pp. 517–527.

[15] Newman S. (2019) From monolith to microservices. O’Reailly Media Inc, 253 p.

[16] Bauer D., Penz B., Mäkiö J. & Assaad M. (2018) Improvement of an existing
microservices architecture for an e-learning platform in stem education.

[17] Bowles M. (2017) Automation Skills: Background Report.

[18] (2004), Methods and apparatuses for configuration automation. United States
patent 7715790B1.

[19] Shahin M., Ali Babar M. & Zhu L. (2017) Continuous integration, delivery and
deployment: A systematic review on approaches, tools, challenges and practices.
IEEE Access pp. 2-3.

https://about.netflix.com/en/news/completing-the-netflix-cloud-migration
https://about.netflix.com/en/news/completing-the-netflix-cloud-migration
https://www.djangoproject.com/
https://www.rabbitmq.com/
https://redis.io/
https://docs.celeryq.dev/en/stable/getting-started/introduction.html
https://docs.celeryq.dev/en/stable/getting-started/introduction.html
https://www.postgresql.org/docs/
http://nfs.sourceforge.net/
https://www.apache.org/
https://access.redhat.com/documentation/
https://www.mdpi.com/2071-1050/13/2/582

39

[20] Gerard Claps G., Berntsson Svensson R. & Aybüke A. (2015) On the journey
to continuous deployment: Technical and social challenges along the way.
Information and Software Technology 57, pp. 21–31.

[21] Sharma M., Junior E., Vasilev B., Litmaath M. & Santana R. (2020) The simple
framework for deploying containerized grid services. EPJ Web of Conferences
245, pp. 1–7.

[22] Jenkins. URL: https://www.jenkins.io/.

[23] Ansible Documentation. URL: https://docs.ansible.com/.

[24] Configuration Management System Software - Chef Infra | Chef. URL: https:
//www.chef.io/products/chef-infra.

[25] Webteam P., Powerful infrastructure automation and delivery | Puppet. URL:
https://www.puppet.com/.

[26] Docker. URL: https://www.docker.com/.

[27] containerd. URL: https://containerd.io/.

[28] cri-o. URL: https://cri-o.io/.

[29] Mohd Mydin M.N., Ismail B., Rajendar K., Ahmad H. & Khalid M. (2021) An
operational view into docker registry with scalability, access control and image
assessment.

[30] Introduction to GitHub Packages. URL: http://ghdocs-prod.
azurewebsites.net:80/en/packages/learn-github-
packages/introduction-to-github-packages.

[31] Azure Container Registry | Microsoft Azure. URL: https://azure.
microsoft.com/en-us/services/container-registry/.

[32] Container Registry. URL: https://cloud.google.com/container-
registry.

[33] Fully Managed Container Registry – Amazon Elastic Container Registry –
Amazon Web Services. URL: https://aws.amazon.com/ecr/.

[34] Kubernetes. URL: https://kubernetes.io/.

[35] K3s: Lightweight Kubernetes. URL: https://k3s.io/.

[36] k3d. URL: https://k3d.io/v5.4.1/.

[37] Evans J. (2016), Mastering chaos - a netflix guide to microservices. URL:
https://www.infoq.com/presentations/netflix-chaos-
microservices/.

[38] Lenka R., Padhi S. & Nayak K. (2018) Fault injection techniques - a brief review.
pp. 832–837.

https://www.jenkins.io/
https://docs.ansible.com/
https://www.chef.io/products/chef-infra
https://www.chef.io/products/chef-infra
https://www.puppet.com/
https://www.docker.com/
https://containerd.io/
https://cri-o.io/
http://ghdocs-prod.azurewebsites.net:80/en/packages/learn-github-packages/introduction-to-github-packages
http://ghdocs-prod.azurewebsites.net:80/en/packages/learn-github-packages/introduction-to-github-packages
http://ghdocs-prod.azurewebsites.net:80/en/packages/learn-github-packages/introduction-to-github-packages
https://azure.microsoft.com/en-us/services/container-registry/
https://azure.microsoft.com/en-us/services/container-registry/
https://cloud.google.com/container-registry
https://cloud.google.com/container-registry
https://aws.amazon.com/ecr/
https://kubernetes.io/
https://k3s.io/
https://k3d.io/v5.4.1/
https://www.infoq.com/presentations/netflix-chaos-microservices/
https://www.infoq.com/presentations/netflix-chaos-microservices/

40

[39] Rayan (2019) How google cloud helped multiplay power a record-breaking apex
legends launch .

[40] Khan R. & Amjad M. (2016) Performance testing (load) of web applications
based on test case management. Perspectives in Science 8.

[41] Cannavacciuolo C. & Mariani L. (2022) Smoke testing of cloud systems.

[42] Menascé D. (2002) Load testing of web sites. Internet Computing, IEEE 6, pp.
70– 74.

[43] Briand L., Labiche Y. & Shousha M. (2005) Performance stress testing of real-
time systems using genetic algorithms , pp. 1–3.

[44] Abhishek M., Rao D. & Subrahmanyam K. (2022) Framework to deploy
containers using kubernetes and ci/cd pipeline. International Journal of Advanced
Computer Science and Applications 13.

[45] Alowolodu O. (2021) A multi-containerized application using docker containers
and kubernetes clusters. International Journal of Computer Applications 183, pp.
55–60.

41

10. APPENDICES

10.1. Commands

Creating a SSH key:
• chmod 400 actionsvmkey.pem
• ssh -i actionsvmkey.pem stpuser@12.345.67.890

K3s and kubectl:
• kubectl get pods
• kubectl get service
• k3s cluster list
• kubectl port-forward app 3003:3000
• kubectl apply -f test.yaml
• kubectl get ing

K3d:
• k3d cluster delete
• k3d cluster create –port 8082:30080@agent:0 -p 8081:80@loadbalancer –agents

2

Ansible commands:
• ansible all –ask-pass -m ping
• ansible-playbook –ask-pass playbook.yaml
• docker ps
• docker images
• docker ps -a
• docker system prune
• docker image rm ed
• docker pull maso77/lovelaceregister

Scaling with kubectl
• sudo curl -s https://raw.githubusercontent.com/k3d-io/k3d/main/install.sh | bash
• sudo kubectl create deployment hellolove –

image=maso77/lovelaceregister:latest
• kubectl scale deployment mockdeployment –replicas=4
• kubectl autoscale rs flaskapi-dep –min=1 –max=4 –cpu-percent=10
• kubectl describe deployment mockdeployment
• kubectl config view –minify –raw
• kubectl apply -f bb.yaml
• sudo systemctl start docker
• sudo systemctl enable docker
• kubectl apply -f manifests/

42

• kubectl apply -f filename
• kubectl describe pod
• kubectl logs -f resourcename
• kubectl get rs/ing/pod/service
• kubectl delete rs/ing/pod/service appname

Testing:
• docker run –rm -i grafana/k6 run - <spiketest.js –insecure-skip-tls-verify (replace

spiketest.js with the test you want to run)

10.2. Contributions

Stage 1
Student Hours Contributions
Miiro
Kuosmanen

49 Researching Docker, Containers, Ansible,
Kubernetes, writing, communicating with
supervisor

Lauri Suutari 51.5 "Researching Docker, Containers, Ansible,
Kubernetes, writing, communicating with
supervisor"

Joona Holappa 42 Researching Docker, Containers, Ansible,
Kubernetes, writing, communicating with
supervisor

Stage 2
Miiro
Kuosmanen

52 Research and installation of the environment.
Implementing Docker, Ansible and Kubernetes.
Managing the system and communicating with
supervisor. Implementing the configurations,
writing

Lauri Suutari 47 Research and installation of the environment.
Implementing Docker, Ansible and Kubernetes.
Implementing the configurations. writing

Joona Holappa 52 Research and installation of the environment.
Implementing Docker, Ansible and Kubernetes.
Implementing the configurations, writing

43

Stage 3
Miiro
Kuosmanen

42 Configuring and networking the system for
autoscaling. Running tests and evaluating
results. Researching articles for citations
and rewriting the text. Researching and
implementing K3d with django, celery, redis,
rabbitmq.

Lauri Suutari 46 Configuring the system for autoscaling and
implementing the evaluation tests. Running
tests and evaluating results. Researching
articles for citations and rewriting the text.
Researching and implementing K3d with
django, celery, redis, rabbitmq.

Joona Holappa 45 Configuring and networking the system
for autoscaling. Managing the Kubernetes
platform. Running tests and evaluating results.
Researching articles for citations and rewriting
the text. Researching and implementing K3d
with flask, celery, redis, rabbitmq.

Stage 4
Miiro
Kuosmanen

23 Communicating with the supervisor, working
on the final presentation, implementing the last
version of the prototype for Flaskapi with redis,
rabbitmq and celery.

Lauri Suutari 35 Working on the final presentation,
implementing the last version of the prototype
for Flaskapi with redis, rabbitmq and celery.
Finishing the writing part of the thesis.
Communicating with the supervisor.

Joona Holappa 31 Working on the final presentation,
implementing the last version of the prototype
for Flaskapi with redis, rabbitmq and celery.
Finishing the writing part of the thesis.

Total
Miiro
Kuosmanen

166.5

Lauri Suutari 179.5
Joona Holappa 173

44

10.3. Flaskapi

from f l a s k i m p o r t F lask , r e d i r e c t , u r l _ f o r , r e q u e s t
app = F l a s k (__name__)

@app . r o u t e (’ / ’ , methods = [’ POST ’ , ’GET ’])
d e f l o g i n () :

i f r e q u e s t . method == ’POST ’ :
r e t u r n " P o s t r e q u e s t "

i f r e q u e s t . method == ’GET ’ :
r e t u r n " Get r e q u e s t "

i f __name__ == ’ __main__ ’ :
app . run (h o s t = " 0 . 0 . 0 . 0 " , p o r t =5000)

	
	
	
	
	
	
	
	
	
	
	

	
	
	

	
	
	
	
	

	
	
	
	
	
	

	
	
	
	

	
	
	
	

	
	
	
	

	
	
	

	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	

	
	
	
	
	

	
	REFERENCES
	
	
	
	

